Metabolites Analysis on Water-Holding Capacity in Beef Longissimus lumborum Muscle during Postmortem Aging
Abstract
:1. Introduction
2. Results
2.1. Changes in the Quality Characteristics of Beef during Postmortem Aging
2.2. Changes in Energy Metabolism of Beef during Postmortem Aging
2.3. Principal Component Analysis (PCA)
2.4. Identification of Differential Metabolites during Postmortem Aging
2.4.1. Identification of Differential Metabolites
2.4.2. Hierarchical Clustering Analysis
2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Animals and Sampling
4.2. pH
4.3. Drip Loss
4.4. Cooking Loss
4.5. Energy Metabolism Indexes
4.6. Extraction of Metabolites
4.7. UHPLC-QTOF-MS Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Hou, C.; Ijaz, M.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci. Tech. 2020, 105, 416–432. [Google Scholar] [CrossRef]
- Zuo, H.; Han, L.; Yu, Q.; Niu, K.; Zhao, S.; Shi, H. Proteome changes on water-holding capacity of yak Longissimus lumborum during postmortem aging. Meat Sci. 2016, 121, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Setyabrata, D.; Cooper, B.R.; Sobreira, T.J.P.; Legako, J.F.; Martini, S.; Kim, Y.H.B. Elucidating mechanisms involved in flavor generation of dry-aged beef loins using metabolomics approach. Food Res. Int. 2021, 139, 109969. [Google Scholar] [CrossRef]
- Hollung, K.; Veiseth, E.; Frøystein, T.; Aass, L.; Langsrud, Ø.; Hildrum, K.I. Variation in the response to manipulation of post-mortem glycolysis in beef muscles by low-voltage electrical stimulation and conditioning temperature. Meat Sci. 2007, 77, 372–383. [Google Scholar] [CrossRef]
- Mohammed, G.; Robyn, D.W.; Peter, P.; Ranjith, R.; Anne, M.M.; Maria, L.-P.; Daniel, F.; José, M.L.; Igor, T.; Brigitte, P.; et al. Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Sci. 2021, 181, 108611. [Google Scholar] [CrossRef]
- Surinder, S.C.; Eric, M.E. Postmortem glycolysis and glycogenolysis: Insights from species comparisons. Meat Sci. 2018, 144, 118–126. [Google Scholar] [CrossRef]
- Ribeiro, F.A.; Lau, S.K.; Furbeck, R.A.; Herrera, N.J.; Henriott, M.L.; Bland, N.A.; Fernando, S.C.; Subbiah, J.; Sullivan, G.A.; Calkins, C.R. Ultimate pH effects on dry-aged beef quality. Meat Sci. 2021, 172, 108365. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.; Steven, D.H.; Janet, R.; Deborah, L.V.; Gretchen, G.M.; Ranjith, R. Changes in glycolytic and mitochondrial protein profiles regulates postmortem muscle acidification and oxygen consumption in dark-cutting beef. J. Proteomics 2021, 232, 104016. [Google Scholar] [CrossRef]
- Osorio, M.T.; Moloney, A.P.; Brennan, L.; Monahan, F.J. Authentication of beef production systems using a metabolomic-based approach. Animal 2012, 6, 167–172. [Google Scholar] [CrossRef]
- Poul, H.; Anders, K.; Mogens, T.J.; Niels, O.; Jette, S.P. Metabolic conditions in porcine Longissimus muscle immediately pre-slaughter and its influence on peri- and post-mortem energy metabolism. Meat Sci. 2002, 62, 145–155. [Google Scholar] [CrossRef]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Jia, X.; Hildrum, K.I.; Westad, F.; Kummen, E.; Aass, L.; Hollung, K. Changes in enzymes associated with energy metabolism during the early post-mortem period in Longissimus thoracis bovine muscle analyzed by proteomics. J. Proteome Res. 2006, 5, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Ma, L.; Li, D.; Tian, Y.; Liu, J.; Liu, D. Proteomics analysis to investigate the effect of oxidized protein on meat color and water holding capacity in Tan mutton under low temperature storage. LWT-Food Sci. Technol. 2021, 146, 111429. [Google Scholar] [CrossRef]
- Gagaoua, M.; Hughes, J.; Terlouw, E.M.C.; Warner, R.D.; Purslow, P.P.; Lorenzo, J.M.; Picard, B. Proteomic biomarkers of beef colour. Trends Food Sci. Tech. 2020, 101, 234–252. [Google Scholar] [CrossRef]
- Ijaz, M.; Li, X.; Zhang, D.; Hussain, Z.; Ren, C.; Bai, Y.; Zheng, X. Association between meat color of DFD beef and other quality attributes. Meat Sci. 2020, 161, 107954. [Google Scholar] [CrossRef] [PubMed]
- Greta, B.; Franziska, W.; Nino, T.; Edwin, J.; Volker, H.; Andreas, J.; Monika, G. Analysis of aging type- and aging time-related changes in the polar fraction of metabolome of beef by 1H NMR spectroscopy. Food Chem. 2021, 342, 128353. [Google Scholar] [CrossRef]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci. 2008, 79, 270–277. [Google Scholar] [CrossRef]
- Pomponio, L.; Bukh, C.; Ruiz-Carrascal, J. Proteolysis in pork loins during superchilling and regular chilling storage. Meat Sci. 2018, 141, 57–65. [Google Scholar] [CrossRef]
- Kodani, Y.; Miyakawa, T.; Komatsu, T.; Tanokura, M. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. Sci. Rep. 2017, 7, 1297. [Google Scholar] [CrossRef] [Green Version]
- Macy, R.L.; Naumann, H.D.; Bailey, M.E. Water-soluble flavor and odor precursors of meat. 5. Influence of heating on acid-extractable non-nucleotide chemical constituents of beef, lamb and pork. J. Food Sci. 1970, 35, 83–87. [Google Scholar] [CrossRef]
- Purchas, R.W.; Rutherfurd, S.M.; Pearce, P.D.; Vather, R.; Wilkinson, B.H.P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef]
- Koutsidis, G.; Elmore, J.S.; Oruna-Concha, M.J.; Campo, M.M.; Wood, J.D.; Mottram, D.S. Water-soluble precursors of beef flavour: I. Effect of diet and breed. Meat Sci. 2008, 79, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Wedekind, R.; Keski-Rahkonen, P.; Robinot, N.; Mercier, F.; Engel, E.; Huybrechts, I.; Scalbert, A. Metabolic signatures of 10 processed and non-processed meat products after in vitro digestion. Metabolites 2020, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Man, K.Y.; Chan, C.O.; Tang, H.H.; Dong, N.; Capozzi, F.; Wong, K.H.; Kwok, K.W.H.; Chan, H.M.; Mok, D.K.W. Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chem. 2021, 338, 127847. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Mo, Q.; Wei, J.; Zhao, M.; Tang, J.; Feng, F. Mass spectrometry-based metabolomics to reveal chicken meat improvements by medium-chain monoglycerides supplementation: Taste, fresh meat quality, and composition. Food Chem. 2021, 365, 130303. [Google Scholar] [CrossRef]
- Lee, S.M.; Kwon, G.Y.; Kim, K.O.; Kim, Y.S. Metabolomic approach for determination of key volatile compounds related to beef flavor in glutathione-Maillard reaction products. Anal. Chim. Acta. 2011, 703, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, G.; Pechlivanis, A.; Thomaidis, N.S.; Spyros, A.; Georgiou, C.A.; Albanis, T.; Skoufos, I.; Kalogiannis, S.; Tsangaris, G.T.; Stasinakis, A.S.; et al. Metabolic signatures of 10 processed and non-processed meat products after in vitro digestion. Metabolites 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Huff Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Serra, X.; Guerrero, L.; Guardia, M.D.; Gil, M.; Sañudo, C.; Panea, B.; Campo, M.M.; Olleta, J.L.; García-Cachán, M.D.; Piedrafita, J.; et al. Eating quality of young bulls from three Spanish beef breed-production systems and its relationships with chemical and instrumental meat quality. Meat Sci. 2008, 79, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Paredi, G.; Raboni, S.; Bendixen, E.; de Almeida, A.M.; Mozzarelli, A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J. Proteomics 2012, 75, 4275–4289. [Google Scholar] [CrossRef]
- Farouk, M.M.; Mustafa, N.M.; Wu, G.; Krsinic, G. The “sponge effect” hypothesis: An alternative explanation of the improvement in the waterholding capacity of meat with ageing. Meat Sci. 2012, 90, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.P.; Marie, S.; Nassogne, M.C. Disorders of purine biosynthesis metabolism. Mol. Genet. Metab. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Huang, Y.; Ji, J.; Xiao, S.; Ma, J.; Huang, L. Effects of breeds, tissues and genders on purine contents in pork and the relationships between purine content and other meat quality traits. Meat Sci. 2018, 143, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.P.; Rooma, D. Biosensing methods for xanthine determination: A review. Enzyme Microb. Tech. 2014, 57, 55–62. [Google Scholar] [CrossRef]
- Yazdanparast, S.; Benvidi, A.; Abbasi, S.; Rezaeinasab, M. Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/mwcnt bio-nanocomposite for xanthine detection: A meat freshness marker. Microchem. J. 2019, 149, 104000. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Taniguchi, M.; Arakawa, A.; Nishio, M.; Okamura, T.; Ohnishi, C.; Kadowaki, K.; Kohira, K.; Homma, F.; Matsumoto, K.; Ishii, K. Differential metabolomics profiles identified by CE-TOFMS between high and low intramuscular fat amount in fattening pigs. Metabolites 2020, 10, 322. [Google Scholar] [CrossRef]
- Zuo, H.; Han, L.; Yu, Q.; Guo, Z.; Ma, J.; Li, M.; La, H.; Han, G. Proteomic and bioinformatic analysis of proteins on cooking loss in yak Longissimus thoracis. Eur. Food Res. Technol. 2018, 244, 1211–1223. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.; Li, X.; Li, X.; Yang, S.; Chen, N.; Li, L.; Zhang, L. Tetrahydroxy stilbene glycoside attenuates acetaminophen-induced hepatotoxicity by UHPLC-Q-TOF/MS-based metabolomics and multivariate data analysis. J. Cell Physiol. 2020, 236, 3832–3862. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Duan, C.; Zhang, J. A novel approach combining metabolomics and molecular pharmacology to study the effect of Gei Herba on mouse hematopoietic function. Biomed. Pharmacother. 2020, 129, 110437. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Che, L.; Wu, C.; Curtasu, M.V.; Wu, F.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; Li, J.; et al. Metabolomic profiling reveals the difference on reproductive performance between high and low lactational weight loss sows. Metabolites 2019, 9, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Traits | 0 d | 0.5 d | 1 d | 2 d | 3 d | 5 d | 7 d |
---|---|---|---|---|---|---|---|
pH | 5.75 ± 0.01 a | 5.71 ± 0.02 b | 5.65 ± 0.03 c | 5.45 ± 0.03 e | 5.46 ± 0.03 e | 5.49 ± 0.01 e | 5.55 ± 0.02 d |
Drip loss (%) | 2.19 ± 0.06 f | 2.31 ± 0.04 g | 2.49 ± 0.08 e | 2.86 ± 0.03 d | 4.1 ± 0.03 a | 3.91 ± 0.02 b | 3.42 ± 0.03 c |
Cooking loss (%) | 19.15 ± 0.63 d | 19.29 ± 0.37 d | 19.45 ± 0.82 d | 22.21 ± 0.93 bc | 25.37 ± 1.18 a | 23.02 ± 0.84 b | 21.27 ± 0.55 c |
Traits | 0 d | 0.5 d | 1 d | 2 d | 3 d | 5 d | 7 d |
---|---|---|---|---|---|---|---|
Glycogen (mg·g−1) | 5.58 ± 0.09 a | 4.63 ± 0.07 b | 3.72 ± 0.07 c | 2.19 ± 0.1 d | 2.03 ± 0.08 de | 1.91 ± 0.09 e | 1.89 ± 0.12 e |
Lactic acid (ng·mL−1) | 100.67 ± 11.68 c | 118.33 ± 12.50 c | 172 ± 11.00 b | 231.67 ± 12.10 a | 231 ± 12.77 a | 225 ± 10.54 a | 217 ± 15.39 a |
Free glucose (mmol·L−1) | 9.39 ± 0.07 a | 8.33 ± 0.07 b | 7.90 ± 0.14 c | 6.48 ± 0.1 e | 6.39 ± 0.15 e | 6.31 ± 0.13 e | 6.26 ± 0.11 e |
ATP (μmol·g−1) | 3.53 ± 0.08 a | 2.72 ± 0.09 b | 1.98 ± 0.11 c | 0.77 ± 0.12 d | 0.66 ± 0.12 d | 0.57 ± 0.11 d | 0.51 ± 0.14 d |
ADP (μmol·g−1) | 4.52 ± 0.1 a | 2.60 ± 0.09 b | 1.36 ± 0.08 c | 0.49 ± 0.12 d | 0.36 ± 0.11 d | 0.30 ± 0.10 d | 0.29 ± 0.10 d |
AMP (μmol·g−1) | 0.3 ± 0.03 a | 0.20 ± 0.04 b | 0.21 ± 0.03 b | 0.19 ± 0.03 b | 0.15 ± 0.04 b | 0.14 ± 0.04 b | 0.14 ± 0.01 b |
Name | Accession Number | Adduct | m/z | Fold Change | ||
---|---|---|---|---|---|---|
0.5/0 d | 1/0 d | 2/0 d | ||||
Positive ion mode | ||||||
S-Methyl-5’-thioadenosine | M298T94 | (M + H)+ | 298.0968 | 3.77 | 4.70 | 3.69 |
L-Palmitoylcarnitine | M400T164 | (M + H)+ | 400.3411 | 0.29 | 0.10 | 0.08 |
1-Palmitoyl-sn-glycero-3-phosphocholine | M496T162 | (M + H)+ | 496.3374 | 1.50 | 2.31 | 1.43 |
2-Keto-D-gluconic acid | M159T220 | (M + H − 2H2O)+ | 159.0265 | 2.71 | 2.60 | 2.18 |
Hypoxanthine | M137T185 | (M + H)+ | 137.0456 | 3.97 | 3.96 | 3.26 |
Larixinic acid | M127T467 | (M + H)+ | 127.0382 | 1.40 | 1.63 | 1.94 |
Allopurinol riboside | M269T211 | (M + H) + | 269.0875 | 3.66 | 4.24 | 3.25 |
1-Oleoyl-sn-glycero-3-phosphocholine | M522T148 | (M + H)+ | 522.3536 | 1.43 | 2.65 | 1.52 |
D-Mannose-6-phosphate | M261T494 | (M + H)+ | 261.0360 | 1.50 | 1.48 | 2.12 |
Adenosine | M250T91 | (M + H − H2O)+ | 250.0923 | 4.65 | 3.33 | 2.23 |
Negative ion mode | ||||||
Xanthine | M151T213_2 | (M − H)− | 151.0262 | 4.19 | 4.41 | 3.63 |
Guanosine 5’-monophosphate | M362T455 | (M − H)− | 362.0479 | 0.70 | 0.79 | 0.72 |
S-Methyl-5’-thioadenosine | M296T91 | (M − H)− | 296.0794 | 3.78 | 3.88 | 4.58 |
Uric acid | M167T193 | (M − H)− | 167.0198 | 4.95 | 4.69 | 4.27 |
Hypoxanthine | M135T191_2 | (M − H)− | 135.0309 | 3.03 | 3.06 | 2.84 |
D-Sorbitol | M181T285 | (M − H)− | 181.0710 | 2.59 | 3.08 | 3.77 |
Glyceric acid | M105T296 | (M − H)− | 105.0188 | 2.43 | 12.85 | 6.99 |
L-Arabinose | M149T150 | (M − H)− | 149.0445 | 1.95 | 2.68 | 2.37 |
Hydroxyisocaproic acid | M131T133 | (M − H)− | 131.0703 | 2.46 | 2.13 | 2.23 |
Arachidonic acid | M303T38 | (M − H)− | 303.2318 | 1.92 | 2.70 | 2.29 |
Urocanic acid | M154T266 | (M + NH4 − 2H)− | 154.0611 | 0.66 | 0.58 | 0.54 |
Fructose 1-phosphate | M519T448 | (2M − H)− | 519.0505 | 1.73 | 1.95 | 2.74 |
11(Z),14(Z)-Eicosadienoic acid | M307T38 | (M − H)− | 307.2615 | 1.73 | 1.90 | 2.21 |
7Z, 10Z, 13Z, 16Z, 19Z-Docosapentaenoic acid | M329T38 | (M − H)− | 329.2466 | 1.58 | 2.29 | 1.61 |
D-Mannose 1-phosphate | M259T467 | (M − H)− | 259.0219 | 1.41 | 0.70 | 1.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Wang, P.; Guo, Z.; Luo, X.; Zhang, Y.; Mao, Y. Metabolites Analysis on Water-Holding Capacity in Beef Longissimus lumborum Muscle during Postmortem Aging. Metabolites 2022, 12, 242. https://doi.org/10.3390/metabo12030242
Zuo H, Wang P, Guo Z, Luo X, Zhang Y, Mao Y. Metabolites Analysis on Water-Holding Capacity in Beef Longissimus lumborum Muscle during Postmortem Aging. Metabolites. 2022; 12(3):242. https://doi.org/10.3390/metabo12030242
Chicago/Turabian StyleZuo, Huixin, Pengsen Wang, Zonglin Guo, Xin Luo, Yimin Zhang, and Yanwei Mao. 2022. "Metabolites Analysis on Water-Holding Capacity in Beef Longissimus lumborum Muscle during Postmortem Aging" Metabolites 12, no. 3: 242. https://doi.org/10.3390/metabo12030242
APA StyleZuo, H., Wang, P., Guo, Z., Luo, X., Zhang, Y., & Mao, Y. (2022). Metabolites Analysis on Water-Holding Capacity in Beef Longissimus lumborum Muscle during Postmortem Aging. Metabolites, 12(3), 242. https://doi.org/10.3390/metabo12030242