Glucagon-Like Peptide-1 Receptor Agonist Semaglutide Improves Eating Behavior and Glycemic Control in Japanese Obese Type 2 Diabetic Patients
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Participants
2.2. Time-Course Changes in BW, BMI, and BP after Semaglutide Treatment
2.3. Time-Course Changes in Plasma Metabolic Parameters after Semaglutide Treatment
2.4. Time-Course Changes in Eating Behavior after Semaglutide Treatment
2.5. Correlation between Changes in Eating Behavior and Changes in BW and Glycemic Metabolic Parameters
2.6. Multiple Regression Analyses of Changes in BW, FPG, and HbA1c
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Anthropometry and Body Analyses
4.3. Blood Sampling and Analysis of Blood Pressure
4.4. Assessment of Eating Behavior
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jastreboff, A.M.; Sinha, R.; Lacadie, C.; Small, D.M.; Sherwin, R.S.; Potenza, M.N. Neural correlates of stress-and food cue-induced food craving in obesity: Association with insulin levels. Diabetes Care 2013, 36, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahima, R.S.; Antwi, D.A. Brain regulation of appetite and satiety. Endocrinol. Metab. Clin. N. Am. 2008, 37, 811–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishi, T.; Elmquist, J.K. Body weight is regulated by the brain: A link between feeding and emotion. Mol. Psychiatry 2005, 10, 132–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Maeda, N.; Kashine, S.; Fujishima, Y.; Kozawa, J.; Hiuge-Shimizu, A.; Okita, K.; Imagawa, A.; Funahashi, T.; Shimomura, I. Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: A pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc. Diabetol. 2011, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujishima, Y.; Maeda, N.; Inoue, K.; Kashine, S.; Nishizawa, H.; Hirata, A.; Kozawa, J.; Yasuda, T.; Okita, K.; Imagawa, A.; et al. Efficacy of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight, eating behavior, and glycemic control, in Japanese obese type 2 diabetes. Cardiovasc. Diabetol. 2012, 11, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnefond, A.; Keller, R.; Meyre, D.; Stutzmann, F.; Thuillier, D.; Stefanov, D.G.; Froguel, P.; Horber, F.F.; Kral, J.G. Eating Behavior, Low-Frequency Functional Mutations in the Melanocortin-4 Receptor (MC4R) Gene, and Outcomes of Bariatric Operations. Diabetes Care 2016, 39, 1384–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisting, L.; Frøisland, D.H.; Skrivarhaug, T.; Dahl-Jørgensen, K.; Rø, O. Disturbed eating behavior and omission of insulin in adolescents receiving intensified insulin treatment: A nationwide population-based study. Diabetes Care 2013, 36, 3382–3387. [Google Scholar] [CrossRef] [Green Version]
- Simmons, D.; Jelsma, J.G.; Galjaard, S.; Devlieger, R.; van Assche, A.; Jans, G.; Corcoy, R.; Adelantado, J.M.; Dunne, F.; Desoye, G.; et al. Results from a European Multicenter Randomized Trial of Physical Activity and/or Healthy Eating to Reduce the Risk of Gestational Diabetes Mellitus. Diabetes Care 2015, 38, 1650–1656. [Google Scholar] [CrossRef] [Green Version]
- Wadden, T.A.; Volger, S.; Sarwer, D.B.; Vetter, M.L.; Tsai, A.G.; Berkowitz, R.I.; Kumanyika, S.; Schmitz, K.H.; Diewald, L.K.; Barg, R.; et al. A two-year randomized trial of obesity treatment in primary care practice. N. Engl. J. Med. 2011, 365, 1969–1979. [Google Scholar] [CrossRef] [Green Version]
- Wadden, T.A.; Butryn, M.L.; Hong, P.S.; Tsai, A.G. Behavioral treatment of obesity in patients encountered in primary care settings: A systematic review. JAMA 2014, 312, 1779–1791. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018, 20, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Grill, H.J. A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology 2020, 161, bqaa093. [Google Scholar] [CrossRef]
- Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef]
- Sorli, C.; Harashima, S.I.; Tsoukas, G.M.; Unger, J.; Karsbøl, J.D.; Hansen, T.; Bain, S.C. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): A double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017, 5, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [Green Version]
- Agersø, H.; Jensen, L.B.; Elbrønd, B.; Rolan, P.; Zdravkovic, M. The pharmacokinetics, pharmacodynamics, safety, and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002, 45, 195–202. [Google Scholar] [CrossRef]
- Holst, J.J.; Orskov, C. The incretin approach for diabetes treatment: Modulation of islet hormone release by GLP-1 agonism. Diabetes 2004, 53, S197–S204. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hamdah, R.; Rabiee, A.; Meneilly, G.S.; Shannon, R.P.; Andersen, D.K.; Elahi, D. Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. J. Clin. Endocrinol. Metab. 2009, 94, 1843–1852. [Google Scholar] [CrossRef] [Green Version]
- Kanoski, S.E.; Fortin, S.M.; Arnold, M.; Grill, H.J.; Hayes, M.R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 2011, 152, 3103–3112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.W.; Elmquist, J.K. From neuroanatomy to behavior: Central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 2012, 15, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Kulve, J.S.; Veltman, D.J.; van Bloemendaal, L.; Barkhof, F.; Drent, M.L.; Diamant, M.; IJzerman, R.G. Liraglutide Reduces CNS Activation in Response to Visual Food Cues Only After Short-term Treatment in Patients with Type 2 Diabetes. Diabetes Care 2016, 39, 214–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blundell, J.; Finlayson, G.; Axelsen, M.; Flint, A.; Gibbons, C.; Kvist, T.; Hjerpsted, J.B. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017, 19, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Hjerpsted, J.B.; Flint, A.; Brooks, A.; Axelsen, M.B.; Kvist, T.; Blundell, J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes. Metab. 2018, 20, 610–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Tanasescu, M.; Cho, E.; Manson, J.E.; Hu, F.B. Dietary fat and cholesterol and the risk of cardiovascular disease among women with type 2 diabetes. Am. J. Clin. Nutr. 2004, 79, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Thanopoulou, A.C.; Karamanos, B.G.; Angelico, F.V.; Assaad-Khalil, S.H.; Barbato, A.F.; Del Ben, M.P.; Djordjevic, P.B.; Dimitrijevic-Sreckovic, V.S.; Gallotti, C.A.; Katsilambros, N.L.; et al. Dietary fat intake as risk factor for the development of diabetes: Multinational, multicenter study of the Mediterranean Group for the Study of Diabetes (MGSD). Diabetes Care 2003, 26, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Gabery, S.; Salinas, C.G.; Paulsen, S.J.; Ahnfelt-Rønne, J.; Alanentalo, T.; Baquero, A.F.; Buckley, S.T.; Farkas, E.; Fekete, C.; Frederiksen, K.S.; et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020, 5, e133429. [Google Scholar] [CrossRef] [Green Version]
- Secher, A.; Jelsing, J.; Baquero, A.F.; Hecksher-Sørensen, J.; Cowley, M.A.; Dalbøge, L.S.; Hansen, G.; Grove, K.L.; Pyke, C.; Raun, K.; et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Investig. 2014, 124, 4473–4488. [Google Scholar] [CrossRef] [Green Version]
- Betley, J.N.; Cao, Z.F.; Ritola, K.D.; Sternson, S.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 2013, 155, 1337–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, C.V.; Blasco, G.; Navas García, M.; Ezquiaga, E.; Pastor, J.; Vega-Zelaya, L.; Pulido Rivas, P.; Pérez Rodrigo, S.; Manzanares, R. Long-term results of posteromedial hypothalamic deep brain stimulation for patients with resistant aggressiveness. J. Neurosurg. 2013, 119, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Piguet, O.; Petersén, A.; Yin, K.A.; Lam, B.; Gabery, S.; Murphy, K.; Hodges, J.R.; Halliday, G.M. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann. Neurol. 2011, 69, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, Y.; Masaki, T.; Yoshida, Y.; Okamoto, M.; Anai, M.; Gotoh, K.; Endo, Y.; Ohta, M.; Inomata, M.; Shibata, H. Relationships between computed tomography-assessed density, abdominal fat volume, and glucose metabolism after sleeve gastrectomy in Japanese patients with obesity. Endocr. J. 2019, 66, 605–613. [Google Scholar] [CrossRef]
- Ozeki, Y.; Masaki, T.; Yoshida, Y.; Okamoto, M.; Anai, M.; Gotoh, K.; Endo, Y.; Ohta, M.; Inomata, M.; Shibata, H. Bioelectrical Impedance Analysis Results for Estimating Body Composition Are Associated with Glucose Metabolism Following Laparoscopic Sleeve Gastrectomy in Obese Japanese Patients. Nutrients 2018, 10, 1456. [Google Scholar] [CrossRef] [Green Version]
- Japan Society for the Study of Obesity. Guideline for the Management of Obesity; Japan Society for the Study of Obesity: Osaka, Japan, 2016. [Google Scholar]
Baseline | 3 Month | 6 Month | p | |
---|---|---|---|---|
Age (years) | 52.8 ± 9.1 | |||
Male/Female | 12/22 | |||
Body weight (kg) | 90.8 ± 16.9 | 87.8 ± 17.0 | 86.3 ± 17.9 | <0.01 |
Total body weight loss (kg) | 3.0 ± 1.9 | 4.5 ± 1.2 | ||
BMI (kg/m2) | 35.0. ± 6.2 | 33.8 ± 6.1 | 33.2 ± 6.1 | <0.01 |
Systolic blood pressure (mmHg) | 129.9 ± 12.1 | 126.7 ± 11.9 | 127.8 ± 11.3 | N.S |
Diastolic blood pressure (mmHg) | 76.8 ± 11.5 | 77.2 ± 12.6 | 75.4 ± 10.0 | N.S |
Fasting plasma glucose (mg/dL) | 137.5 ± 58.1 | 110.7 ± 26.7 | 111.2 ± 28.5 | <0.01 |
HbA1c (%) | 7.3 ± 1.1 | 6.7 ± 1.0 | 6.4 ± 0.9 | <0.01 |
Triglycerides (mg/dL) | 170.3 ± 84.6 | 154.6 ± 77.5 | 144.8 ± 80.9 | <0.01 |
HDL cholesterol (mg/dL) | 54.7 ± 15.3 | 55.8 ± 15.5 | 58.1 ± 15.7 | <0.01 |
LDL cholesterol (mg/dL) | 117.6 ± 30.4 | 108.3 ± 28.0 | 113.3 ± 28.9 | <0.01 |
BUN (mg/dL) | 15.6 ± 7.3 | 15.6 ± 8.4 | 15.9 ± 6.6 | N.S |
Creatinine (mg/dL) | 0.8 ± 0.4 | 0.8 ± 0.4 | 0.8 ± 0.3 | N.S |
Baseline | 3 Month | 6 Month | p | |
---|---|---|---|---|
Recognition of weight | 16.5 ± 3.3 | 16.2 ± 3.5 | 15.2 ± 3.4 | N.S |
External eating behavior | 20.9 ± 5.2 | 20.0 ± 5.3 | 19.8 ± 4.8 | N.S |
Emotional eating behavior | 10.3 ± 1.9 | 6.9 ± 2.3 | 7.1 ± 2.3 | <0.01 |
Sense of hunger | 15.2 ± 3.9 | 9.5 ± 3.2 | 10.1 ± 3.3 | <0.01 |
Eating style | 11.0. ± 3.7 | 9.5 ± 3.1 | 9.2 ± 3.1 | <0.01 |
Food preference | 17.3 ± 5.4 | 16.2 ± 5.4 | 15.5 ± 4.8 | <0.05 |
Regularity of eating habits | 17.2 ± 3.6 | 15.1 ± 3.3 | 15.4 ± 3.3 | <0.01 |
Total score | 108.6 ± 18.4 | 93.6 ± 19.1 | 92.9 ± 16.7 | <0.01 |
BW | FPG | HbA1c | ||||
---|---|---|---|---|---|---|
Variables (Delta) | r | p Value | r | p Value | r | p Value |
Variables (0–3 month) | ||||||
Recognition of weight | 0.14 | 0.41 | −0.02 | 0.89 | −0.17 | 0.33 |
External eating behavior | 0.29 | 0.09 | 0.07 | 0.42 | −0.09 | 0.60 |
Emotional eating behavior | 0.01 | 0.93 | 0.01 | 0.91 | −0.05 | 0.76 |
Sense of hunger | −0.05 | 0.76 | 0.17 | 0.32 | 0.36 | 0.03 * |
Eating style | 0.20 | 0.25 | 0.11 | 0.54 | 0.18 | 0.29 |
Food preference | 0.01 | 0.93 | 0.01 | 0.93 | −0.36 | 0.03 * |
Regularity of eating habits | 0.13 | 0.46 | −0.17 | 0.33 | −0.02 | 0.88 |
Variables (0–6 month) | ||||||
Recognition of weight | 0.04 | 0.79 | −0.03 | 0.83 | −0.20 | 0.24 |
External eating behavior | 0.21 | 0.21 | 0.02 | 0.88 | 0.09 | 0.58 |
Emotional eating behavior | 0.10 | 0.54 | 0.10 | 0.54 | 0.05 | 0.80 |
Sense of hunger | 0.10 | 0.54 | 0.25 | 0.14 | 0.34 | 0.04 * |
Eating style | 0.25 | 0.14 | 0.04 | 0.78 | 0.13 | 0.46 |
Food preference | 0.17 | 0.31 | 0.04 | 0.79 | −0.07 | 0.71 |
Regularity of eating habits | 0.08 | 0.63 | −0.13 | 0.45 | −0.14 | 0.41 |
Variables (Delta) | r | t Value | p Value |
---|---|---|---|
Emotional eating behavior | 0.07 | 0.33 | 0.74 |
Sense of hunger | 0.38 | 2.13 | 0.04 * |
Food preference | 0.05 | 0.21 | 0.83 |
Eating style | −0.29 | −1.31 | 0.67 |
Regularity of eating habits | 0.08 | 0.42 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masaki, T.; Ozeki, Y.; Yoshida, Y.; Okamoto, M.; Miyamoto, S.; Gotoh, K.; Shibata, H. Glucagon-Like Peptide-1 Receptor Agonist Semaglutide Improves Eating Behavior and Glycemic Control in Japanese Obese Type 2 Diabetic Patients. Metabolites 2022, 12, 147. https://doi.org/10.3390/metabo12020147
Masaki T, Ozeki Y, Yoshida Y, Okamoto M, Miyamoto S, Gotoh K, Shibata H. Glucagon-Like Peptide-1 Receptor Agonist Semaglutide Improves Eating Behavior and Glycemic Control in Japanese Obese Type 2 Diabetic Patients. Metabolites. 2022; 12(2):147. https://doi.org/10.3390/metabo12020147
Chicago/Turabian StyleMasaki, Takayuki, Yoshinori Ozeki, Yuichi Yoshida, Mitsuhiro Okamoto, Shotaro Miyamoto, Koro Gotoh, and Hirotaka Shibata. 2022. "Glucagon-Like Peptide-1 Receptor Agonist Semaglutide Improves Eating Behavior and Glycemic Control in Japanese Obese Type 2 Diabetic Patients" Metabolites 12, no. 2: 147. https://doi.org/10.3390/metabo12020147
APA StyleMasaki, T., Ozeki, Y., Yoshida, Y., Okamoto, M., Miyamoto, S., Gotoh, K., & Shibata, H. (2022). Glucagon-Like Peptide-1 Receptor Agonist Semaglutide Improves Eating Behavior and Glycemic Control in Japanese Obese Type 2 Diabetic Patients. Metabolites, 12(2), 147. https://doi.org/10.3390/metabo12020147