Mechanism Assay of Honeysuckle for Heat-Clearing Based on Metabolites and Metabolomics
Abstract
:1. Introduction
2. Results
2.1. Global Metabolic Profiling Coupled with MN Identifies the Key Metabolites
2.2. Integrated Analysis Reveals the Core Mechanism of Antipyretic Effects
2.3. The Antipyretic Effects of CA Combined with SWE
2.4. The Potential Mechanism of CA and SWE against Fever
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Animals
4.3. Plasma Sample Preparation
4.4. UPLC–MS Analysis for Metabolites
4.5. Data Processing
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desborough, M.J.R.; Keeling, D.M. The aspirin story-from willow to wonder drug. Br. J. Haematol. 2017, 177, 674–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, X.; Zhu, Z.-H.; Zhang, L.; Wang, Q.; Xu, M.-M.; Lu, C.; Zhu, Y.; Zeng, J.; Duan, J.-A.; Zhao, M. Anti-inflammatory property and functional substances of Lonicerae Japonicae Caulis. J. Ethnopharmacol. 2020, 267, 113502. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharma-cology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Johannes, K. Cheminformatics in Natural Product-based Drug Discovery. Mol. Inform. 2020, 39, e2000171. [Google Scholar] [CrossRef]
- Pomyen, Y.; Wanichthanarak, K.; Poungsombat, P.; Fahrmann, J.; Grapov, D.; Khoomrung, S. Deep metabolome: Applications of deep learning in metabolomics. Comput. Struct. Biotechnol. J. 2020, 18, 2818–2825. [Google Scholar] [CrossRef]
- Kirchweger, B.; Rollinger, J.M. A Strength-Weaknesses-Opportunities-Threats (SWOT) Analysis of Cheminformatics in Nat-ural Product Research. Prog. Chem. Org. Nat. Prod. 2019, 110, 239–271. [Google Scholar]
- Kim, E.K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2010, 1802, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ma, X.; Xu, H.; Wu, W.; He, X.; Wang, X.; Jiang, M.; Hou, Y.; Bai, G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS. J. 2020, 287, 1816–1829. [Google Scholar] [CrossRef]
- Boltana, S.; Sanhueza, N.; Donoso, A.; Aguilar, A.; Crespo, D.; Vergara, D.; Arriagada, G.; Morales-Lange, B.; Mercado, L.; Rey, S.; et al. The expression of TRPV channels, prostaglandin E2 and pro-inflammatory cytokines during behavioural fever in fish. Brain, Behav. Immun. 2018, 71, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 2001, 13, 85–94. [Google Scholar] [CrossRef]
- Blomqvist, A.; Engblom, D. Neural Mechanisms of Inflammation-Induced Fever. Neuroscientist 2018, 24, 381–399. [Google Scholar] [CrossRef] [PubMed]
- McGuire, V.; Gray, A.; Monk, C.E.; Santos, S.; Lee, K.; Aubareda, A.; Crowe, J.; Ronkina, N.; Schwermann, J.; Batty, I.H.; et al. Cross Talk between the Akt and p38 Pathways in Macrophages Downstream of Toll-Like Receptor Signaling. Mol. Cell. Biol. 2013, 33, 4152–4165. [Google Scholar] [CrossRef] [Green Version]
- Harikrishnan, H.; Jantan, I.; Haque, A.; Kumolosasi, E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complement. Altern. Med. 2018, 18, 224. [Google Scholar] [CrossRef]
- Peti, W.; Page, R. Molecular basis of MAP kinase regulation. Protein Sci. 2013, 22, 1698–1710. [Google Scholar] [CrossRef]
- Patil, C.; Zhu, X.; Rossa, C.J.; Kim, Y.J.; Kirkwood, K.L. p38 MAPK regulates IL-1 beta induced IL-6 expression through mRNA stability in osteoblasts. Immunol. Investig. 2004, 33, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ye, F.; Xiong, H.; Hu, D.N.; Limb, G.A.; Xie, T.; Peng, L.; Zhang, P.; Wei, Y.; Zhang, W.; et al. IL-1beta induces IL-6 production in retinal Muller cells predominantly through the activation of p38 MAPK/NF-kappaB signaling pathway. Exp. Cell. Res. 2015, 331, 223–231. [Google Scholar] [CrossRef]
- Sinfield, J.K.; Das, A.; O’Regan, D.J.; Ball, S.G.; Porter, K.E.; Turner, N.A. p38 MAPK alpha mediates cytokine-induced IL-6 and MMP-3 expression in human cardiac fibroblasts. Biochem. Biophys. Res. Commun. 2013, 430, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.J.; Sproston, J.L.; Barton, P.; Riley, R.J. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin. Drug Discov. 2019, 14, 1313–1327. [Google Scholar] [CrossRef]
- Wang, Z.; Kim, U.; Liu, J.; Cheng, C.; Wu, W.; Guo, S.; Feng, Y.; Quinn, R.; Hou, Y.; Bai, G. Comprehensive TCM molecular networking based on MS/MS in silico spectra with integration of virtual screening and affinity MS screening for discovering functional ligands from natural herbs. Anal. Bioanal. Chem. 2019, 411, 5785–5797. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, W.; Guan, X.; Guo, S.; Li, C.; Niu, R.; Gao, J.; Jiang, M.; Bai, L.; Leung, E.L.; et al. 20(S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis. Acta Pharm. Sin. B 2020, 10, 1020–1035. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, C.; Yu, L.; Sheng, T.; Wu, Z.; Wang, X.; Zhang, D.; Lin, Y.; Gong, Y. Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. BioMed Res. Int. 2019, 2019, 6769789. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Zhang, X.; Tang, J.; Kong, Y.; Wang, X.; Wang, S. Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J. Inorg. Biochem. 2019, 190, 113–120. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, F.-X.; Liu, Q.; Qi, Y.-D.; Wang, Q.-L.; Liu, H.-B. Comparison of anti-inflammatory effects of Lonicerae Japonicae Flos and Lonicerae Flos based on network pharmacology. Chin. Herb. Med. 2021, 13, 332–341. [Google Scholar] [CrossRef]
- Wang, H.C.; Li, T.J.; Bao, Y.R.; Wang, S.; Meng, X.S. Qualitative, quantitative, and pharmacokinetic study on the absorbed components of Ardisia japonica (Thunb.) Blume in rat plasma based on molecular networking combined with quadrupole time-of-flight LC/MS and triple quadrupole LC/MS. Biomed. Chromatogr. 2021, 35, e5099. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614. [Google Scholar] [CrossRef] [Green Version]
Name | tR (min) | m/z | Formula | MS/MS (m/z) | Fit Score | Identification |
---|---|---|---|---|---|---|
P1 | 3.487 | 355.1027 | C16H18O9 | 115.0277 91.6649 | 99.7 | Chlorogenic acid |
P2 | 16.354 | 375.1284 | C16H22O10 | 121.6451 137.7673 | 99.8 | Swertiamarin |
P3 | 4.372 | 355.1027 | C16H18O9 | 84.399 154.1601 | 99.7 | Cryptochlorogenic acid |
P4 | 14.265 | 611.1608 | C27H30O16 | 63.9512 360.5813 | 99.8 | Rutin |
P5 | 10.242 | 405.1403 | C17H24O11 | 68.8756 124.453 | 99.8 | Secoxyloganin |
P6 | 7.249 | 516.4517 | C25H24O12 | 77.3744 248.0019 | 99.8 | 3,5-dicaffeoyl qunic acid |
P7 | 8.225 | 355.1027 | C16H18O9 | 82.6558 329.2093 | 99.7 | 4,5-Di-O-caffeoyl quinic acid |
P8 | 12.347 | 359.1334 | C16H22O9 | 62.7029 242.1572 | 99.8 | Sweroside |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Tian, L.; Han, Y.; Ma, X.; Hou, Y.; Bai, G. Mechanism Assay of Honeysuckle for Heat-Clearing Based on Metabolites and Metabolomics. Metabolites 2022, 12, 121. https://doi.org/10.3390/metabo12020121
Wang H, Tian L, Han Y, Ma X, Hou Y, Bai G. Mechanism Assay of Honeysuckle for Heat-Clearing Based on Metabolites and Metabolomics. Metabolites. 2022; 12(2):121. https://doi.org/10.3390/metabo12020121
Chicago/Turabian StyleWang, Hechen, Lu Tian, Yiman Han, Xiaoyao Ma, Yuanyau Hou, and Gang Bai. 2022. "Mechanism Assay of Honeysuckle for Heat-Clearing Based on Metabolites and Metabolomics" Metabolites 12, no. 2: 121. https://doi.org/10.3390/metabo12020121
APA StyleWang, H., Tian, L., Han, Y., Ma, X., Hou, Y., & Bai, G. (2022). Mechanism Assay of Honeysuckle for Heat-Clearing Based on Metabolites and Metabolomics. Metabolites, 12(2), 121. https://doi.org/10.3390/metabo12020121