Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood and Urinary Collection
2.3. Biochemical Analysis
2.4. Biochemical Parameters
2.5. Plasma Oxidative Damage Products
2.6. Plasma and Erythrocytes Antioxidants
2.7. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Biochemical Characteristics
3.3. Oxidative Damage Products
3.4. Total Antioxidant Status, Enzymatic and Non-Enzymatic Antioxidants
3.5. ROC-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedov, I.I.; Shestakova, M.V.; Mayorov, A.Y. Algorithms of specialized medical care for patients with diabetes mellitus. Diabetes Mellit. 2019, 22 (Suppl. 1), 211. [Google Scholar] [CrossRef]
- Dedov, I.I.; Shestakova, M.V.; Vikulova, O.K.; Zheleznyakova, A.V.; Isakov, M.A. Diabetes mellitus in the Russian Federation: Prevalence, morbidity, mortality, parameters of carbohydrate metabolism and the structure of hypoglycemic therapy according to the Federal Register of diabetes mellitus, status 2017. Diabetes Mellit. 2018, 21, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Ali, A.; Katare, R. Molecular complexities underlying the vascular complications of diabetes mellitus—A comprehensive review. J. Diabetes Complicat. 2020, 34, 107613. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; Taal, M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020, 22, 3–15. [Google Scholar] [CrossRef]
- Sagoo, M.K.; Gnudi, L. Diabetic nephropathy: An overview. Methods Mol. Biol. 2020, 2067, 3–7. [Google Scholar] [CrossRef]
- Shestakova, M.V. Diabetes mellitus and chronic kidney disease: Possibilities of prediction, early diagnosis and nephroprotection in the XXI century. Diabetes Mellit. 2016, 6, 84–88. [Google Scholar] [CrossRef]
- Kopel, J.; Pena-Hernandez, C.; Nugent, K. Evolving spectrum of diabetic nephropathy. World J. Diabetes 2019, 10, 269. [Google Scholar] [CrossRef]
- Yamanouchi, M.; Furuichi, K.; Hoshino, J.; Ubara, Y.; Wada, T. Nonproteinuric diabetic kidney disease. Clin. Exp. Nephrol. 2020, 24, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, H.; Shan, X.; Zhu, F.; Wang, W. High risk of tubular damage in normoalbuminuric adults with type 2 diabetes for over 14 years. J. Diabetes 2021, 13, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.W.; Hsu, Y.C.; Shih, Y.H.; Chang, P.J.; Lin, C.L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 2018, 23 (Suppl. 4), 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lioudaki, E.; Stylianou, K.G.; Petrakis, I.; Kokologiannakis, G.; Passam, A.; Mikhailidis, D.P.; Daphnis, E.K.; Ganotakis, E.S. Increased urinary excretion of podocyte markers in normoalbuminuric patients with diabetes. Nephron 2015, 131, 34–42. [Google Scholar] [CrossRef]
- Kolesnikova, L.I.; Chugunova, E.V.; Darenskaya, M.A.; Grebenkina, L.A. Modern markers of renal damage in diabetes mellitus. IJBM 2020, 10, 9–15. [Google Scholar] [CrossRef]
- Lassén, E.; Daehn, I.S. Molecular mechanisms in early diabetic kidney disease: Glomerular endothelial cell dysfunction. Int. J. Mol. Sci. 2020, 21, 9456. [Google Scholar] [CrossRef]
- Yang, S.; Han, Y.; Liu, J.; Song, P.; Xu, X.; Zhao, L.; Hu, C.; Xiao, L.; Liu, F.; Zhang, H.; et al. Mitochondria: A novel therapeutic target in diabetic nephropathy. Curr. Med. Chem. 2017, 24, 3185–3202. [Google Scholar] [CrossRef] [PubMed]
- Vodošek Hojs, N.; Bevc, S.; Ekart, R.; Hojs, R. Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 2020, 9, 925. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef] [Green Version]
- Mrdjanović, J.; Šolajić, S.; Srđenović-Čonić, B.; Bogdanović, V.; Dea, K.J.; Kladar, N.; Jurišić, V. The oxidative stress parameters as useful tools in evaluating the DNA damage and changes in the complete blood count in hospital workers exposed to low doses of antineoplastic drugs and ionizing radiation. Int. J. Environ. Res. Public Health 2021, 18, 8445. [Google Scholar] [CrossRef]
- Turpin, C.; Catan, A.; Guerin-Dubourg, A.; Debussche, X.; Bravo, S.B.; Álvarez, E.; Den Elsen, J.V.; Meilhac, O.; Rondeau, P.; Bourdon, E. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS ONE 2020, 15, e0235335. [Google Scholar] [CrossRef]
- Charlton, A.; Garzarella, J.; Jandeleit-Dahm, K.A.; Jha, J.C. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology 2021, 10, 18. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018, 93, 803–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirakawa, Y.; Tanaka, T.; Nangaku, M. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. J. Diabetes Investig. 2017, 8, 261–271. [Google Scholar] [CrossRef]
- Lankin, V.Z.; Tikhaze, A.K.; Konovalova, G.G.; Odinokova, O.A.; Doroshhuk, N.A.; Chazova, I.E. Oxidative and carbonyl stress as a factors of the modification of proteins and DNA destruction in diabetes. Ther. Arch. 2018, 90, 46–50. [Google Scholar] [CrossRef]
- Sanchez, M.; Roussel, R.; Hadjadj, S.; Moutairou, A.; Marre, M.; Velho, G.; Mohammedi, K. Plasma concentrations of 8-hydroxy-2′-deoxyguanosine and risk of kidney disease and death in individuals with type 1 diabetes. Diabetologia 2018, 61, 977–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, H.; Casalena, G.; Shi, S.; Yu, L.; Ebefors, K.; Sun, Y.; Zhang, W.; D’Agati, V.; Schlondorff, D.; Haraldsson, B.; et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 2017, 66, 763–778. [Google Scholar] [CrossRef] [Green Version]
- Darenskaya, M.A.; Kolesnikova, L.I.; Kolesnikov, S.I. Oxidative stress: Pathogenetic role in the development of diabetes mellitus and its complications, therapeutic approaches to correction. Bull. Exp. Biol. Med. 2021, 171, 136–149. [Google Scholar] [CrossRef]
- Casanova, A.G.; López-Hernández, F.J.; Vicente-Vicente, L.; Morales, A.I. Are antioxidants useful in preventing the progression of chronic kidney disease? Antioxidants 2021, 10, 1669. [Google Scholar] [CrossRef]
- Kolesnikova, L.I.; Darenskaya, M.A.; Kolesnikov, S.I. Free radical oxidation: A pathophysiologist’s view. BSM 2017, 16, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Defeudis, G.; Mazzilli, R.; Tenuta, M.; Rossini, G.; Zamponi, V.; Olana, S.; Gianfrilli, D. Erectile dysfunction and diabetes: A melting pot of circumstances and treatments. Diabetes Metab. Res. 2022, 38, e3494. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Bellastella, G.; Della Volpe, E.; Casciano, O.; Scappaticcio, L.; Cirillo, P.; Giugliano, D.; Esposito, K. Erectile dysfunction in young men with type 1 diabetes. Int. J. Impot. Res. 2017, 29, 17–22. [Google Scholar] [CrossRef]
- Perkins, B.A.; Bebu, I.; de Boer, I.H.; Molitch, M.; Tamborlane, W.; Lorenzi, G.; Herman, G.; White, N.H.; Pop-Busui, R.; Paterson, A.D.; et al. Risk factors for kidney disease in type 1 diabetes. Diabetes Care 2019, 42, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Haneda, M.; Utsunomiya, K.; Koya, D.; Babazono, T.; Moriya, T.; Makino, H.; Kimura, K.; Suzuki, Y.; Wada, T.; Ogawa, S.; et al. A new classification of diabetic nephropathy 2014: A report from joint committee on diabetic nephropathy. Clin. Exp. Nephrol. 2015, 6(2), 242–246. [Google Scholar] [CrossRef]
- Borys, J.; Maciejczyk, M.; Kretowski, A.J.; Antonowicz, B.; Ratajczak-Wrona, W.; Jabło´nska, E.; Załeski, P.; Waszkiel, D.; Ładny, J.R.; Zukowski, P.; et al. The redox balance in erythrocytes, plasma, and periosteum of patients with titanium fixation of the jaw. Front. Physiol. 2017, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein colysterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, V.B.; Mishkorudnaya, N.I. Determination of CDs in blood serum. Lab. Delo 1983, 3, 33–36. [Google Scholar]
- Mrdjanovic, J.; Sudji, J.; Srdjenovic, B.; Dojcinovic, S.; Bogdanovic, V.; Jakovljevic, D.K.; Jurisic, V. Accidental use of milk with an increased concentration of aflatoxins causes significant DNA damage in hospital workers exposed to ionizing radiation. Front. Public Health 2020, 24, 323. [Google Scholar] [CrossRef]
- Hisin, P.J.; Hilf, R. Fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Chernjauskene, R.C.; Varshkjavichene, Z.Z.; Gribauskas, P.S. Simultaneous determination of the concentrations of vitamins E and A in serum. Lab. Delo 1984, 6, 362–365. [Google Scholar]
- Gounden, V.; Bhatt, H.; Jialal, I. Renal Function Tests. [Updated 2022 Jul 18]; StatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507821/ (accessed on 29 November 2022).
- Soliman, A.M.; Awad, E.T.; Abd-Elghffar, A.R.B.; Abd El Azeem, E.M. Biochemical and molecular studies of different parameters as markers for nephropathy in type 1 diabetic patients. Ser. Endocrinol. Diabetes Metab. 2022, 4, 1–11. [Google Scholar]
- Alghamdi, R.A.; Eldosouky, A.S.; Alghamdi, A.D.; Alzahrani, M.A.; Alghamdi, A.H. Glycaemic control and dyslipidemia among patients with type 1 diabetes mellitus in diabetes center Al-Baha region, Saudi Arabia. MEJFM 2021, 7, 60. [Google Scholar] [CrossRef]
- Kim, G. Association between metabolic syndrome and microvascular complications in Chinese adults with type 1 diabetes mellitus (Diabetes Metab J 2022;46:93-103). J. Diabetes Metab. 2022, 46, 512. [Google Scholar] [CrossRef] [PubMed]
- Alrasheed, A.A. Dyslipidemia among patients with type 1 diabetes and its associated factors in Saudi Arabia: An analytical cross-sectional study. Cureus 2022, 14, e21923. [Google Scholar] [CrossRef] [PubMed]
- Al-Bayati, M.A.; Jamil, D.A.; Al-Aubaidy, H.A. The association of oxidized high-density lipoprotein and oxidized non-high density lipoprotein with the development of microalbuminuria in diabetic nephropathy. WJPPS 2014, 3, 49–59. [Google Scholar]
- Vergès, B. Dyslipidemia in type 1 diabetes: A masked danger. Trends Endocrinol. Metab. 2020, 31, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Weldegiorgis, M.; Woodward, M. Elevated triglycerides and reduced high-density lipoprotein cholesterol are independently associated with the onset of advanced chronic kidney disease: A cohort study of 911,360 individuals from the United Kingdom. BMC Nephrol. 2022, 23, 1–9. [Google Scholar] [CrossRef]
- Sigfrids, J.F. Incidence, Progression, and Regression of Diabetic Kidney Disease in Type 1 Diabetes; Helsingin Yliopisto: Helsinki, Finland, 2022; 155p. [Google Scholar]
- Li, W.; Du, Z.; Wei, H.; Dong, J. Total cholesterol to high-density lipoprotein cholesterol ratio is independently associated with CKD progression. Int. Urol. Nephrol. 2022, 54, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Keri, K.C.; Samji, N.S.; Blumenthal, S. Diabetic nephropathy: Newer therapeutic perspectives. JCHIMP 2018, 8, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou-Marketou, N.; Paschou, S.A.; Marketos, N.; Adamidi, S.; Adamidis, S.; Kanaka-Gantenbein, C. Diabetic nephropathy in type 1 diabetes. Minerva Med. 2018, 109, 218–228. [Google Scholar] [CrossRef]
- Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int. J. Endocrinol. 2018, 2018, 1875870. [Google Scholar] [CrossRef]
- Popykhova, E.B.; Ivanov, A.N.; Stepanova, T.V.; Lagutina, D.D.; Savkina, A.A. Diabetic nephropathy—Possibilities of early laboratory diagnostics and course prediction. Klin. Labor Diagn. 2021, 66, 593–602. [Google Scholar] [CrossRef]
- Miranda-Díaz, A.G.; Pazarín-Villaseñor, L.; Yanowsky-Escatell, F.G.; Andrade-Sierra, J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J. Diabetes Res. 2016, 2016, 7047238. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. Oxidative stress: Concept and some practical aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, C.A.; Gnudi, L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021, 124, 154890. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid. Med. Cell Longev. 2019, 2019, 30857569. [Google Scholar] [CrossRef]
- Pestana, R.M.C.; Domingueti, C.P.; Duarte, R.C.F.; Fóscolo, R.B.; Reis, J.S.; Rodrigues, A.M.S.; Martins, L.B.; Sousa, L.P.; Lage, D.P.; Ferreira, C.N.; et al. Cytokines profile and its correlation with endothelial damage and oxidative stress in patients with type 1 diabetes mellitus and nephropathy. J. Immunol. Res. 2016, 64, 951–960. [Google Scholar] [CrossRef]
- Lai, S.W.T.; Lopez Gonzalez, E.J.; Zoukari, T.; Ki, P.; Shuck, S.C. Methylglyoxal and its adducts: Induction, repair, and association with disease. Chem. Res. Toxicol. 2022, 35, 1720–1746. [Google Scholar] [CrossRef]
- Chernikov, A.A.; Severina, A.S.; Shamkhalova, M.S.; Shestakova, M.V. The role of metabolic memory mechanisms in the development and progression of vascular complications of diabetes mellitus. Diabetes 2017, 20, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Fotheringham, A.K.; Gallo, L.A.; Borg, D.J.; Forbes, J.M. Advanced glycation end products (AGEs) and chronic kidney disease: Does the modern diet AGE the kidney? Nutrients 2022, 14, 2675. [Google Scholar] [CrossRef]
- Wu, X.Q.; Zhang, D.D.; Wang, Y.N.; Tan, Y.Q.; Yu, X.Y.; Zhao, Y.Y. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic. Biol. Med. 2021, 171, 260–271. [Google Scholar] [CrossRef]
- Steeneke, M.; Speeckaert, R.; Desmedt, S.; Glorieux, G.; Delanghe, J.R.; Speeckaert, M.M. The role of advanced glycation end products and its soluble receptor in kidney diseases. Int. J. Mol. Sci. 2022, 23, 3439. [Google Scholar] [CrossRef]
- Daehn, I.S. Glomerular endothelial cell stress and cross-talk with podocytes in early diabetic kidney disease. Front. Med. 2018, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, F.M.; Ozkaraca, M.; Küçükler, S.; Caglayan, C.; Hanedan, B. Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin Rev. 2018, 37, 287–293. [Google Scholar] [CrossRef]
- Ramachandrayya, S.A.; Jacob, J.; Mala, M. A correlative study of copper, ceruloplasmin, iron, total iron binding capacity and total antioxidant capacity in diabetic nephropathy. Biomedicine 2022, 42, 469–473. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Kong, D.; Yang, C.; Yu, H.; Pan, Q.; Yang, C.; Yu, H.; Pan, Q.; Liu, W.; et al. The effect of antioxidant vitamins on patients with diabetes and albuminuria: A meta-analysis of randomized controlled trials. J. Ren. Nutr. 2020, 30, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Tabur, S.; Korkmaz, H.; Eren, M.A.; Oğuz, E.; Sabuncu, T.; Aksoy, N. Urotensin-II level and its association with oxidative stress in early diabetic nephropathy. J. Diabetes Complicat. 2015, 29, 115–119. [Google Scholar] [CrossRef]
- Suresh, V.; Reddy, A.; Muthukumar, P.; Selvam, T. Antioxidants: Pharmacothearapeutic boon for diabetes. In Antioxidants—Benefits, Sources, Mechanisms of Action; Waisundara, V., Ed.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/77150 (accessed on 7 November 2022).
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Tana, C.; El Hadi, H.; Pagano, C.; Vettor, R.; Rossato, M. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: Clinical implications for vitamin E supplementation in diabetic kidney disease. Int. J. Mol. Sci. 2019, 20, 5101. [Google Scholar] [CrossRef] [Green Version]
- Rajeshwari, A.; Divija, D.A.; Somshekhar, G.N. Study of serum sialic acid, microalbuminuria, oxidative stress and antioxidant status in diabetic nephropathy. IJBB 2019, 15, 17–25. [Google Scholar]
- Xu, H.; Xiong, Z.; Ärnlöv, J.; Qureshi, A.R.; Cederholm, T.; Sjögren, P.; Lindholm, B.; Risérus, U.; Carrero, J.J. Circulating alpha-tocopherol and insulin sensitivity among older men with chronic kidney disease. J. Ren. Nutr. 2016, 26, 177–182. [Google Scholar] [CrossRef]
- Altuhafi, A.; Altun, M.; Hadwan, M.H. The correlation between selenium-dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy. Rep. Biochem. Mol. Biol. 2021, 10, 164. [Google Scholar] [CrossRef]
- Chistyakova, O.V.; Sukhov, I.B.; Shpakov, A.O. The role of oxidative stress and antioxidant enzymes in the development of diabetes mellitus. Russ. J. Physiol. 2017, 103, 987–1003. [Google Scholar]
- Marí, M.; de Gregorio, E.; de Dios, C.; Roca-Agujetas, V.; Cucarull, B.; Tutusaus, A.; Morales, A.; Colell, A. Mitochondrial glutathione: Recent insights and role in disease. Antioxidants 2020, 9, 909. [Google Scholar] [CrossRef] [PubMed]
- Silvagno, F.; Vernone, A.; Pescarmona, G.P. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants 2020, 9, 624. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Xue, H.; Wang, Y.; Shi, Z. Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults. Nutrients 2019, 11, 1580. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Group 1 | Group 2 | Control Group |
---|---|---|---|
Age, years | 27.00 [22.00; 34.00] | 30.00 [27.00; 35.00] | 29.50 [25.00; 34.00] |
T1DM duration, years | 7.00 [3.00; 10.00] | 7.28 [3.00; 11.00] | |
HbA1c, % | 10.20 [8.70; 11.30] * | 11.10 [9.30; 13.40] * | 4.87 [3.80; 5.20] |
BMI, kg/m2 | 21.10 [20.30; 23.70] | 21.40 [19.30; 24.50] | 21.50 [20.60; 22.40] |
Average daily hyperglycemia, mmol/L | 10.50 [9.10; 12.70] * | 12.30 (10.30; 14.80] *,# | 4.90 [3.90; 5.20] |
Parameters | Group 1 | Group 2 | Control Group |
---|---|---|---|
TC, mmol/L | 4.40 [3.80; 4.90] | 4.65 [4.10; 5.50] * | 4.21 [3.74; 4.58] |
TG, mmol/L | 1.10 [0.90; 1.90] * | 1.20 [0.80; 2.00] * | 0.66 [0.47; 0.93] |
LDL, mmol/L | 2.20 [1.92; 2.70] | 2.42 [2.02; 2.83] | 2.47 [2.22; 0.99] |
HDL, mmol/L | 1.30 [1.00; 1.50] | 1.25 [1.00; 1.70] | 1.23 [1.00; 1.40] |
VLDL, mmol/L | 0.50 [0.40; 0.86] * | 0.54 [0.36; 0.91] * | 0.30 [0.21; 0.42] |
Creatinine, µmol/L | 80.00 [70.00; 90.00] * | 80.00 [80.00; 90.00] * | 100.90 [87.95; 107.55] |
TP, g/L | 69.00 [65.00; 74.00] * | 76.00 [70.00; 78.00] | 76.15 [68.70; 80.45] |
Albumin, g/L | 43.00 [40.50; 46.00] | 44.00 [42.00; 48.00] # | 42.84 [39.95; 43.90] |
Urine, mmol/L | 5.20 [4.10; 5.90] | 5.20 [4.30; 6.20] | 4.55 [3.85; 5.45] |
Parameters | Group 1 | Group 2 | Control Group |
---|---|---|---|
Creatinine, µmol/L | 10.20 [6.36; 17.60] | 7.00 [4.61; 14.30] * | 14.85 [13.75; 16.30] |
Albumin, mg/L | 7.10 [3.68; 11.00] | 44.30 [24.09; 67.80] *,# | 12.70 [7.95; 16.80] |
Albumin/creatinine ratio | 1.15 [0.30; 1.60] | 5.80 [3.80; 8.90] *,# | 0.94 [0.55; 1.10] |
GFR, mL/min | 112.00 [99.00; 120.00] * | 101.00 [89.00; 118.00] # | 87.00 [78.50; 105.00] |
Parameters | Group 1 | Group 2 | Control Group |
---|---|---|---|
CDs, µmol/L | 1.68 [1.02; 2.26] * | 2.28 [1.86; 3.05] *, # | 1.10 [0.87;1.54] |
TBARs, µmol/L | 0.95 [0.68; 1.51] * | 1.21 [0.93; 1.57] * | 1.69 [1.28; 2.02] |
MGO, mg/L | 3.38 [2.92; 3.89] * | 3.52 [3.00; 3.96] * | 2.14 [1.02; 3.67] |
8-OHdG, ng/mL | 14.23 [10.97; 16.39] | 19.44 [10.32; 25.07] *, # | 14.89 [9.24; 18.04] |
Parameters | Group 1 | Group 2 | Control Group |
---|---|---|---|
TAS, units | 1.14 [1.01; 1.26] * | 1.17 [1.03; 1.31] | 1.23 [1.15; 1.33] |
GPx, units | 1099.00 [829.90; 2239.00] * | 1029.74 [948.00; 2879.00] * | 2224.50 [1944.50; 2492.00] |
GR, units | 264.10 [167.40; 399.20] | 292.75 [225.90; 373.40] * | 197.90 [167.75; 268.80] |
GSTp, ng/L | 3.68 [3.08; 4.52] | 4.29 [3.40; 4.90] | 3.34 [2.19; 4.28] |
SOD-1, units | 204.82 [202.97; 205.30] | 205.12 [203.59; 205.36] | 203.85 [199.56; 210.37] |
GSH, mmol/L | 2.30 [1.82; 2.68] | 2.54 [2.25; 3.37] *, # | 2.47 [1.72; 2.66] |
GSSG, mmol/L | 1.97 [1.54; 2.15] | 2.31 [1,94; 2,63] *, # | 1.77 [1.47; 1.83] |
α-Tocopherol, µmol/L | 12.17 [7.81; 14.09] * | 12.65 [9.18; 14.75] * | 13.84 [11.16; 17.94] |
Retinol, µmol/L | 1.35 [0.76; 1.92] * | 0.81 [0.56; 1.72] * | 0.41 [0.36; 0.45] |
Parameter | AUC | Cut-Off | Sensitivity | Specificity | ||||
---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 1 | Group 2 | Group 1 | Group 2 | Group 1 | Group 2 | |
Oxidative Damage Products | ||||||||
CDs | 0.755 (<0.0001) | 0.714 (0.001) | >0.91 | >1.61 | 100 | 85.29 | 42.86 | 48.57 |
TBARs | 0.748 (0.0001) | 0.708 (0.001) | <0.98 | <0.94 | 54.30 | 54.30 | 96.43 | 96.40 |
MGO | 0.720 (0.0033) | 0.554 (0.4375) | >2.84 | >3.51 | 82.86 | 52.94 | 71.43 | 62.86 |
8-OHdG | 0.507 (0.9258) | 0.658 (0.0232) | >16.86 | >16.39 | 20.00 | 61.76 | 64.29 | 77.14 |
Enzymatic and Non-Enzymatic Antioxidants | ||||||||
GPx | 0.741 (0.0004) | 0.580 (0.2500) | <1513.31 | >2598.00 | 65.71 | 35.29 | 100.00 | 85.71 |
GR | 0.620 (0.0894) | 0.571 (0.3144) | >320.20 | >173.50 | 40.00 | 91.18 | 92.86 | 31.43 |
GSTp | 0.619 (0.1066) | 0.578 (0.2623) | >2.85 | >3.92 | 88.57 | 58.82 | 42.86 | 62.86 |
SOD-1 | 0.502 (0.9797) | 0.577 (0.2680) | <205.69 | >203.04 | 88.57 | 88.24 | 39.29 | 28.57 |
GSH | 0.510 (0.8911) | 0.667 (0.0108) | <3.01 | >2.11 | 80.00 | 94.12 | 30.00 | 40.00 |
GSSG | 0.631 (0.0704) | 0.714 (0.0010) | >1.83 | >2.09 | 62.86 | 70.59 | 78.57 | 71.43 |
α-Tocopherol | 0.683 (0.0071) | 0.549 (0.4817) | <15.32 | >16.49 | 88.57 | 17.65 | 46.43 | 94.29 |
Retinol | 0.932 (< 0.0001) | 0.598 (0.1573) | >0.58 | <0.72 | 82.86 | 50.00 | 96.43 | 80.00 |
Total Antioxidant Activity | ||||||||
TAS | 0.686 (0.0052) | 0.574 (0.2851) | <1.09 | >1.09 | 45.71 | 70.59 | 89.29 | 45.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darenskaya, M.; Chugunova, E.; Kolesnikov, S.; Semenova, N.; Michalevich, I.; Nikitina, O.; Lesnaya, A.; Kolesnikova, L. Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia. Metabolites 2022, 12, 1282. https://doi.org/10.3390/metabo12121282
Darenskaya M, Chugunova E, Kolesnikov S, Semenova N, Michalevich I, Nikitina O, Lesnaya A, Kolesnikova L. Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia. Metabolites. 2022; 12(12):1282. https://doi.org/10.3390/metabo12121282
Chicago/Turabian StyleDarenskaya, Marina, Elena Chugunova, Sergey Kolesnikov, Natalya Semenova, Isay Michalevich, Olga Nikitina, Anastasya Lesnaya, and Lyubov Kolesnikova. 2022. "Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia" Metabolites 12, no. 12: 1282. https://doi.org/10.3390/metabo12121282
APA StyleDarenskaya, M., Chugunova, E., Kolesnikov, S., Semenova, N., Michalevich, I., Nikitina, O., Lesnaya, A., & Kolesnikova, L. (2022). Receiver Operator Characteristic (ROC) Analysis of Lipids, Proteins, DNA Oxidative Damage, and Antioxidant Defense in Plasma and Erythrocytes of Young Reproductive-Age Men with Early Stages of Type 1 Diabetes Mellitus (T1DM) Nephropathy in the Irkutsk Region, Russia. Metabolites, 12(12), 1282. https://doi.org/10.3390/metabo12121282