Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place
Abstract
:1. Introduction
2. Experimental Design
2.1. Arthrospira (Spirulina) Platensis and Culture Media
2.2. Outdoor PBR Experiment
3. Procedure
4. Results
4.1. Irradiance vs. Maximum Temperature
4.2. Growth Performance and Biochemical Content
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catone, C.M.; Ripa, M.; Geremia, E.; Ulgiati, S. Bio-Products from Algae-Based Biorefinery on Wastewater: A Review. J. Environ. Manag. 2021, 293, 112792. [Google Scholar] [CrossRef]
- Satya, A.; Harimawan, A.; Sri Haryani, G.; Johir, M.A.H.; Nguyen, L.N.; Nghiem, L.D.; Vigneswaran, S.; Ngo, H.H.; Setiadi, T. Fixed-Bed Adsorption Performance and Empirical Modelingof Cadmium Removal Using Adsorbent Prepared from the Cyanobacterium Aphanothece sp. Cultivar. Environ. Technol. Innov. 2021, 21, 101194. [Google Scholar] [CrossRef]
- Satya, A.; Harimawan, A.; Haryani, G.S.; Johir, M.A.H.; Vigneswaran, S.; Ngo, H.H.; Setiadi, T. Batch Study of Cadmium Biosorption by Carbon Dioxide Enriched Aphanothece sp. Dried Biomass. Water 2020, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Oostlander, P.C.; Van Houcke, J.; Wijffels, R.H.; Barbosa, M.J. Microalgae Production Cost in Aquaculture Hatcheries. Aquaculture 2020, 525, 735310. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource Recovery through Bioremediation of Wastewaters and Waste Carbon by Microalgae: A Circular Bioeconomy Approach. Environ. Sci. Pollut. Res. 2021, 28, 58837–58856. [Google Scholar] [CrossRef] [PubMed]
- Torzillo, G.; Zittelli, G.C.; Cicchi, B.; Diano, M.; Parente, M.; Benavides, A.M.S.; Esposito, S.; Touloupakis, E. Effect of Plate Distance on Light Conversion Efficiency of a Synechocystis Culture Grown Outdoors in a Multiplate Photobioreactor. Sci. Total Environ. 2022, 842, 156840. [Google Scholar] [CrossRef] [PubMed]
- González-Camejo, J.; Jiménez-Benítez, A.; Ruano, M.V.; Robles, A.; Barat, R.; Ferrer, J. Preliminary Data Set to Assess the Performance of an Outdoor Membrane Photobioreactor. Data Brief 2019, 27, 104599. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Pilot-Scale Self-Cooling Microalgal Closed Photobioreactor for Biomass Production and Electricity Generation. Algal Res. 2020, 45, 101731. [Google Scholar] [CrossRef]
- Vardhan, V.; Shiong, K.; Yi, W.; Wayne, K.; Siti, H.; Munawaroh, H.; Lam, M.; Lim, J.; Ho, Y. Bioresource Technology Algae Biopolymer towards Sustainable Circular Economy. Bioresour. Technol. 2021, 325, 124702. [Google Scholar] [CrossRef]
- Viruela, A.; Robles, Á.; Durán, F.; Ruano, M.V.; Barat, R.; Ferrer, J.; Seco, A. Performance of an Outdoor Membrane Photobioreactor for Resource Recovery from Anaerobically Treated Sewage. J. Clean. Prod. 2018, 178, 665–674. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; Fernández Sevilla, J.M.; Molina Grima, E. Photobioreactors for the Production of Microalgae. Rev. Environ. Sci. Biotechnol. 2013, 12, 131–151. [Google Scholar] [CrossRef]
- Khor, W.H.; Kang, H.S.; Lim, J.W.; Iwamoto, K.; Tang, C.H.H.; Goh, P.S.; Quen, L.K.; Bin Shaharuddin, N.M.R.; Lai, N.Y.G. Microalgae Cultivation in Offshore Floating Photobioreactor: State-of-the-Art, Opportunities and Challenges. Aquac. Eng. 2022, 98, 102269. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Hyoun, S.; Wong, J.W.C. Bioresource Technology Sustainable Processing of Food Waste for Production of Bio-Based Products for Circular Bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Kishi, M.; Tanaka, K.; Akizuki, S.; Toda, T. Development of a Gas-Permeable Bag Photobioreactor for Energy-Efficient Oxygen Removal from Algal Culture. Algal Res. 2021, 60, 102543. [Google Scholar] [CrossRef]
- Huang, C.C.; Hung, J.J.; Peng, S.H.; Chen, C.N.N. Cultivation of a Thermo-Tolerant Microalga in an Outdoor Photobioreactor: Influences of CO2 and Nitrogen Sources on the Accelerated Growth. Bioresour. Technol. 2012, 112, 228–233. [Google Scholar] [CrossRef]
- Ugwu, C.U.; Aoyagi, H.; Uchiyama, H. Photobioreactors for Mass Cultivation of Algae. Bioresour. Technol. 2008, 99, 4021–4028. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Louveau, J.; Pruvost, J.; Moheimani, N.R. Energy Efficiency Analysis of Outdoor Standalone Photovoltaic-Powered Photobioreactors Coproducing Lipid-Rich Algal Biomass and Electricity. Appl. Energy 2020, 275, 115403. [Google Scholar] [CrossRef]
- Xu, J.; Cheng, J.; Xin, K.; Xu, J.; Yang, W. Bioresource Technology Strengthening Flash Light Effect with a Pond-Tubular Hybrid Photobioreactor to Improve Microalgal Biomass Yield. Bioresour. Technol. 2020, 318, 124079. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, R.; Kumar Pandey, A.; Ranganathan, P.; Singh, S.; Udayan, A.; Kumar Awasthi, M.; Hoang, A.T.; Chilakamarry, C.R.; Kim, S.H.; Sim, S.J. Design and Applications of Photobioreactors-A Review. Bioresour. Technol. 2022, 349, 126858. [Google Scholar] [CrossRef]
- Sarkar, S.; Manna, M.S.; Bhowmick, T.K.; Gayen, K. Effect of Different Illumination Patterns on the Growth and Biomolecular Synthesis of Isolated Chlorella Thermophila in a 50 L Pilot-Scale Photobioreactor. Process Biochem. 2021, 109, 87–97. [Google Scholar] [CrossRef]
- Touloupakis, E.; Faraloni, C.; Carlozzi, P. An Outline of Photosynthetic Microorganism Growth inside Closed Photobioreactor Designs. Bioresour. Technol. Rep. 2022, 18, 101066. [Google Scholar] [CrossRef]
- Fernández, I.; Acién, F.G.; Berenguel, M.; Guzmán, J.L. First Principles Model of a Tubular Photobioreactor for Microalgal Production. Ind. Eng. Chem. Res. 2014, 53, 11121–11136. [Google Scholar] [CrossRef]
- Firdaus, M.; Noer, I.S.; Soenardi, S. Productivity Of Spirulina Fusiformis, (Vorinichin) In Plastic Photobioreactor With Sun Light Filtering. Ecodev. J. 2019, 2, 46–49. [Google Scholar]
- Satya, A.; Chrismadha, T.; Satya, I.A. The Irradiance Optimation for Growing Spirulina Fusiformis: Biomass, Phycocyanin, and Protein Production. Indones. J. Limnol. 2021, 2, 76–85. [Google Scholar] [CrossRef]
- Michael, P.R.; Johnston, D.E.; Moreno, W. A Conversion Guide: Solar Irradiance and Lux Illuminance. J. Meas. Eng. 2020, 8, 153–166. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebroug, N.J.; Farr, A.I.; Randall, R.J. Protein Measurement with Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Dubois, M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal.Chem. 1956, 28, 350–355. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Chem. Physiol. 1959, 37, 911–917. [Google Scholar]
- Boussiba, S.; Richmond, A.E. Isolation and Characterization of Phycocyanins from the Blue Green Alga Spirulina Platensis. Arch. Microbiol. 1979, 120, 155–159. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Aparicio, S.; Pachés, M.; Ruano, M.V.; Borrás, L.; Barat, R.; Seco, A. Improving Membrane Photobioreactor Performance by Reducing Light Path: Operating Conditions and Key Performance Indicators. Water Res. 2020, 172, 115518. [Google Scholar] [CrossRef]
- Béchet, Q.; Laviale, M.; Arsapin, N.; Bonnefond, H.; Bernard, O. Modeling the Impact of High Temperatures on Microalgal Viability and Photosynthetic Activity. Biotechnol. Biofuels 2017, 10, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Hankamer, B.; Yarnold, J. Design Scenarios of Outdoor Arrayed Cylindrical Photobioreactors for Microalgae Cultivation Considering Solar Radiation and Temperature. Algal Res. 2019, 41, 101515. [Google Scholar] [CrossRef] [Green Version]
- Vonshak, A.; Laorawat, S.; Bunnag, B.; Tanticharoen, M. The Effect of Light Availability on the Photosynthetic Activity and Productivity of Outdoor Cultures of Arthrospira Platensis (Spirulina). J. Appl. Phycol. 2014, 26, 1309–1315. [Google Scholar] [CrossRef]
- Lee, E.; Jalalizadeh, M.; Zhang, Q. Growth Kinetic Models for Microalgae Cultivation: A Review. Algal Res. 2015, 12, 497–512. [Google Scholar] [CrossRef]
- Blanken, W.; Postma, P.R.; de Winter, L.; Wijffels, R.H.; Janssen, M. Predicting Microalgae Growth. Algal Res. 2016, 14, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Borowitzka, M.A.; Vonshak, A. Scaling up Microalgal Cultures to Commercial Scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Light Management Technologies for Increasing Algal Photobioreactor e Ffi Ciency. Algal Res. 2019, 39, 101433. [Google Scholar] [CrossRef]
- Koller, M.; Muhr, A.; Braunegg, G. Microalgae as Versatile Cellular Factories for Valued Products. Algal Res. 2014, 6, 52–63. [Google Scholar] [CrossRef]
- Rani, S.; Gunjyal, N.; Ojha, C.S.P.; Asce, F.; Singh, R.P. Review of Challenges for Algae-Based Wastewater Treatment: Strain Selection, Wastewater Characteristics, Abiotic, and Biotic Factors. J. Hazard. Toxic Radioact. Waste 2021, 25, 1–15. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
Shading Treatment | ||||
---|---|---|---|---|
I-100 | I-50 | I-30 | I-10 | |
PBRd-20 | ||||
Culture Density (g/L) | 0.86 ± 0.41 | 1.44 ± 0.44 | 1.29 ± 0.45 | 0.40 ± 0.09 |
Specific Growth Rate (%/day) | 22.98 ± 12.42 | 22.28 ± 13.33 | 21.86 ± 12.32 | 19.31 ± 6.13 |
Biomass Productivity (mg/(L·day)) | 108.94 ± 52.04 | 149.03 ± 60.08 | 129.89 ± 61.29 | 42.08 ± 11.98 |
Protein (% DW) | 51.74 ± 7.73 | 55.29 ± 10.43 | 54.10 ± 7.45 | 60.51 ± 6.32 |
Carbohydrate (% DW) | 15.14 ± 6.89 | 12.83 ± 7.78 | 10.99 ± 4.88 | 7.55 ± 1.25 |
Lipid (% DW) | 5.26 ± 1.69 | 6.56 ± 2.27 | 6.28 ± 1.41 | 5.67 ± 1.25 |
Ash (% DW) | 13.84 ± 6.51 | 13.43 ± 5.93 | 16.95 ± 2.82 | 17.81 ± 2.70 |
Chlorophyll-a (% DW) | 0.19 ± 0.04 | 0.23 ± 0.08 | 0.25 ± 0.07 | 0.27 ± 0.04 |
Phycocyanin (% DW) | 8.39 ± 1.40 | 11.29 ± 1.98 | 13.18 ± 1.25 | 14.49 ± 1.98 |
PBRd-50 | ||||
Culture Density (g/L) | 0.62 ± 0.17 | 0.57 ± 0.13 | 0.44 ± 0.09 | 0.18 ± 0.05 |
Specific Growth Rate (%/day) | 19.96 ± 8.44 | 19.40 ± 9.71 | 19.01 ± 7.77 | 17.32 ± 5.87 |
Biomass Productivity (mg/(L·day)) | 63.71 ± 25.06 | 57.90 ± 25.21 | 44.78 ± 14.51 | 18.90 ± 7.16 |
Protein (% DW) | 49.01 ± 7.39 | 58.56 ± 7.41 | 61.40 ± 5.86 | 66.73 ± 7.41 |
Carbohydrate (% DW) | 12.31 ± 4.61 | 6.20 ± 3.31 | 7.50 ± 4.05 | 7.41 ± 3.30 |
Lipid (% DW) | 5.31 ± 2.34 | 6.88 ± 1.77 | 6.55 ± 1.28 | 9.08 ± 2.27 |
Ash (% DW) | 16.38 ± 2.83 | 15.48 ± 3.80 | 14.91 ± 3.69 | 9.07 ± 4.30 |
Chlorophyll-a (% DW) | 0.18 ± 0.06 | 0.27 ± 0.08 | 0.29 ± 0.08 | 0.27 ± 0.05 |
Phycocyanin (% DW) | 9.12 ± 2.34 | 13.17 ± 1.41 | 12.96 ± 1.11 | 14.91 ± 3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrismadha, T.; Satya, A.; Satya, I.A.; Rosidah, R.; Satya, A.D.M.; Pangestuti, R.; Harimawan, A.; Setiadi, T.; Chew, K.W.; Show, P.L. Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place. Metabolites 2022, 12, 1199. https://doi.org/10.3390/metabo12121199
Chrismadha T, Satya A, Satya IA, Rosidah R, Satya ADM, Pangestuti R, Harimawan A, Setiadi T, Chew KW, Show PL. Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place. Metabolites. 2022; 12(12):1199. https://doi.org/10.3390/metabo12121199
Chicago/Turabian StyleChrismadha, Tjandra, Awalina Satya, Ika Atman Satya, Rosidah Rosidah, Azalea Dyah Maysarah Satya, Ratih Pangestuti, Ardiyan Harimawan, Tjandra Setiadi, Kit Wayne Chew, and Pau Loke Show. 2022. "Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place" Metabolites 12, no. 12: 1199. https://doi.org/10.3390/metabo12121199
APA StyleChrismadha, T., Satya, A., Satya, I. A., Rosidah, R., Satya, A. D. M., Pangestuti, R., Harimawan, A., Setiadi, T., Chew, K. W., & Show, P. L. (2022). Outdoor Inclined Plastic Column Photobioreactor: Growth, and Biochemicals Response of Arthrospira platensis Culture on Daily Solar Irradiance in a Tropical Place. Metabolites, 12(12), 1199. https://doi.org/10.3390/metabo12121199