Short-Term Effects of Spirulina Consumption on Glycemic Responses and Blood Pressure in Healthy Young Adults: Results from Two Randomized Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.2.1. Trial 1
2.2.2. Trial 2
2.3. Blood Glucose Concentrations
2.4. Blood Pressure (BP)
2.5. Subjective Appetite Ratings
2.6. Dietary Intake
2.7. Statistical Analysis
3. Results
3.1. Trial 1
3.1.1. Participants’ Baseline Characteristics
3.1.2. GI οf Test Foods
3.1.3. Blood Glucose Concentrations Trial 1
3.1.4. BP Trial 1
3.1.5. Subjective Appetite Ratings Trial 1
3.2. Trial 2
3.2.1. Participants’ Baseline Characteristics
3.2.2. Blood Glucose Concentrations Trial 2
3.2.3. BP Trial 2
3.2.4. Subjective Appetite Ratings Trial 2
4. Discussion
4.1. Studies Limitations and Advantages
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulshreshtha, A.; Zacharia, A.J.; Jarouliya, U.; Bhadauriya, P.; Prasad, G.B.; Bisen, P.S. Spirulina in health care management. Curr. Pharm. Biotechnol. 2008, 9, 400–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Administration, F.a.D. GRAS Notification for Spirulina Microalgae. 2002. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=101&sor%20t=GRN_No&order=ASC&startnow=1&type=basic&search=265 (accessed on 1 July 2022).
- WHO/FAO World Health Organization & Food and Agricultural Organization of the United Nations. Safety Evaluation of certain Food Additives: Prepared by the Eighty-Sixth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 9789240004580. November 2020. Available online: https://www.who.int/publications-detail-redirect/9789240004580 (accessed on 1 July 2022).
- Padalino, L.; Lecce, L.; Zittelli, G.C.; Lo Grieco, A.; Torzillo, G.; Del Nobile, M.A.; Conte, A. Use of spirulina to enhance the nutritional value of durum wheat spaghetti. Food Nutr. J. 2017, 2, 122. [Google Scholar] [CrossRef]
- El-Hameed, A.M.; El-Maatti, S.A.; El-Saidy, S.; Somaya, A. Effect of adding spirulina platensis in pasta products (spaghetti). Zagazig J. Agric. Res. 2018, 45, 293–300. [Google Scholar] [CrossRef]
- Tiepo, C.B.V.; Gottardo, F.M.; Mortari, L.M.; Bertol, C.D.; Reinehr, C.O.; Colla, L.M. Addition of spirulin platensis in handmade ice cream: Physicochemical and sensory effects. Braz. J. Dev. 2021, 7, 88106–88123. [Google Scholar] [CrossRef]
- ISO 26642:2010(en); Food products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/obp/ui/#iso:std:iso:26642:ed-1:v1:en (accessed on 1 March 2019).
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Bjorck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Diabetes Care 2013, 36, 4166–4171. [Google Scholar] [CrossRef] [Green Version]
- Barclay, A.W.; Petocz, P.; McMillan-Price, J.; Flood, V.M.; Prvan, T.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies. Am. J. Clin. Nutr. 2008, 87, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Carbohydrate and nutrition. Nurs. Stand. 1998, 12, 32–33.
- Farago, C.V.; de Melo, G.B.; Escher, G.B.; Marcon, M.V.; Granato, D.; Danesi, E.D.G. Cereal bars made from brewers’ spent grain, apple and Spirulina platensis: Antioxidant activity and antihyperglycaemic effects. Res. Soc. Dev. 2021, 10, e23910514997. [Google Scholar] [CrossRef]
- Iyer, U.; Deshmukh, S.; Mani, U. Glycemic index of spirulina supplemented meals. Int. J. Diab. Dev. Ctries. 1999, 19, 108–112. [Google Scholar]
- Yousefi, R.; Saidpour, A.; Mottaghi, A. The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complement. Ther. Med. 2019, 42, 137–144. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, H.S. The influence of obesity on the effects of spirulina supplementation in the human metabolic response of Korean elderly. Nutr. Res. Pract. 2016, 10, 418–423. [Google Scholar] [CrossRef]
- Lee, E.H.; Park, J.E.; Choi, Y.J.; Huh, K.B.; Kim, W.Y. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr. Res. Pract. 2008, 2, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Mazokopakis, E.E.; Papadomanolaki, M.G.; Fousteris, A.A.; Kotsiris, D.A.; Lampadakis, I.M.; Ganotakis, E.S. The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: A prospective pilot study. Ann. Gastroenterol. 2014, 27, 387–394. [Google Scholar]
- Mazloomi, S.M.; Samadi, M.; Davarpanah, H.; Babajafari, S.; Clark, C.C.T.; Ghaemfar, Z.; Rezaiyan, M.; Mosallanezhad, A.; Shafiee, M.; Rostami, H. The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients: A randomized double-blinded clinical trial. Food Sci. Nutr. 2022, 10, 317–328. [Google Scholar] [CrossRef]
- Torres-Duran, P.V.; Ferreira-Hermosillo, A.; Juarez-Oropeza, M.A. Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: A preliminary report. Lipids. Health Dis. 2007, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Miczke, A.; Szulinska, M.; Hansdorfer-Korzon, R.; Kregielska-Narozna, M.; Suliburska, J.; Walkowiak, J.; Bogdanski, P. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: A double-blind, placebo-controlled, randomized trial. Eur. Rev. Med. Pharm. Sci. 2016, 20, 150–156. [Google Scholar]
- Martinez-Samano, J.; de Oca, A.T.-M.; Luqueno-Bocardo, O.I.; Torres-Duran, P.V.; Juarez-Oropeza, M.A. Spirulina maxima Decreases Endothelial Damage and Oxidative Stress Indicators in Patients with Systemic Arterial Hypertension: Results from Exploratory Controlled Clinical Trial. Mar. Drugs 2018, 16, 496. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, R.; Mottaghi, A.; Saidpour, A. Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complement. Ther. Med. 2018, 40, 106–112. [Google Scholar] [CrossRef]
- Zeinalian, R.; Farhangi, M.A.; Shariat, A.; Saghafi-Asl, M. The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: A randomized double blinded placebo controlled trial. BMC Complement. Altern. Med. 2017, 17, 225. [Google Scholar] [CrossRef]
- Urbaniak, G.C.; Plous, S. Research Randomizer (Version 4.0) [Computer Software]. Available online: http://www.randomizer.org (accessed on 1 March 2021).
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Retnakaran, R.; Cull, C.A.; Thorne, K.I.; Adler, A.I.; Holman, R.R.; Group, U.S. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006, 55, 1832–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohórquez-Medina, S.L.; Bohórquez-Medina, A.L.; Benites Zapata, V.A.; Ignacio-Cconchoy, F.L.; Toro-Huamanchumo, C.J.; Bendezu-Quispe, G.; Pacheco-Mendoza, J.; Hernandez, A.V. Impact of spirulina supplementation on obesity-related metabolic disorders: A systematic review and meta-analysis of randomized controlled trials. NFS J. 2021, 25, 21–30. [Google Scholar] [CrossRef]
- De Marco, E.R.; Steffolani, E.M.; Martinez, C.S.; Leon, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Uma, M.I.; Ahmedi, S.; Mani, U.V. Glycemic and lipemic responses of selected spirulina-supplemented rice-based recipes in normal subjects. Int. J. Diab. Dev. Ctries. 1999, 19, 17–22. [Google Scholar]
- Beihaghi, M.; Ghodrati azadi, H.; Taherzadeh, Z.; Bahrami, H.R. The effects of oral administration of spirulina platensis (cultured iranian) on blood glucose and glycosylated hemoglobin blood in type II diabetes mellitus patients. Iran. J. Diabetes Lipid Disord. 2017, 16, 183–190. [Google Scholar]
- Rostami, H.A.A.; Marjani, A.; Mojerloo, M.; Rahimi, B.; Marjani, M. Effect of spirulina on lipid Profile, glucose and malondialdehyde levels in type 2 diabetic patients. Braz. J. Pharm. Sci. 2022, 58, e191140. [Google Scholar] [CrossRef]
- Parikh, P.; Mani, U.; Iyer, U. Role of Spirulina in the Control of Glycemia and Lipidemia in Type 2 Diabetes Mellitus. J. Med. Food 2001, 4, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Sachdeva, R.; Grover, K. Effect of supplementation of Spirulina on blood glucose and lipid profile of the non-insulin dependent diabetic male subjects. Asian J. Dairy Food Res. 2008, 27, 202–208. [Google Scholar]
- Kaur, K.; Sachdeva, R.; Kochhar, A. Effect of spirulina supplementation on the nutrient adequacy and health status of non-insulin dependent diabetes mellitus (NIDDM) male subjacts. Stud. Ethno-Med. 2009, 3, 119–126. [Google Scholar] [CrossRef]
- Hannan, J.M.A.; Ansari, P.; Azam, S.; Flatt, P.R.; Abdel Wahab, Y.H.A. Effects of Spirulina platensis on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. Br. J. Nutr. 2020, 124, 1021–1034. [Google Scholar] [CrossRef]
- Hatami, E.; Ghalishourani, S.S.; Najafgholizadeh, A.; Pourmasoumi, M.; Hadi, A.; Clark, C.C.T.; Assaroudi, M.; Salehi-Sahlabadi, A.; Joukar, F.; Mansour-Ghanaei, F. The effect of spirulina on type 2 diabetes: A systematic review and meta-analysis. J. Diabetes. Metab. Disord. 2021, 20, 883–892. [Google Scholar] [CrossRef]
- Ghanbari, F.; Amerizadeh, A.; Behshood, P.; Moradi, S.; Asgary, S. Effect of Microalgae Arthrospira on Biomarkers of Glycemic Control and Glucose Metabolism: A Systematic Review and Meta-analysis. Curr. Probl. Cardiol. 2022, 47, 100942. [Google Scholar] [CrossRef]
- Huang, H.; Liao, D.; Pu, R.; Cui, Y. Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab. Syndr. Obes. 2018, 11, 729–742. [Google Scholar] [CrossRef] [Green Version]
- Hamedifard, Z.; Milajerdi, A.; Reiner, Z.; Taghizadeh, M.; Kolahdooz, F.; Asemi, Z. The effects of spirulina on glycemic control and serum lipoproteins in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 2609–2621. [Google Scholar] [CrossRef]
- Serban, M.C.; Stoichescu-Hogea, G.H.; Gurban, C.A.; Petcu, F.; Jeyakumar, D.I.; Andrica, F.L.; Dragan, S. The role of Spirulina platensis in the control of type 2 diabetes mellitus. BOARD 1982, 96, 27. [Google Scholar]
- Mani, U.V.; Desai, S.; Iyer, U. Studies on the long-term effect of spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J. Nutraceuticals Funct. Med. Foods. 2000, 2, 25–32. [Google Scholar] [CrossRef]
- Meineri, G.; Ingravalle, F.; Radice, E.; Aragno, M. Effects of high fat diets and Spirulina Platensis supplementation in New Zealand White rabbit. J. Anim. Vet. Adv. 2009, 8, 2735–2744. [Google Scholar]
- Layam, A.; Reddy, C.L.K. Antidiabetic property of spirulina. Diabetol. Croat. 2007, 35, 29–33. [Google Scholar]
- Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Muller, S.; et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 2011, 60, 1917–1925. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fan, X.; Qi, P.; Zhang, X. Identification of anti-diabetes peptides from Spirulina platensis. J. Funct. Foods 2019, 56, 333–341. [Google Scholar] [CrossRef]
- Paredes-Carbajal, M.C.; Torres-Durán, P.V.; Díaz-Zagoya, J.C.; Mascher, D.; Juárez-Oropeza, M.A. Effects of dietary Spirulina maxima on endothelium dependent vasomotor responses of rat aortic rings. Life Sci. 1997, 61, PL211–PL219. [Google Scholar] [CrossRef] [PubMed]
- Zeiher, A.M.; Schachlinger, V.; Hohnloser, S.H.; Saurbier, B.; Just, H. Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis. Circulation 1994, 89, 2525–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascher, D.; Paredes-Carbajal, M.C.; Torres-Duran, P.V.; Zamora Gonzalez, J.; Diaz-Zagoya, J.C.; Juarez-Oropeza, M.A. Ethanolic extract of Spirulina maxima alters the vasomotor reactivity of aortic rings from obese rats. Arch. Med. Res. 2006, 37, 50–57. [Google Scholar] [CrossRef]
- Hsiao, G.; Chou, P.-H.; Shen, M.-Y.; Chou, D.-S.; Lin, C.H.; Sheu, J.-R. C-phycocyanin, a very potent and novel platetel aggregation inhibitor from Spirulina platensis. J. Agric. Food Chem. 2005, 53, 7734–7740. [Google Scholar] [CrossRef]
- Carrizzo, A.; Conte, G.M.; Sommella, E.; Damato, A.; Ambrosio, M.; Sala, M.; Scala, M.C.; Aquino, R.P.; De Lucia, M.; Madonna, M.; et al. Novel Potent Decameric Peptide of Spirulina platensis Reduces Blood Pressure Levels Through a PI3K/AKT/eNOS-Dependent Mechanism. Hypertension 2019, 73, 449–457. [Google Scholar] [CrossRef]
- Lu, J.; Ren, D.F.; Xue, Y.L.; Sawano, Y.; Miyakawa, T.; Tanokura, M. Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis. J. Agric. Food Chem. 2010, 58, 7166–7171. [Google Scholar] [CrossRef]
- Machowiec, P.; Reka, G.; Maksymowicz, M.; Piecewicz-Szczesna, H.; Smolen, A. Effect of Spirulina Supplementation on Systolic and Diastolic Blood Pressure: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 3054. [Google Scholar] [CrossRef]
Cookie (C) | Spirulina Cookie (CS) | |
---|---|---|
Energy (kcal) | 443.0 kcal/1853.5 kJ | 439.5 kcal/1838.9 kJ |
Fat (g) | 19.9 | 20.2 |
Saturated fat (g) | 9.7 | 9.9 |
Cholesterol (mg) | 5.5 | 5.5 |
Carbohydrates (g) | 59.6 | 57.2 |
Dietary fiber (g) | 1.2 | 1.3 |
Sugar (g) | 25.0 | 25.2 |
Protein (g) | 6.04 | 8.18 |
Sodium (mg) | 101.2 | 148.8 |
Potassium (mg) | 124.3 | 181.4 |
Cookie (C) | Spirulina Cookie (CS) | |
---|---|---|
All-purpose flour | 45.5 g | 41.0 g |
Spirulina powder | - | 4.5 g |
Sugar | 22.5 g | 22.5 g |
Milk powder | 5.7 g | 5.7 g |
Vanilla | 0.1 g | 0.1 g |
Baking powder | 0.6 g | 0.6 g |
Plant-based butter | 25.6 g | 25.6 g |
Spirulina Powder | |
---|---|
Energy (kcal) | 290 kcal/1213 kJ |
Protein (g) | 57.47 |
Fat (g) | 7.72 |
Saturated fat (g) | 2.65 |
Carbohydrates (g) | 23.9 |
Dietary fiber (g) | 3.6 |
Sugars (g) | 3.1 |
Sodium (mg) | 2.62 |
Trial 1 | Trial 2 | |
---|---|---|
Characteristics | Total | |
N | 13 (4 men, 9 women) | 13 (3 men, 10 women) |
Age (years) | 25.2 ± 1.0 | 23.8 ± 0.7 |
Weight (kg) | 65.1 ± 4.8 | 69.4 ± 3.8 |
Height (cm) | 168 ± 0.03 | 169 ± 0.02 |
Body mass index (BMI; kg/m2) | 22.8 ± 0.9 | 24.1 ± 1.0 |
Body fat (kg) | 15.6 ± 1.8 | 18.3 ± 2.1 |
Muscle mass (kg) | 27.6 ± 2.6 | 28.5 ± 1.3 |
Waist circumference (cm) | 79.1 ± 2.72 | 79.5 ± 3.8 |
Hip circumference (cm) | 99.4 ± 1.8 | 100.3 ± 2.8 |
Dietary intake (from 24-h recall) | ||
Protein (g) | 60.87 ± 5.43 | 73.15 ± 6.70 |
Carbohydrate (g) | 193.98 ± 19.91 | 193.51 ± 20.15 |
Fat (g) | 60.25 ± 5.89 | 59.61 ± 4.73 |
Saturated fat (g) | 20.27 ± 2.43 | 23.88 ± 2.68 |
Total cholesterol (g) | 215.44 ± 29.00 | 259.40 ± 27.71 |
Fiber (g) | 17.26 ± 2.04 | 27.79 ± 8.92 |
Sodium (mg) | 2031.56 ± 242.82 | 2450.43 ± 201.12 |
Energy intake (kcal) | 1561.65 ± 133.40 | 1613.85 ± 150.06 |
Meal (Serving Portion Containing 50 g Available Carbohydrates) | iAUC (mg·120 min·dL−1) | GI (D-Glucose as Reference Food) | GL (D-Glucose as Reference Food) | Blood Glucose Peak Value (mg/dL) |
---|---|---|---|---|
D-Glucose | 4848 ± 508 a | 100 a | - | 77 ± 6 a |
White bread | 3646 ± 400 b | 73 ± 6 b | 36 ± 3 b | 53 ± 5 b |
C (76.88 g) | 2987 ± 341 b | 59 ± 5 b | 22 ± 2 c | 47 ± 5 b |
CS (80.16 g) | 3022 ± 389 b | 60 ± 6 b | 21 ± 2 c | 46 ± 4 b |
Δ120–0 | Coef. | Std. Err. | P > z | [95% Confidence Interval] | |
---|---|---|---|---|---|
Dose 4 g Spir | −8.877058 | 3.693365 | 0.016 | −16.11592 | −1.638196 |
Dose 6 g Spir | −4.301632 | 4.121417 | 0.297 | −12.37946 | 3.776197 |
Dose 8 g Spir | −8.550541 | 3.733738 | 0.022 | −15.86853 | −1.23255 |
cons | −2.450879 | 3.650722 | 0.502 | −9.606162 | 4.704404 |
sigma_u | 6.110511 | 1.896142 | 3.326157 | 11.22567 | |
sigma_e | 9.502128 | 1.03656 | 7.67301 | 11.76728 | |
rho | 0.2925543 | 0.1449218 | 0.0849786 | 0.6104398 |
AUC90–120 | Coefficient | P > z | [95% Confidence Interval] | |
---|---|---|---|---|
Dose 4 g Spirulina | −143.7275 | 0.053 | −289.5495 | 2.094498 |
Dose 6 g Spirulina | −111.7423 | 0.156 | −265.9917 | 42.50708 |
Dose 8 g Spirulina | −166.368 | 0.026 | −312.9799 | −19.75609 |
cons | 347.1318 | 0 | 190.1622 | 504.1015 |
sigma_u | 151.2978 | 89.32215 | 256.2748 | |
sigma_e | 192.2347 | 155.2247 | 238.0691 | |
rho | 0.3825037 | 0.1486562 | 0.6716199 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lympaki, F.; Giannoglou, M.; Magriplis, E.; Bothou, D.L.; Andreou, V.; Dimitriadis, G.D.; Markou, G.; Zampelas, A.; Theodorou, G.; Katsaros, G.; et al. Short-Term Effects of Spirulina Consumption on Glycemic Responses and Blood Pressure in Healthy Young Adults: Results from Two Randomized Clinical Trials. Metabolites 2022, 12, 1180. https://doi.org/10.3390/metabo12121180
Lympaki F, Giannoglou M, Magriplis E, Bothou DL, Andreou V, Dimitriadis GD, Markou G, Zampelas A, Theodorou G, Katsaros G, et al. Short-Term Effects of Spirulina Consumption on Glycemic Responses and Blood Pressure in Healthy Young Adults: Results from Two Randomized Clinical Trials. Metabolites. 2022; 12(12):1180. https://doi.org/10.3390/metabo12121180
Chicago/Turabian StyleLympaki, Foteini, Marianna Giannoglou, Emmanuella Magriplis, Dionysia Lydia Bothou, Varvara Andreou, George D. Dimitriadis, Giorgos Markou, Antonis Zampelas, Georgios Theodorou, George Katsaros, and et al. 2022. "Short-Term Effects of Spirulina Consumption on Glycemic Responses and Blood Pressure in Healthy Young Adults: Results from Two Randomized Clinical Trials" Metabolites 12, no. 12: 1180. https://doi.org/10.3390/metabo12121180
APA StyleLympaki, F., Giannoglou, M., Magriplis, E., Bothou, D. L., Andreou, V., Dimitriadis, G. D., Markou, G., Zampelas, A., Theodorou, G., Katsaros, G., & Papakonstantinou, E. (2022). Short-Term Effects of Spirulina Consumption on Glycemic Responses and Blood Pressure in Healthy Young Adults: Results from Two Randomized Clinical Trials. Metabolites, 12(12), 1180. https://doi.org/10.3390/metabo12121180