Mechanisms and Outcomes of Metabolic Surgery in Type 2 Diabetes
Abstract
:1. Introduction
2. Overview of Bariatric/Metabolic Surgery
Study | Intervention/ Surgery Type | Subjects (n) | Results | Outcomes |
---|---|---|---|---|
Vrakopoulou et al. (2021) [17] | SG OAGB | morbidly obese T2D patients SG (n = 28) OAGB (n = 25) | SG-10 patients (35.7%) achieved diabetes remission. OAGB-22 patients (88%) remained off antidiabetic agents. | OAGB was more effective in improving glycemic control and %EWL with an almost immediate resolution of diabetes as well as long-term weight loss. |
Moriconi et al. (2021) [18] | RYGB | RYGB: 88 obese patients Medical therapy (MT): 25 obese patients 10-year follow-up | Body mass index (BMI), fasting glucose, and hemoglobin A1c (HbA1c) ↓ in RYGB than MT patients. | RYGB significantly reduced and sustained glycated hemoglobin (HbA1c) levels compared to medical therapy at a ten-year follow-up. Weight loss impacted the short-term remission of T2D but had a marginal role in long-term relapse. |
Imtiaz et al. (2021) [19] | bariatric surgery | Randomized controlled trials (RCTs) among T2D patients 3674 with surgery 1335 without surgery | HbA1C ↓ Improvements were sustained for at least 6 years. | Bariatric surgery lowered A1c in real-world clinical care. |
Purnell et al. (2021) [20] | RYGB LAGB | 2256 participants, 827 with T2D and severe obesity | Diabetes remission occurred in 57% (46% complete, 11% partial) after RYGB and 22.5% (16.9% complete, 5.6% partial) after LAGB. younger participants, shorter diabetes duration: remission↑ | Durable long-term diabetes remission following bariatric surgery was more likely when performed soon after diagnosis, when the diabetes medication burden was low and beta-cell function was preserved. |
Huang et al. (2021) [21] | single-anastomosis gastric bypass | 1999 patients from the Asian Diabetes Surgery Summit 1 year | Weight↓ BMI ↓ Blood glucose ↓ HbA1c ↓ Lipid ↓ Blood pressure ↓ | Metabolic surgery remarkably improved body weight, T2D, and other metabolic disorders in Asian patients. However, the efficacy of individual procedures varied substantially. |
Stenberg et al. (2020) [22] | RYGB | 742 patients at baseline and 2 years postsurgery | Insulin homeostasis and glucometabolic control were improved and sustained. | Positive results were observed in diabetics as well as prediabetics and nondiabetic obese patients, and this improvement was sustained for 2 years after surgery. |
Katsogiannos et al. (2020) [23] | RYGB | 19 obese T2D patients | parasympathetic nerve activity ↑ morning cortisol ↓ incretin ↑ glucagon responses ↑ | Neurohormonal mechanisms can contribute to the rapid improvement in insulin resistance and glycemia following RYGB in T2D. |
3. Mechanisms Involved in the Postoperative Weight and Metabolic Changes
3.1. Hormonal Changes
- a.
- Ghrelin
- b.
- Glucagon-like peptide-1 (GLP-1)
3.2. Adipokine Changes
- a.
- Leptin
- b.
- Adiponectin
- c.
- Resistin and visfatin
- d.
- Omentin-1 and apelin
3.3. Role of Gut Microbiota, Bile Acids, and Their Cross-Talk
3.4. Molecular Changes—MicroRNA
3.5. Metabolomics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bays, H.E.; Bazata, D.D.; Clark, N.G.; Gavin, J.R.; Green, A.J.; Lewis, S.J.; Reed, M.L.; Stewart, W.; Chapman, R.H.; Fox, K.M.; et al. Prevalence of Self-Reported Diagnosis of Diabetes Mellitus and Associated Risk Factors in a National Survey in the US Population: SHIELD (Study to Help Improve Early Evaluation and Management of Risk Factors Leading to Diabetes). BMC Public Health 2007, 7, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanipah, Z.N.; Schauer, P.R. Bariatric Surgery as a Long-Term Treatment for Type 2 Diabetes/Metabolic Syndrome. Annu. Rev. Med. 2020, 71, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, S. The Current Status of Bariatric Surgery. Frontline Gastroenterol. 2011, 2, 90–95. [Google Scholar] [CrossRef]
- Kremen, A.J.; Linner, J.H.; Nelson, C.H. An Experimental Evaluation of the Nutritional Importance of Proximal and Distal Small Intestine. Ann. Surg. 1954, 140, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.E. History of Obesity Surgery. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2005, 1, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Pories, W.J.; Caro, J.F.; Flickinger, E.G.; Meelheim, H.D.; Swanson, M.S. The Control of Diabetes Mellitus (NIDDM) in the Morbidly Obese with the Greenville Gastric Bypass. Ann. Surg. 1987, 206, 316–323. [Google Scholar] [CrossRef]
- Buchwald, H. The Evolution of Metabolic/Bariatric Surgery. Obes. Surg. 2014, 24, 1126–1135. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Varela, J.E. Bariatric Surgery for Obesity and Metabolic Disorders: State of the Art. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 160–169. [Google Scholar] [CrossRef]
- Sandoval, D.A.; Patti, M.E. Glucose Metabolism after Bariatric Surgery: Implications for T2DM Remission and Hypoglycaemia. Nat. Rev. Endocrinol. 2022. [Google Scholar] [CrossRef]
- Shah, S.S.; Todkar, J.S.; Shah, P.S.; Cummings, D.E. Diabetes Remission and Reduced Cardiovascular Risk After Gastric Bypass in Asian Indians with Body Mass Index <35 Kg/M2. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2010, 6, 332–338. [Google Scholar] [CrossRef]
- Thaler, J.P.; Cummings, D.E. Minireview: Hormonal and Metabolic Mechanisms of Diabetes Remission after Gastrointestinal Surgery. Endocrinology 2009, 150, 2518–2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miras, A.D.; le Roux, C.W. Mechanisms Underlying Weight Loss after Bariatric Surgery. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Seeley, R.J.; Chambers, A.P.; Sandoval, D.A. The Role of Gut Adaptation in the Potent Effects of Multiple Bariatric Surgeries on Obesity and Diabetes. Cell Metab. 2015, 21, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbdAlla Salman, M.; Rabiee, A.; Salman, A.; Elewa, A.; Tourky, M.; Mahmoud, A.A.; Moustafa, A.; El-Din Shaaban, H.; Ismail, A.A.; Noureldin, K.; et al. Predictors of Type-2 Diabetes Remission Following Bariatric Surgery after a Two-Year Follow Up. Asian J. Surg. 2022. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.P.; Courcoulas, A.P.; Cummings, D.E.; Goldfine, A.B.; Kashyap, S.R.; Simonson, D.C.; Arterburn, D.E.; Gourash, W.F.; Vernon, A.H.; Jakicic, J.M.; et al. Diabetes Remission in the Alliance of Randomized Trials of Medicine Versus Metabolic Surgery in Type 2 Diabetes (ARMMS-T2D). Diabetes Care 2022, 45, 1574–1583. [Google Scholar] [CrossRef]
- Mingrone, G.; Cummings, D.E. Changes of Insulin Sensitivity and Secretion after Bariatric/Metabolic Surgery. Surg. Obes. Relat. Dis. 2016, 12, 1199–1205. [Google Scholar] [CrossRef]
- Vrakopoulou, G.Z.; Theodoropoulos, C.; Kalles, V.; Zografos, G.; Almpanopoulos, K. Type 2 Diabetes Mellitus Status in Obese Patients Following Sleeve Gastrectomy or One Anastomosis Gastric Bypass. Sci. Rep. 2021, 11, 4421. [Google Scholar] [CrossRef]
- Moriconi, D.; Manca, M.L.; Anselmino, M.; Rebelos, E.; Bellini, R.; Taddei, S.; Ferrannini, E.; Nannipieri, M. Predictors of Type 2 Diabetes Relapse after Roux-En-Y Gastric Bypass: A Ten-Year Follow-up Study. Diabetes Metab. 2021, 48, 101282. [Google Scholar] [CrossRef]
- Imtiaz, R.; Doumouras, A.G.; Hong, D.; Anvari, M.; Shah, B.R. Long-Term Impact of Bariatric Surgery on Glycemic Control and Glucose-Lowering Therapy for People with Type 2 Diabetes Population-Based Cohort Study. Surg. Obes. Relat. Dis. 2021, 17, 1049–1056. [Google Scholar] [CrossRef]
- Purnell, J.Q.; Dewey, E.N.; Laferrère, B.; Selzer, F.; Flum, D.R.; Mitchell, J.E.; Pomp, A.; Pories, W.J.; Inge, T.; Courcoulas, A.; et al. Diabetes Remission Status During Seven-Year Follow-up of the Longitudinal Assessment of Bariatric Surgery Study. J. Clin. Endocrinol. Metab. 2021, 106, 774–788. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Lin, Y.-K.; Lee, W.-J.; Hur, K.Y.; Kasama, K.; Cheng, A.K.S.; Lee, M.-H.; Wong, S.K.-H.; Soong, T.-C.; Lee, K.-T.; et al. Long-Term Outcomes of Metabolic Surgery in Overweight and Obese Patients with Type 2 Diabetes in Asia. Diabetes Obes. Metab. 2021, 23, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, E.; Rask, E.; Szabo, E.; Näslund, I.; Ottosson, J. The Effect of Laparoscopic Gastric Bypass Surgery on Insulin Resistance and Glycosylated Hemoglobin A1c: A 2-Year Follow-up Study. Obes. Surg. 2020, 30, 3489–3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsogiannos, P.; Kamble, P.G.; Wiklund, U.; Sundbom, M.; Espes, D.; Hammar, U.; Karlsson, F.A.; Pereira, M.J.; Eriksson, J.W. Rapid Changes in Neuroendocrine Regulation May Contribute to Reversal of Type 2 Diabetes after Gastric Bypass Surgery. Endocrine 2020, 67, 344–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, R.H.; Kahn, S.E.; Ferrannini, E.; Goldfine, A.B.; Nathan, D.M.; Schwartz, M.W.; Smith, R.J.; Smith, S.R. Obesity and Type 2 Diabetes: What Can Be Unified and What Needs to Be Individualized? J. Clin. Endocrinol. Metab. 2011, 96, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained Reduction in the Incidence of Type 2 Diabetes by Lifestyle Intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet Lond. Engl. 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
- Li, G.; Zhang, P.; Wang, J.; Gregg, E.W.; Yang, W.; Gong, Q.; Li, H.; Li, H.; Jiang, Y.; An, Y.; et al. The Long-Term Effect of Lifestyle Interventions to Prevent Diabetes in the China Da Qing Diabetes Prevention Study: A 20-Year Follow-up Study. Lancet Lond. Engl. 2008, 371, 1783–1789. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group; Knowler, W.C.; Fowler, S.E.; Hamman, R.F.; Christophi, C.A.; Hoffman, H.J.; Brenneman, A.T.; Brown-Friday, J.O.; Goldberg, R.; Venditti, E.; et al. 10-Year Follow-up of Diabetes Incidence and Weight Loss in the Diabetes Prevention Program Outcomes Study. Lancet Lond. Engl. 2009, 374, 1677–1686. [Google Scholar] [CrossRef] [Green Version]
- Holst, J.J.; Madsbad, S.; Bojsen-Møller, K.N.; Svane, M.S.; Jørgensen, N.B.; Dirksen, C.; Martinussen, C. Mechanisms in Bariatric Surgery: Gut Hormones, Diabetes Resolution, and Weight Loss. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2018, 14, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Frühbeck, G. Revisiting the Adipocyte: A Model for Integration of Cytokine Signaling in the Regulation of Energy Metabolism. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E691–E714. [Google Scholar] [CrossRef]
- Luo, J.N.; Tavakkoli, A. Physiologic Mechanisms of Weight Loss Following Metabolic/Bariatric Surgery. Surg. Clin. N. Am. 2021, 101, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Estienne, A.; Bongrani, A.; Reverchon, M.; Ramé, C.; Ducluzeau, P.-H.; Froment, P.; Dupont, J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int. J. Mol. Sci. 2019, 20, 4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsogiannos, P.; Kamble, P.G.; Boersma, G.J.; Karlsson, F.A.; Lundkvist, P.; Sundbom, M.; Pereira, M.J.; Eriksson, J.W. Early Changes in Adipose Tissue Morphology, Gene Expression, and Metabolism After RYGB in Patients With Obesity and T2D. J. Clin. Endocrinol. Metab. 2019, 104, 2601–2613. [Google Scholar] [CrossRef] [PubMed]
- Svane, M.S.; Bojsen-Møller, K.N.; Martinussen, C.; Dirksen, C.; Madsen, J.L.; Reitelseder, S.; Holm, L.; Rehfeld, J.F.; Kristiansen, V.B.; van Hall, G.; et al. Postprandial Nutrient Handling and Gastrointestinal Hormone Secretion After Roux-En-Y Gastric Bypass vs Sleeve Gastrectomy. Gastroenterology 2019, 156, 1627–1641.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Song, M. Recent Advances in the Mechanisms Underlying the Beneficial Effects of Bariatric and Metabolic Surgery. Surg. Obes. Relat. Dis. 2021, 17, 231–238. [Google Scholar] [CrossRef]
- Andersson, D.P.; Dahlman, I.; Eriksson Hogling, D.; Bäckdahl, J.; Toft, E.; Qvisth, V.; Näslund, E.; Thorell, A.; Rydén, M.; Arner, P. Improved Metabolism and Body Composition beyond Normal Levels Following Gastric Bypass Surgery: A Longitudinal Study. J. Intern. Med. 2019, 285, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, A.; Stoll, F.; Mann, O.; Busch, P.; Huber, T.B.; Kielstein, H.; Bähr, I.; Aberle, J. Long-Term Improvement of Chronic Low-Grade Inflammation After Bariatric Surgery. Obes. Surg. 2021, 31, 2913–2920. [Google Scholar] [CrossRef]
- Gauna, C.; Delhanty, P.J.D.; Hofland, L.J.; Janssen, J.A.M.J.L.; Broglio, F.; Ross, R.J.M.; Ghigo, E.; van der Lely, A.J. Ghrelin Stimulates, Whereas Des-Octanoyl Ghrelin Inhibits, Glucose Output by Primary Hepatocytes. J. Clin. Endocrinol. Metab. 2005, 90, 1055–1060. [Google Scholar] [CrossRef] [Green Version]
- Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Moncada, R.; Valentí, V.; Catalán, V.; Gómez-Ambrosi, J.; Frühbeck, G.; Rodríguez, A. Acylated and Desacyl Ghrelin Are Associated with Hepatic Lipogenesis, β-Oxidation and Autophagy: Role in NAFLD Amelioration after Sleeve Gastrectomy in Obese Rats. Sci. Rep. 2016, 6, 39942. [Google Scholar] [CrossRef] [Green Version]
- Kornyushin, O.; Sonin, D.; Polozov, A.; Masley, V.; Bulavinova, N.; Chervyak, M.; Istomina, M.; Mukhametdinova, D.; Neimark, A.; Cheburkin, Y.; et al. Effect of Sleeve Gastrectomy, Roux-En-Y Gastric Bypass, and Ileal Transposition on Myocardial Ischaemia-Reperfusion Injury in Non-Obese Non-Diabetic Rats. Sci. Rep. 2021, 11, 23888. [Google Scholar] [CrossRef]
- Skuratovskaia, D.; Vulf, M.; Chasovskikh, N.; Komar, A.; Kirienkova, E.; Shunkin, E.; Zatolokin, P.; Litvinova, L. The Links of Ghrelin to Incretins, Insulin, Glucagon, and Leptin After Bariatric Surgery. Front. Genet. 2021, 12, 612501. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Svane, M.S.; Kuhre, R.E.; Clausen, T.R.; Kristiansen, V.B.; Rehfeld, J.F.; Holst, J.J.; Madsbad, S.; Bojsen-Moller, K.N. Chenodeoxycholic Acid Stimulates Glucagon-like Peptide-1 Secretion in Patients after Roux-En-Y Gastric Bypass. Physiol. Rep. 2017, 5, e13140. [Google Scholar] [CrossRef] [PubMed]
- Hindsø, M.; Svane, M.S.; Hedbäck, N.; Holst, J.J.; Madsbad, S.; Bojsen-Møller, K.N. The Role of GLP-1 in Postprandial Glucose Metabolism after Bariatric Surgery: A Narrative Review of Human GLP-1 Receptor Antagonist Studies. Surg. Obes. Relat. Dis. 2021, 17, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Larraufie, P.; Roberts, G.P.; McGavigan, A.K.; Kay, R.G.; Li, J.; Leiter, A.; Melvin, A.; Biggs, E.K.; Ravn, P.; Davy, K.; et al. Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery. Cell Rep. 2019, 26, 1399–1408.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremaroli, V.; Karlsson, F.; Werling, M.; Ståhlman, M.; Kovatcheva-Datchary, P.; Olbers, T.; Fändriks, L.; le Roux, C.W.; Nielsen, J.; Bäckhed, F. Roux-En-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab. 2015, 22, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, T.; Bouchi, R.; Takeuchi, T.; Amo-Shiinoki, K.; Kudo, A.; Tanaka, S.; Tanabe, M.; Akashi, T.; Hirayama, K.; Odamaki, T.; et al. Importance of Intestinal Environment and Cellular Plasticity of Islets in the Development of Postpancreatectomy Diabetes. Diabetes Care 2021, 44, 1002–1011. [Google Scholar] [CrossRef]
- López-Montoya, P.; Cerqueda-García, D.; Rodríguez-Flores, M.; López-Contreras, B.; Villamil-Ramírez, H.; Morán-Ramos, S.; Molina-Cruz, S.; Rivera-Paredez, B.; Antuna-Puente, B.; Velázquez-Cruz, R.; et al. Association of Gut Microbiota with Atherogenic Dyslipidemia, and Its Impact on Serum Lipid Levels after Bariatric Surgery. Nutrients 2022, 14, 3545. [Google Scholar] [CrossRef]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [Green Version]
- Hunt, S.C.; Davidson, L.E.; Adams, T.D.; Ranson, L.; McKinlay, R.D.; Simper, S.C.; Litwin, S.E. Associations of Visceral, Subcutaneous, Epicardial, and Liver Fat with Metabolic Disorders up to 14 Years After Weight Loss Surgery. Metab. Syndr. Relat. Disord. 2021, 19, 83–92. [Google Scholar] [CrossRef]
- de Oliveira Dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef] [PubMed]
- Muruzábal, F.J.; Frühbeck, G.; Gómez-Ambrosi, J.; Archanco, M.; Burrell, M.A. Immunocytochemical Detection of Leptin in Non-Mammalian Vertebrate Stomach. Gen. Comp. Endocrinol. 2002, 128, 149–152. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Catalán, V.; Rodríguez, A.; Andrada, P.; Ramírez, B.; Ibáñez, P.; Vila, N.; Romero, S.; Margall, M.A.; Gil, M.J.; et al. Increased Cardiometabolic Risk Factors and Inflammation in Adipose Tissue in Obese Subjects Classified as Metabolically Healthy. Diabetes Care 2014, 37, 2813–2821. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, G. Cardiovascular Effects of Leptin. Nat. Rev. Cardiol. 2010, 7, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Šebunova, N.; Štšepetova, J.; Kullisaar, T.; Suija, K.; Rätsep, A.; Junkin, I.; Soeorg, H.; Lember, M.; Sillakivi, T.; Mändar, R. Changes in Adipokine Levels and Metabolic Profiles Following Bariatric Surgery. BMC Endocr. Disord. 2022, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Huypens, P.R. Leptin and Adiponectin Regulate Compensatory Beta Cell Growth in Accordance to Overweight. Med. Hypotheses 2007, 68, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kadowaki, T. Adiponectin Receptor as a Key Player in Healthy Longevity and Obesity-Related Diseases. Cell Metab. 2013, 17, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-Leptin Ratio Is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- Unamuno, X.; Izaguirre, M.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Valentí, V.; Moncada, R.; Silva, C.; Salvador, J.; et al. Increase of the Adiponectin/Leptin Ratio in Patients with Obesity and Type 2 Diabetes after Roux-En-Y Gastric Bypass. Nutrients 2019, 11, 2069. [Google Scholar] [CrossRef] [Green Version]
- Park, H.K.; Kwak, M.K.; Kim, H.J.; Ahima, R.S. Linking Resistin, Inflammation, and Cardiometabolic Diseases. Korean J. Intern. Med. 2017, 32, 239–247. [Google Scholar] [CrossRef]
- Doulamis, I.P.; Konstantopoulos, P.; Tzani, A.; Antoranz, A.; Minia, A.; Daskalopoulou, A.; Charalampopoulos, A.; Alexopoulos, L.; Perrea, D.N.; Menenakos, E. Visceral White Adipose Tissue and Serum Proteomic Alternations in Metabolically Healthy Obese Patients Undergoing Bariatric Surgery. Cytokine 2019, 115, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Arica, P.C.; Aydin, S.; Zengin, U.; Kocael, A.; Orhan, A.; Zengin, K.; Gelisgen, R.; Taskin, M.; Uzun, H. The Effects on Obesity Related Peptides of Laparoscopic Gastric Band Applications in Morbidly Obese Patients. J. Investig. Surg. Off. J. Acad. Surg. Res. 2018, 31, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiong, J.; He, H.; Zhu, S.; Mo, Z. Visfatin level after laparoscopic Roux-en-Y gastric bypass surgery in patients with Type 2 diabetes. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2013, 38, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Tok, A.; Ozer, A.; Kanat-Pektas, M.; Aral, M.; Sakalli, H.; Aydogdu, S.; Yutan-Kaya, E.; Sager, H. The Role of Omentin in Early Pregnancy Losses. J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2020, 40, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Tan, Y.-L.; Zheng, X.-L.; Tang, C.-K. The Protective Functions of Omentin in Cardiovascular Diseases. Clin. Chim. Acta Int. J. Clin. Chem. 2015, 448, 98–106. [Google Scholar] [CrossRef]
- Yang, R.-Z.; Lee, M.-J.; Hu, H.; Pray, J.; Wu, H.-B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.-W. Identification of Omentin as a Novel Depot-Specific Adipokine in Human Adipose Tissue: Possible Role in Modulating Insulin Action. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1253–E1261. [Google Scholar] [CrossRef]
- Goodarzi, G.; Shirgir, A.; Alavi, S.; Khoshi, A. Effect of Insulin–Glucose Metabolism Compared with Obesity on Adipose Omentin Gene Expression in Different Models of Diabetic C57BL/6 Mice. Diabetol. Metab. Syndr. 2019, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, Z.; Qian, G.; Zhou, J. Omentin-1 Attenuates Adipose Tissue Inflammation via Restoration of TXNIP/NLRP3 Signaling in High-Fat Diet-Induced Obese Mice. Fundam. Clin. Pharmacol. 2020, 34, 721–735. [Google Scholar] [CrossRef]
- Moreno-Navarrete, J.M.; Catalán, V.; Ortega, F.; Gómez-Ambrosi, J.; Ricart, W.; Frühbeck, G.; Fernández-Real, J.M. Circulating Omentin Concentration Increases after Weight Loss. Nutr. Metab. 2010, 7, 27. [Google Scholar] [CrossRef]
- Lis, I.; Pelczyńska, M.; Miller-Kasprzak, E.; Kujawska-Łuczak, M.; Mądry, E.; Bogdański, P. Association of Serum Omentin Concentration with Anthropometric, Physiological, and Biochemical Parameters in Obese Individuals. Nutrition 2020, 79–80, 110866. [Google Scholar] [CrossRef]
- Leandro, A.; Queiroz, M.; Azul, L.; Seiça, R.; Sena, C.M. Omentin: A Novel Therapeutic Approach for the Treatment of Endothelial Dysfunction in Type 2 Diabetes. Free Radic. Biol. Med. 2021, 162, 233–242. [Google Scholar] [CrossRef] [PubMed]
- As´habi, A.; Sadeghi, M.; Arab, A.; Hajianfar, H. The Association between Omentin and Diabetes: A Systematic Review and Meta-Analysis of Observational Studies. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1277–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapointe, M.; Poirier, P.; Martin, J.; Bastien, M.; Auclair, A.; Cianflone, K. Omentin Changes Following Bariatric Surgery and Predictive Links with Biomarkers for Risk of Cardiovascular Disease. Cardiovasc. Diabetol. 2014, 13, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, F.G.; Ashoori, M.R.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. An Overview on Biological Functions and Emerging Therapeutic Roles of Apelin in Diabetes Mellitus. Diabetes Metab. Syndr. 2017, 11 (Suppl. S2), S919–S923. [Google Scholar] [CrossRef]
- Elsehmawy, A.A.E.W.; El-Toukhy, S.E.; Seliem, N.M.A.; Moustafa, R.S.; Mohammed, D.S. Apelin and Chemerin as Promising Adipokines in Children with Type 1 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Cavallo, M.G.; Sentinelli, F.; Barchetta, I.; Costantino, C.; Incani, M.; Perra, L.; Capoccia, D.; Romeo, S.; Cossu, E.; Leonetti, F.; et al. Altered Glucose Homeostasis Is Associated with Increased Serum Apelin Levels in Type 2 Diabetes Mellitus. PLoS ONE 2012, 7, e51236. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Fernandez, I.D.; Meng, Y.; Zhao, W.; Groth, S.W. Gut Hormones, Adipokines, and pro- and Anti-Inflammatory Cytokines/Markers in Loss of Control Eating: A Scoping Review. Appetite 2021, 166, 105442. [Google Scholar] [CrossRef]
- Bertrand, C.; Valet, P.; Castan-Laurell, I. Apelin and Energy Metabolism. Front. Physiol. 2015, 6, 115. [Google Scholar] [CrossRef]
- Gourdy, P.; Cazals, L.; Thalamas, C.; Sommet, A.; Calvas, F.; Galitzky, M.; Vinel, C.; Dray, C.; Hanaire, H.; Castan-Laurell, I.; et al. Apelin Administration Improves Insulin Sensitivity in Overweight Men during Hyperinsulinaemic-Euglycaemic Clamp. Diabetes Obes. Metab. 2018, 20, 157–164. [Google Scholar] [CrossRef]
- Tan, C.; Zheng, Z.; Wan, X.; Cao, J.; Wei, R.; Duan, J. The Role of Gut Microbiota and Amino Metabolism in the Effects of Improvement of Islet β-Cell Function after Modified Jejunoileal Bypass. Sci. Rep. 2021, 11, 4809. [Google Scholar] [CrossRef] [PubMed]
- Alejandro, E.U.; Gregg, B.; Blandino-Rosano, M.; Cras-Méneur, C.; Bernal-Mizrachi, E. Natural History of β-Cell Adaptation and Failure in Type 2 Diabetes. Mol. Aspects Med. 2015, 42, 19–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Hu, C.; Zhang, X.; Jia, W. Role of Gut Microbiota, Bile Acids and Their Cross-Talk in the Effects of Bariatric Surgery on Obesity and Type 2 Diabetes. J. Diabetes Investig. 2018, 9, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.; Tsai, P.; Jüllig, M.; Liu, A.; Plank, L.; Booth, M. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes. Surg. 2017, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Liou, A.P.; Paziuk, M.; Luevano, J.-M.; Machineni, S.; Turnbaugh, P.J.; Kaplan, L.M. Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Sci. Transl. Med. 2013, 5, 178ra41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-López, Y.E.; Esquivel-Hernández, D.A.; Sánchez-Castañeda, J.P.; Neri-Rosario, D.; Guardado-Mendoza, R.; Resendis-Antonio, O. Type 2 Diabetes, Gut Microbiome, and Systems Biology: A Novel Perspective for a New Era. Gut Microbes 2022, 14, 2111952. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.B.M.S.; Fukiya, S.; Hagio, M.; Fujii, N.; Ishizuka, S.; Ooka, T.; Ogura, Y.; Hayashi, T.; Yokota, A. Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology 2011, 141, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.-E.; Houten, S.M.; Bianco, A.C.; Bernier, R.; Larsen, P.R.; Holst, J.J.; Badman, M.K.; Maratos-Flier, E.; Mun, E.C.; Pihlajamaki, J.; et al. Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism. Obes. Silver Spring Md 2009, 17, 1671–1677. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.K.; Tremaroli, V.; Clemmensen, C.; Kovatcheva-Datchary, P.; Myronovych, A.; Karns, R.; Wilson-Pérez, H.E.; Sandoval, D.A.; Kohli, R.; Bäckhed, F.; et al. FXR Is a Molecular Target for the Effects of Vertical Sleeve Gastrectomy. Nature 2014, 509, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, D.; Wang, B.; Zeng, Y.; Li, W. The Value of MiRNAs in the Prognosis of Obese Patients Receiving Bariatric Surgery. Am. J. Transl. Res. 2021, 13, 1905–1914. [Google Scholar]
- Flynt, A.S.; Lai, E.C. Biological Principles of MicroRNA-Mediated Regulation: Shared Themes amid Diversity. Nat. Rev. Genet. 2008, 9, 831–842. [Google Scholar] [CrossRef] [PubMed]
- de Planell-Saguer, M.; Rodicio, M.C. Detection Methods for MicroRNAs in Clinic Practice. Clin. Biochem. 2013, 46, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, G.; Filardi, T.; Sabato, C.; Vacca, A.; Migliaccio, S.; Morano, S.; Ferretti, E. Tissue and Circulating MicroRNAs as Biomarkers of Response to Obesity Treatment Strategies. J. Endocrinol. Investig. 2021, 44, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-H.; Wang, C.-Y.; Liu, K.-H.; Liu, Y.-Y.; Wen, M.-S.; Yeh, T.-S. MiR-122 Marks the Differences between Subcutaneous and Visceral Adipose Tissues and Associates with the Outcome of Bariatric Surgery. Obes. Res. Clin. Pract. 2018, 12, 570–577. [Google Scholar] [CrossRef]
- Doyon, L.; Das, S.; Sullivan, T.; Rieger-Christ, K.; Sherman, J.; Roque, S.; Nepomnayshy, D. Can Genetics Help Predict Efficacy of Bariatric Surgery? An Analysis of MicroRNA Profiles. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2020, 16, 1802–1807. [Google Scholar] [CrossRef]
- Guay, C.; Regazzi, R. MicroRNAs and the Functional β Cell Mass: For Better or Worse. Diabetes Metab. 2015, 41, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Atkin, S.L.; Ramachandran, V.; Yousri, N.A.; Benurwar, M.; Simper, S.C.; McKinlay, R.; Adams, T.D.; Najafi-Shoushtari, S.H.; Hunt, S.C. Changes in Blood MicroRNA Expression and Early Metabolic Responsiveness 21 Days Following Bariatric Surgery. Front. Endocrinol. 2019, 9, 773. [Google Scholar] [CrossRef]
- Sánchez-Ceinos, J.; Rangel-Zuñiga, O.A.; Clemente-Postigo, M.; Podadera-Herreros, A.; Camargo, A.; Alcalá-Diaz, J.F.; Guzmán-Ruiz, R.; López-Miranda, J.; Malagón, M.M. MiR-223-3p as a Potential Biomarker and Player for Adipose Tissue Dysfunction Preceding Type 2 Diabetes Onset. Mol. Ther. Nucleic Acids 2021, 23, 1035–1052. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Si, H.; Li, X.; Ding, X.; Sheng, Q.; Chen, P.; Zhang, H. Serum MiR-23a, a Potential Biomarker for Diagnosis of Pre-Diabetes and Type 2 Diabetes. Acta Diabetol. 2014, 51, 823–831. [Google Scholar] [CrossRef]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019, 8, 1533. [Google Scholar] [CrossRef] [Green Version]
- Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramaniam, S.; Pek, S.L.T.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. Circulating MiRNA Profiles in Patients with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2012, 97, E2271–E2276. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhu, J.; Han, W.; Jiang, X.; Xu, M.; Zhao, Y.; Dong, Q.; Pang, Z.; Guan, Q.; Gao, L.; et al. Significance of Serum MicroRNAs in Pre-Diabetes and Newly Diagnosed Type 2 Diabetes: A Clinical Study. Acta Diabetol. 2011, 48, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Lucena, R.; Camargo, A.; Alcalá-Diaz, J.F.; Romero-Baldonado, C.; Luque, R.M.; van Ommen, B.; Delgado-Lista, J.; Ordovás, J.M.; Pérez-Martínez, P.; Rangel-Zúñiga, O.A.; et al. A Plasma Circulating MiRNAs Profile Predicts Type 2 Diabetes Mellitus and Prediabetes: From the CORDIOPREV Study. Exp. Mol. Med. 2018, 50, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikelis, N.; Dixon, J.B.; Lambert, E.A.; Hanin, G.; Tzur, Y.; Greenberg, D.S.; Soreq, H.; Marques, F.Z.; Fahey, M.T.; Head, G.A.; et al. MicroRNA-132 May Be Associated with Blood Pressure and Liver Steatosis-Preliminary Observations in Obese Individuals. J. Hum. Hypertens. 2021, 36, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Amouyal, C.; Castel, J.; Guay, C.; Lacombe, A.; Denom, J.; Migrenne-Li, S.; Rouault, C.; Marquet, F.; Georgiadou, E.; Stylianides, T.; et al. A Surrogate of Roux-En-Y Gastric Bypass (the Enterogastro Anastomosis Surgery) Regulates Multiple Beta-Cell Pathways during Resolution of Diabetes in Ob/Ob Mice. EBioMedicine 2020, 58, 102895. [Google Scholar] [CrossRef]
- Sangiao-Alvarellos, S.; Theofilatos, K.; Barwari, T.; Gutmann, C.; Takov, K.; Singh, B.; Juiz-Valiña, P.; Varela-Rodríguez, B.M.; Outeiriño-Blanco, E.; Duregotti, E.; et al. Metabolic Recovery after Weight Loss Surgery Is Reflected in Serum MicroRNAs. BMJ Open Diabetes Res. Care 2020, 8, e001441. [Google Scholar] [CrossRef]
- Cereijo, R.; Taxerås, S.D.; Piquer-Garcia, I.; Pellitero, S.; Martínez, E.; Tarascó, J.; Moreno, P.; Balibrea, J.; Puig-Domingo, M.; Jiménez-Pavón, D.; et al. Elevated Levels of Circulating MiR-92a Are Associated with Impaired Glucose Homeostasis in Patients with Obesity and Correlate with Metabolic Status After Bariatric Surgery. Obes. Surg. 2020, 30, 174–179. [Google Scholar] [CrossRef]
- Lopez, Y.N.; Coen, P.; Goodpaster, B.; Seyhan, A. Gastric Bypass Surgery with Exercise Alters Plasma MicroRNAs That Predict Improvements in Cardiometabolic Risk. Int. J. Obes. 2005 2017, 41, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Hubal, M.J.; Nadler, E.P.; Ferrante, S.C.; Barberio, M.D.; Suh, J.-H.; Wang, J.; Dohm, G.L.; Pories, W.J.; Mietus-Snyder, M.; Freishtat, R.J. Circulating adipocyte-derived exosomal micrornas associated with decreased insulin resistance after gastric bypass. Obes. Silver Spring Md. 2017, 25, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.J.; Mercader, J.M.; Moreno-Navarrete, J.M.; Nonell, L.; Puigdecanet, E.; Rodriquez-Hermosa, J.I.; Rovira, O.; Xifra, G.; Guerra, E.; Moreno, M.; et al. Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue. J. Clin. Endocrinol. Metab. 2015, 100, E1467–E1476. [Google Scholar] [CrossRef] [Green Version]
- Kuryłowicz, A.; Wicik, Z.; Owczarz, M.; Jonas, M.I.; Kotlarek, M.; Świerniak, M.; Lisik, W.; Jonas, M.; Noszczyk, B.; Puzianowska-Kuźnicka, M. NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in MiRNA Levels in Adipose Tissue. Int. J. Mol. Sci. 2017, 19, 66. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.J.; Moreno, M.; Mercader, J.M.; Moreno-Navarrete, J.M.; Fuentes-Batllevell, N.; Sabater, M.; Ricart, W.; Fernández-Real, J.M. Inflammation Triggers Specific MicroRNA Profiles in Human Adipocytes and Macrophages and in Their Supernatants. Clin. Epigenetics 2015, 7, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.J.; Mercader, J.M.; Catalán, V.; Moreno-Navarrete, J.M.; Pueyo, N.; Sabater, M.; Gómez-Ambrosi, J.; Anglada, R.; Fernández-Formoso, J.A.; Ricart, W.; et al. Targeting the Circulating MicroRNA Signature of Obesity. Clin. Chem. 2013, 59, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Hulsmans, M.; Sinnaeve, P.; Van der Schueren, B.; Mathieu, C.; Janssens, S.; Holvoet, P. Decreased MiR-181a Expression in Monocytes of Obese Patients Is Associated with the Occurrence of Metabolic Syndrome and Coronary Artery Disease. J. Clin. Endocrinol. Metab. 2012, 97, E1213–E1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Bowers, J.; Liu, L.; Wei, S.; Gowda, G.A.N.; Hammoud, Z.; Raftery, D. Esophageal Cancer Metabolite Biomarkers Detected by LC-MS and NMR Methods. PLoS ONE 2012, 7, e30181. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass Spectrometry Strategies in Metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizioli, C.; Jaime-Lara, R.B.; Franks, A.T.; Ortiz, R.; Joseph, P.V. Untargeted Metabolomic Approach Shows No Differences in Subcutaneous Adipose Tissue of Diabetic and Non-Diabetic Subjects Undergoing Bariatric Surgery: An Exploratory Study. Biol. Res. Nurs. 2021, 23, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Samczuk, P.; Hady, H.R.; Adamska-Patruno, E.; Citko, A.; Dadan, J.; Barbas, C.; Kretowski, A.; Ciborowski, M. In-and-Out Molecular Changes Linked to the Type 2 Diabetes Remission after Bariatric Surgery: An Influence of Gut Microbes on Mitochondria Metabolism. Int. J. Mol. Sci. 2018, 19, 3744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, T.I.B.; Geloneze, B.; Pareja, J.C.; Calixto, A.R.; Ferreira, M.M.C.; Marsaioli, A.J. Blood Metabolome Changes Before and After Bariatric Surgery: A (1)H NMR-Based Clinical Investigation. Omics J. Integr. Biol. 2015, 19, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Vaishya, S.; Sarwade, R.D.; Seshadri, V. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications. Front. Endocrinol. 2018, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Kwee, L.C.; Ilkayeva, O.; Muehlbauer, M.J.; Bihlmeyer, N.; Wolfe, B.; Purnell, J.Q.; Xavier Pi-Sunyer, F.; Chen, H.; Bahnson, J.; Newgard, C.B.; et al. Metabolites and Diabetes Remission after Weight Loss. Nutr. Diabetes 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Yu, H.; Zhao, X.; Bao, Y.; Hong, C.S.; Zhang, P.; Tu, Y.; Yin, P.; Gao, P.; Wei, L.; et al. Metabolomics Study of Roux-En-Y Gastric Bypass Surgery (RYGB) to Treat Type 2 Diabetes Patients Based on Ultraperformance Liquid Chromatography–Mass Spectrometry. Available online: https://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.6b00022 (accessed on 31 January 2022).
- Zheng, X.; Chen, T.; Zhao, A.; Ning, Z.; Kuang, J.; Wang, S.; You, Y.; Bao, Y.; Ma, X.; Yu, H.; et al. Hyocholic Acid Species as Novel Biomarkers for Metabolic Disorders. Nat. Commun. 2021, 12, 1487. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Jang, M.; Kwon, Y.; Park, Y.S.; Park, D.J.; Lee, J.-H.; Lee, H.-J.; Ha, T.K.; Kim, Y.-J.; Han, S.-M.; et al. Metabolomic Profiles Predict Diabetes Remission after Bariatric Surgery. J. Clin. Med. 2020, 9, 3897. [Google Scholar] [CrossRef] [PubMed]
- Narath, S.H.; Mautner, S.I.; Svehlikova, E.; Schultes, B.; Pieber, T.R.; Sinner, F.M.; Gander, E.; Libiseller, G.; Schimek, M.G.; Sourij, H.; et al. An Untargeted Metabolomics Approach to Characterize Short-Term and Long-Term Metabolic Changes after Bariatric Surgery. PLoS ONE 2016, 11, e0161425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarosiek, K.; Pappan, K.L.; Gandhi, A.V.; Saxena, S.; Kang, C.Y.; McMahon, H.; Chipitsyna, G.I.; Tichansky, D.S.; Arafat, H.A. Conserved Metabolic Changes in Nondiabetic and Type 2 Diabetic Bariatric Surgery Patients: Global Metabolomic Pilot Study. J. Diabetes Res. 2016, 2016, 3467403. [Google Scholar] [CrossRef] [Green Version]
- Nemati, R.; Lu, J.; Tura, A.; Smith, G.; Murphy, R. Acute Changes in Non-Esterified Fatty Acids in Patients with Type 2 Diabetes Receiving Bariatric Surgery. Obes. Surg. 2017, 27, 649–656. [Google Scholar] [CrossRef]
Study | Intervention | Population | Source | Regulated miRNAs | Role/Target |
---|---|---|---|---|---|
Sangiao-Alvarellos et al. (2020) [106] | Bariatric surgery | 155 obese patients 47 CTRL | Serum/plasma | miR-122 miR-885-5 p miR-192 | Regulation of hepatic biochemical processes |
Cereijo et al. (2020) [107] | Bariatric surgery | 26 obese patients | Serum | miR-92a | Glucose homeostasis |
Macartney-Coxson et al. (2020) [95] | RYGB | 15 obese women | SAT VAT | SAT: miR-23a-5p, miR-27a-5p, miR-200c-3p, miR-223-3p, miR-1246, miR-24-2-5p, miR-128, miR-421, miR-3178, miR-1224-5p, miR-221, miR-22, miR-762 (↓) VAT: miR-223-3p (↓) | Inflammation, glucose uptake |
Doyon et al. (2020) [95] | LSG RYGP | 20 obese patients | Serum | has-miR-375 hsa-miR-126-3 p hsa-miR-663 a hsa-miR-30 c-5 p hsa-miR-100-5 p hsa-miR-27 a-3 p hsa-miR-590-5 p | Fatty acid biosynthesis, obesity, adipocyte proliferation, T2D |
Bae et al. (2019) [94] | LSG (n = 2) RYGB (n = 14) | 16 obese patients 18 CTRL | Serum exosomes | miR-424-5p | Biomarker of weight loss |
Liao et al. (2018) [94] | LSG | 20 obese patients 8 CTRL | SAT VAT | VAT: miR-122 (↑) | PPAR-γ |
Atkin et al. (2018) [97] | RYGB | 29 T2D patients | Plasma | miR-7-5p, let-7f-5p, miR-15b-5p, miR-320c, miR-205-5p, miR-335-5p (↑) let-7i-5p (↓) | Inflammation, adipocyte proliferation, ß-cell function, thyroid and pituitary function |
Nunez-Lopez et al. (2017) [108] | RYGB | 22 obese patients | Plasma | miR-15a (↑) miR-34a, miR-122 (↓) | Biomarkers of weight loss/glucose metabolism |
Hubal et al. (2017) [109] | RYGB | 6 obese women | Plasma and serum adipocyte-derived exosomes | let-7a-5p, miR-16-5p | Insulin signaling |
Nardelli et al. (2017) [110] | LAGB | 3 obese patients 2 CTRL | SAT | miR-519d, miR-299-5p, miR-212, miR-671-3p (↓) miR-370, miR-487a (↑) | PPAR-α (miR-519d) |
Kurylowicz et al. (2016) [111] | Bariatric surgery | 20 obese patients 7 CTRL | SAT | miR-146b-3p, miR-146b-5p, miR-223-3p, miR-223-5p, miR-941 (↑) | BMPR2, FOXP1, IGF1R |
Ortega et al. (2015) [110] | RYGB | 16 obese patients | SAT | miR-155, miR-221, miR-130b (↓) | Inflammation |
Ortega et al. (2015) [112] | RYGB | 9 obese women | SAT | miR-19a/b, miR-146a/b, miR-155, miR-193b, miR-221, miR-222, miR-223, miR-376c, miR-411 (↓) | Glucose uptake, lipid metabolism, energy homeostasis |
Ortega et al. (2013) [113] | RYGB | 6 obese patients | Plasma | miR-221 and miR-199a-3p (↑) miR-16-1, miR-122, miR-140-5p, miR-193a-5p (↓) | – |
Hulsmans et al. (2012) [114] | RYGB | 9 obese patients 6 CTRL | PBMC | miR-181 (↑) | TLR-NFkB pathway |
Study | Intervention/Surgery Type | Population | Follow-Up Period | Role/Target Metabolites | Outcomes |
---|---|---|---|---|---|
Zheng et al. (2021) [123] | RYGB | 38 individuals with T2D | 12 months | Hyocholic acid (HCA) | Serum HCA levels increased in the patients after RYGB (p < 0.05). HCA species play critical roles in regulating glucose homeostasis and are protective against the development of T2DM in humans. |
Ha et al. (2020) [124] | SG RYGB | 24 individuals with T2D | 3 months | Amino acid metabolites (AAMs): L-DOPA and 3-HAA | The prognostic performances of L-DOPA (AUROC = 0.97; 95% CI, 0.91 to 1.00) and 3-HAA (AUROC = 0.86; 95% CI, 0.63 to 1.00). AAMs are superior for predicting T2D remission postoperatively compared with existing prediction models. |
Zhao et al. (2017) [125] | RYGB | 419 individuals 38 obese individuals with T2D after RYGB 381 T2D and CTRL with overweight or obesity | 12 months after RYGB | Targeted: branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), and acylcarnitines | Higher baseline stearic acid/palmitic acid ratio (S/P) was associated with a greater probability of diabetes remission after RYGB (odds ratio, 2.16 (95% CI 1.10–4.26)) and may serve as a diagnostic marker in preoperative patient assessment. |
Narath et al. (2016) [125] | RYGB | 44 obese, including 24 patients with T2D at baseline and 9 with diabetes remission | 12 months | Untargeted: 36 metabolites that are known markers for cardiovascular risk | Trimethylamine-N-oxide, alanine, phenylalanine, and indoxyl-sulfate are four metabolites that significantly decline in patients with diabetes remission compared to patients without diabetes remission (sarcosine: p = 0.031, pyroglutamic acid: p = 0.044, alanine: p = 0.005, and leucyl-proline: p = 0.049). |
Lopes et al. (2016) [126] | RYGB | 10 obese individuals with T2DM | 12 months | Untargeted: metabolic and lipoprotein profiles and fatty acid profile | Glucose levels decreased significantly after RYGB (from 159.8 ± 61.4 to 100.0 ± 22.9 mg/dL), demonstrating T2D remission (p < 0.05). Lower levels of metabolic profile: lactate, alanine, and branched-chain amino acids The VLDL, LDL, N-acetyl-glycoproteins, and unsaturated lipid levels decreased, but phosphatidylcholine and high-density lipoprotein increased after RYGB. |
Sarosiek et al. (2016) [126] | SG or full GB | 15 patients: gastric sleeve with T2D (5), gastric sleeve without T2D (5), and gastric bypass with T2D (5) | 28 days | Nontargeted global metabolomics: glucose and lipid metabolism, histidine, and its metabolites | A total of 62 compounds were significantly different postsurgery compared to baseline (p < 0.05). Significant improvement in fat mobilization and oxidation (p < 0.05) and liver function (p < 0.05) after surgery. |
Nemati et al. (2016) [127] | LGB (Roux), LSG | 38 obese individuals with T2D: GBP (11) SG (14) VLCD (13) | 3 days | Targeted: NEFAs, palmitic acid, monounsaturated/polyunsaturated ratio (MUFA/PUFA), linoleic acid, and unsaturated/saturated fat | Linoleic acid was positively correlated with total insulin secretion (p = 0.03). Glucose sensitivity correlated with palmitic acid (p = 0.01). GBP, SG, and VLCD had similar acute effects that decreased palmitic acid (p < 0.05). Several NEFAs correlated with beta-cell function parameters and HOMA-IR (p < 0.05). |
Luo et al. (2016) [56] | RYGB | 35 individuals with T2D, 23 remission and 12 nonremission patients with T2D, were measured at baseline and 6 and 12 months after RYGB. | 6 and 12 months | Untargeted: free fatty acids (FFAs), acylcarnitines, amino acids, bile acids, and lipid species | Insulin sensitivity, energy metabolism, and inflammation were related to metabolic alterations in free fatty acids (FFAs), acylcarnitines, amino acids, bile acids, and lipids species (p < 0.05). Baseline levels of tryptophan, bilirubin, and indoxyl sulfate measured before surgery as well as levels of FFA 16:0, FFA 18:3, FFA 17:2, and hippuric acid measured 6 months after surgery best predicted the suitability and efficacy of RYGB for patients with T2DM. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazliana, M.; Nor Hanipah, Z. Mechanisms and Outcomes of Metabolic Surgery in Type 2 Diabetes. Metabolites 2022, 12, 1134. https://doi.org/10.3390/metabo12111134
Fazliana M, Nor Hanipah Z. Mechanisms and Outcomes of Metabolic Surgery in Type 2 Diabetes. Metabolites. 2022; 12(11):1134. https://doi.org/10.3390/metabo12111134
Chicago/Turabian StyleFazliana, Mansor, and Zubaidah Nor Hanipah. 2022. "Mechanisms and Outcomes of Metabolic Surgery in Type 2 Diabetes" Metabolites 12, no. 11: 1134. https://doi.org/10.3390/metabo12111134
APA StyleFazliana, M., & Nor Hanipah, Z. (2022). Mechanisms and Outcomes of Metabolic Surgery in Type 2 Diabetes. Metabolites, 12(11), 1134. https://doi.org/10.3390/metabo12111134