The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collect, Botanical Identification and Extraction
2.2. Analysis by Liquid Chromatography–Mass Spectrometry LC–MS/MS
2.3. Data Analysis
2.4. Ethics Statement
2.5. Peripheral Blood Mononuclear Cells (PBMC) Isolation
2.6. Cell Viability—MTT Assay
2.7. Antibacterial Bioassay
3. Results
3.1. In Vitro Toxicity Test
3.2. In Vitro Antibacterial Properties
3.3. Bioactive Molecular Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems; World Health Organization: Geneva, Switzerland, 2004; ISBN 9789241592215.
- Brandão, S.C.S.; Godoi, E.T.A.M.; de Ramos, J.O.X.; de Melo, L.M.M.P.; Sarinho, E.S.C. Severe COVID-19: Understanding the role of immunity, endothelium, and coagulation in clinical practice. J. Vasc. Bras. 2020, 19, e20200131. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Mojica, N.; Jiang, W.; Cosgrove, S.E.; Septimus, E.; Morgan, D.J.; Laxminarayan, R. Trends in methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010–2014. Clin. Infect. Dis. 2017, 65, 1921–1923. [Google Scholar] [CrossRef] [Green Version]
- de Santos, N.Q. A resistência bacteriana no contexto da infecção hospitalar. Texto Contexto Enferm. 2004, 13, 64–70. [Google Scholar] [CrossRef]
- Taylor, T.A.; Unakal, C.G. Staphylococcus Aureus. In Stat Pearls; Stat Pearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ondusko, D.S.; Nolt, D. Staphylococcus Aureus. Pediatr. Rev. 2018, 39, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Allel, K.; García, P.; Labarca, J.; Munita, J.M.; Rendic, M.; de Resistencia Bacteriana, G.C.; Undurraga, E.A. So-cioeconomic factors associated with antimicrobial resistance of Seudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in chilean hospitals (2008–2017). Rev. Pan Am. Salud Publica 2020, 44, e30. [Google Scholar]
- da Silva, A.S.L.; de Carvalho, M.L.S.; de Jesus Benevides, C.M. Ethnopharmacological studies in 21st century Brazil: A systematic review. RSD 2022, 11, e48211225956. [Google Scholar] [CrossRef]
- Silva, S.H.C.N. Avaliação de atividade antimicrobiana E perfil fitoquímico de plantas medicinais utilizadas por comunidades remanescentes de quilombolas no Marajó. In Mestre em Ciências Farmacêuticas; Universidade Federal do Pará: Belém, Brazil, 2020. [Google Scholar]
- Lima, N.M.; Cursino-Hron, L.M.; Lima, A.M.; Souza, J.V.B.; de Oliveira, A.C.; Marinho, J.V.; Nunez, C.V. Antifungal activity of extracts and phenolic compounds from Deguelia duckeana. Rev. Bras. Farmacogn. 2018, 28, 697–702. [Google Scholar] [CrossRef]
- Machado, A.F.; Castro e Silva, A.; Ribeiro, H.C.T.; Procópio, A.R.D.L.; Pinheiro, C.C.D.S.; Martins, J.R.D.S.; Silva, W.C. Atividade biológica de extratos acetato de etila, etanólico e aquoso de timbó (Lonchocarpus floribundus) sobre carrapato bo-vino. Acta Amazon 2013, 43, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.C.F.; Ramos, A.D.S.; Pena, M.R.; Ferreira, J.L.P.; Menezes, J.M.S.; Vasconcelos, G.J.; da Silva, N.M.; Silva, J.R.D.A. Acaricidal activity of derris floribunda essential oil and its main constituent. Asian Pac. J. Trop. Biomed. 2017, 7, 791–796. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.G.D.; Almeida, C.; Silva, C.Y.; Arruda, M.S.; Arruda, A.C.; Lopes, D.C.; Yamada, E.S.; Costa, E.T.; Silva, M.N. Flavonoids from the leaves of deguelia utilis (Leguminosae): Structural elucidation and neuroprotective properties. J. Braz. Chem. Soc. 2012, 23, 1933–1939. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, D.; Silva, C.E.; Pinheiro, A.; Frommenwiler, D.; Arruda, M.; Guilhon, G.; Alves, C.; Arruda, A.; Da Silva, M. Using LC and hierarchical cluster analysis as tools to distinguish timbó collections into two deguelia species: A contribution to chemotaxonomy. Molecules 2016, 21, 569. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Bittremieux, W.; Avalon, N.E.; Thomas, S.P.; Kakhkhorov, S.A.; Aksenov, A.A.; Gomes, P.W.P.; Aceves, C.M.; Rodríguez, A.M.C.; Gauglitz, J.M.; Gerwick, W.H.; et al. Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics. bioRxiv 2022, 5, 490691. [Google Scholar]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Gomes, P.W.P.; Barretto, H.; Reis, J.D.E.; Muribeca, A.; Veloso, A.; Albuquerque, C.; Teixeira, A.; Braamcamp, W.; Pamplona, S.; Silva, C.; et al. Chemical composition of leaves, stem, and roots of Peperomia pellucida L. kunth. Molecules 2022, 27, 1847. [Google Scholar] [CrossRef]
- Santiago, J.C.C.; Albuquerque, C.A.B.; Muribeca, A.d.J.B.; Sá, P.R.C.; Pamplona, S.d.G.S.R.; e Silva, C.Y.Y.; Ribera, P.C.; Fontes-Júnior, E.D.A.; da Silva, M.N. Margaritaria nobilis L.F. (Phyllanthaceae): Ethnopharmacology and application of computational tools in the annotation of bioactive molecules. Metabolites 2022, 12, 681. [Google Scholar] [CrossRef]
- de Muribeca, A.J.B.; Gomes, P.W.P.; Paes, S.S.; da Costa, A.P.A.; Gomes, P.W.P.; de Viana, J.S.; Reis, J.D.E.; das Pamplona, S.G.S.R.; Silva, C.; Bauermeister, A.; et al. Antibacterial activity from Momordica charantia L. leaves and flavones enriched phase. Pharmaceutics 2022, 14, 1796. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Lopes, T.R.M.; de Oliveira, F.R.; Malheiros, F.F.; de Andrade, M.A.; Monteiro, M.C.; Gonçalves, A.C.B. Antimicrobial bioassay-guided fractionation of a methanol extract of Eupatorium triplinerve. Pharm. Biol. 2014, 53, 897–903. [Google Scholar] [CrossRef] [Green Version]
- M07: Dilution AST for Aerobically Grown Bacteria—CLSI. Available online: https://clsi.org/standards/products/microbiology/documents/m07/ (accessed on 19 August 2022).
- Monteiro, M.C.; de la Cruz, M.; Cantizani, J.; Moreno, C.; Tormo, J.R.; Mellado, E.; de Lucas, J.R.; Asensio, F.; Valiante, V.; Brakhage, A.A.; et al. A new approach to drug discovery: High-throughput screening of microbial natural extracts against aspergillus fumigatus using resazurin. J. Biomol. Screen. 2012, 17, 542–549. [Google Scholar] [CrossRef]
- de Quadros, A.U.; Bini, D.; Pereira, P.A.T.; Moroni, E.G.; Monteiro, M.C. Antifungal activity of some cyclooxygenase inhibitors on Candida albicans: PGE2-dependent mechanism. Folia Microbiol. 2011, 56, 349–352. [Google Scholar] [CrossRef]
- Sultanbawa, Y.; Cusack, A.; Currie, M.; Davis, C. An innovative microplate assay to facilitate the detection of antimicrobial activity in plant extracts. J. Rapid Methods Autom. Microbiol. 2009, 17, 519–534. [Google Scholar] [CrossRef]
- Mogana, R.; Adhikari, A.; Tzar, M.N.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement. Med. Ther. 2020, 20, 55. [Google Scholar] [CrossRef] [Green Version]
- Awouafack, M.D.; McGaw, L.J.; Gottfried, S.; Mbouangouere, R.; Tane, P.; Spiteller, M.; Eloff, J.N. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complement. Altern. Med. 2013, 13, 289. [Google Scholar] [CrossRef] [Green Version]
- Bittremieux, W.; Schmid, R.; Huber, F.; van der Hooft, J.J.J.; Wang, M.; Dorrestein, P.C. Comparison of cosine, modified cosine, and neutral loss based spectrum alignment for discovery of structurally related molecules. J. Am. Soc. Mass Spectrom. 2022, 33, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Quirós-Guerrero, L.; Silva, C.; Pamplona, S.; Boutin, J.A.; Eberlin, M.; Wolfender, J.-L.; Silva, M. Feature-based mo-lecular network-guided dereplication of natural bioactive products from leaves of Stryphnodendron pulcherrimum (Willd.) hochr. Metabolites 2021, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Tagousop, C.N.; Tamokou, J.-D.; Ekom, S.E.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement. Altern. Med. 2018, 18, 252. [Google Scholar] [CrossRef] [PubMed]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8—Antimicrobial activities of african medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 207–237. ISBN 9780128092866. [Google Scholar]
- Cushnie, T.P.T.; Cushnie, B.; Echeverría, J.; Fowsantear, W.; Thammawat, S.; Dodgson, J.L.A.; Law, S.; Clow, S.M. Bioprospecting for antibacterial drugs: A multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls. Pharm. Res. 2020, 37, 125. [Google Scholar] [CrossRef]
- Ramachandran, B.; Srinivasadesikan, V.; Chou, T.-M.; Jeyakanthan, J.; Lee, S.-L. Atomistic simulation on flavonoids derivatives as potential inhibitors of bacterial gyrase of Staphylococcus aureus. J. Biomol. Struct. Dyn. 2020, 40, 4314–4327. [Google Scholar] [CrossRef]
- Waditzer, M.; Bucar, F. Flavonoids as inhibitors of bacterial efflux pumps. Molecules 2021, 26, 6904. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 2019, 149, 129–145. [Google Scholar] [CrossRef]
- Mukne, A.P.; Viswanathan, V.; Phadatare, A.G. Structure pre-requisites for isoflavones as effective antibacterial agents. Pharmacogn. Rev. 2011, 5, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Setzer, M.S.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Nowak, M.G.; Skwarecki, A.S.; Milewska, M.J. Amino acid based antimicrobial agents—Synthesis and properties. Chem. Med. Chem. 2021, 16, 3513–3544. [Google Scholar] [CrossRef]
- Siebert, A.; Wysocka, M.; Krawczyk, B.; Cholewiński, G.; Rachoń, J. Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid. Eur. J. Med. Chem. 2018, 143, 646–655. [Google Scholar] [CrossRef] [PubMed]
Extract | Code | Staphylococcus aureus | PBMC | ||||
---|---|---|---|---|---|---|---|
1 MIC (μg.mL−1) | 2 MBC (μg.mL−1) | MBC/MIC (μg.mL−1) | 3 IC50 (μg.mL−1) | 4 CC50 (μg.mL−1) | 5 SI | ||
Ethanol extract | SREE | 93.7 | 187.0 | 2 | 94.82 | 1751.12 | 18.6221.35 |
Hexane fraction | SREFr1 | 187.050 | >1500 | >8.01 | ND * | 571.6 | ND * |
Dichloromethane fraction | SREFr2 | 46.8 | 375.0 | 8.01 | 180.128 | 863.05 | 4.796.8 |
Ethyl acetate fraction | SREFr3 | 46.8 | 93.7 | 2 | 52.11 | 902.76 | 17.3682.06 |
Methanol fraction | SREFr4 | >1500 | >1500 | ND * | ND * | 10,089.9 | ND * |
Chloramphenicol | 50 | ND * | ND * | 25 | ND * | ND * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira-Lima, S.H.C.; Gomes, P.W.P.; Navegantes-Lima, K.C.; Reis, J.D.E.; Carvalho, A.R.V.; Pamplona, S.d.G.S.R.; Muribeca, A.d.J.B.; da Silva, M.N.; Monteiro, M.C.; e Silva, C.Y.Y. The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains. Metabolites 2022, 12, 1083. https://doi.org/10.3390/metabo12111083
Nogueira-Lima SHC, Gomes PWP, Navegantes-Lima KC, Reis JDE, Carvalho ARV, Pamplona SdGSR, Muribeca AdJB, da Silva MN, Monteiro MC, e Silva CYY. The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains. Metabolites. 2022; 12(11):1083. https://doi.org/10.3390/metabo12111083
Chicago/Turabian StyleNogueira-Lima, Suzana Helena Campelo, Paulo Wender P. Gomes, Kely C. Navegantes-Lima, José Diogo E. Reis, Alice Rhelly Veloso Carvalho, Sônia das Graças Santa R. Pamplona, Abraão de Jesus B. Muribeca, Milton N. da Silva, Marta C. Monteiro, and Consuelo Yumiko Yoshioka e Silva. 2022. "The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains" Metabolites 12, no. 11: 1083. https://doi.org/10.3390/metabo12111083
APA StyleNogueira-Lima, S. H. C., Gomes, P. W. P., Navegantes-Lima, K. C., Reis, J. D. E., Carvalho, A. R. V., Pamplona, S. d. G. S. R., Muribeca, A. d. J. B., da Silva, M. N., Monteiro, M. C., & e Silva, C. Y. Y. (2022). The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains. Metabolites, 12(11), 1083. https://doi.org/10.3390/metabo12111083