Anti-Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material and Extract
2.2. Compounds
2.3. In Silico Study
2.3.1. Structure of the Compounds and Receptor
2.3.2. Molecular Docking
2.3.3. Prediction of Biological Activities
- i.
- Pa > 0.7—the substance probably exhibits biological activity, and there is also a high probability of this compound showing analogy with a known pharmaceutical.
- ii.
- 0.5< Pa < 0.7—the compound may have biological activity, but the substance differs from known drugs.
- iii.
- Pa < 0.5—the chance of finding biological activity is lower, but the chance of finding a structurally new compound is greater.
2.3.4. Prediction of Pharmacokinetic Characteristics and the Toxic Effects of Ononin
2.3.5. In Silico Analysis of Ononin Toxicity
2.3.6. LD50 Prediction
- Class I: fatal if swallowed (LD50 ≤ 5).
- Class II: fatal by ingestion (5 < LD50 ≤ 50).
- Class III: toxic by ingestion (50 < LD50 ≤ 300).
- Class IV: harmful by ingestion (300 < LD50 ≤ 2000).
- Class V: may be harmful if ingested (2000 < LD50 ≤ 5000).
- Class VI: nontoxic (LD50 > 5000).
2.4. Anti-Candida albicans Activity
2.4.1. Minimum Inhibitory Concentration
2.4.2. Minimum Fungicidal Concentration
2.4.3. Cell Growth Kinetics
2.4.4. Antibiofilm Activity
2.5. Hemolytic Activity
2.6. In Vivo Assay Using Tenebrio molitor
2.6.1. Toxicity of Ononin in Tenebrio molitor
2.6.2. Survival Assay
2.6.3. Efficacy of Ononin in the Survival of Tenebrio molitor Infected with Candida albicans
2.6.4. Determination of Fungal Load
2.7. Statistical Analysis
3. Results
3.1. Ononin Exhibits Affinity for Candida albicans CaYP51
3.2. In Silico Analysis of the Biological Activities of Ononin and Its Prediction of Toxic Effects and Hepatotoxicity
3.3. Minimum Inhibitory and Fungicidal Concentrations of Ononin
3.4. Ononin Inhibited Candida albicans Growth
3.5. Ononin Inhibited the Development of Young and Mature Biofilms
3.6. Ononin Shows Low Toxicity In Vitro and in Vivo
3.7. Ononin Increases the Survival of Tenebrio molitor Infected with Candida albicans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulati, M.; Nobile, C.J. Candida Albicans Biofilms: Development, Regulation, and Molecular Mechanisms. Microbes Infect. 2016, 18, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development and Regulation of Single- and Multi-Species Candida Albicans Biofilms. Nat. Rev. Microbiol. 2018, 16, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobile, C.J.; Ennis, C.L.; Hartooni, N.; Johnson, A.D.; Lohse, M.B. A Selective Serotonin Reuptake Inhibitor, a Proton Pump Inhibitor, and Two Calcium Channel Blockers Inhibit Candida Albicans Biofilms. Microorganisms 2020, 8, 756. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.P.; Bui, C.K.; Nett, J.E.; Hartooni, N.; Mui, M.C.; Andes, D.R.; Nobile, C.J.; Johnson, A.D. An Expanded Regulatory Network Temporally Controls Candida Albicans Biofilm Formation. Mol. Microbiol. 2015, 96, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Kane, A.; Carter, D.A. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals 2022, 15, 482. [Google Scholar] [CrossRef]
- Gómez-García, O.; Andrade-Pavón, D.; Campos-Aldrete, E.; Ballinas-Indilí, R.; Méndez-Tenorio, A.; Villa-Tanaca, L.; Álvarez-Toledano, C. Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo [1,2-a]Pyrimidines. Molecules 2018, 23, 599. [Google Scholar] [CrossRef] [Green Version]
- Fox, E.P.; Nobile, C.J. A Sticky Situation: Untangling the Transcriptional Network Controlling Biofilm Development in Candida Albicans. Transcription 2012, 3, 315–322. [Google Scholar] [CrossRef]
- Kojic, E.M.; Darouiche, R.O. Candida Infections of Medical Devices. Clin. Microbiol. Rev. 2004, 17, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef]
- da Silva, A.F.; da Rocha, C.Q.; da Silva, L.C.N.; Carvalho Júnior, A.R.; Mendes, I.N.F.V.; de Araruna, A.B.; Motta, E.P.; de Silva, R.S.; Campos, C.D.L.; Farias, J.R.; et al. Antifungal and Antivirulence Activities of Hydroalcoholic Extract and Fractions of Platonia Insignis Leaves against Vaginal Isolates of Candida Species. Pathogens 2020, 9, 84. [Google Scholar] [CrossRef]
- Ko, K.P. Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer. Asian Pacific J. Cancer Prev. 2014, 15, 7001–7010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Kim, S.; Lee, Y.M.; Koh, Y.-S.; Kim, Y.H. Flavonoids from Astragalus Membranaceus and Their Inhibitory Effects on LPS-Stimulated pro-Inflammatory Cytokine Production in Bone Marrow-Derived Dendritic Cells. Arch. Pharm. Res. 2014, 37, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Lou, Y.; Kong, M.; Luo, Q.; Liu, Z.; Wu, J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int. J. Mol. Sci. 2019, 20, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.; Duan, Y.; Bao, Y.; Wei, C.; An, L. Isoflavonoids from Astragalus Mongholicus Protect PC12 Cells from Toxicity Induced by L-Glutamate. J. Ethnopharmacol. 2005, 98, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Yin, L.; Zhang, Y.; Fu, X.; Lu, J. Anti-Inflammatory Effects of Ononin on Lipopolysaccharide-Stimulated RAW 264.7 Cells. Mol. Immunol. 2017, 83, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ren, Y.; Qu, Y.; Jiang, W.; Lv, C. Pharmacodynamic and Pharmacokinetic Assessment of Pulmonary Rehabilitation Mixture for the Treatment of Pulmonary Fibrosis. Sci. Rep. 2017, 7, 3458. [Google Scholar] [CrossRef] [Green Version]
- ZHANG, W.-W.W.; XU, F.; WANG, D.; Ye, J.; Cai, S.-Q.Q. Buyang Huanwu Decoction Ameliorates Ischemic Stroke by Modulating Multiple Targets with Multiple Components: In Vitro Evidences. Chin. J. Nat. Med. 2018, 16, 194–202. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Guo, R.; Qian, J.; Zhang, H.; Zhang, J.; Zhao, X.; Wang, S.; Wang, Y. Ononin, Sec-O-β-d-Glucosylhamaudol and Astragaloside I: Antiviral Lead Compounds Identified via High Throughput Screening and Biological Validation from Traditional Chinese Medicine Zhongjing Formulary. Pharmacol. Res. 2019, 145, 104248. [Google Scholar] [CrossRef]
- Luo, L.; Zhou, J.; Zhao, H.; Fan, M.; Gao, W. The Anti-Inflammatory Effects of Formononetin and Ononin on Lipopolysaccharide-Induced Zebrafish Models Based on Lipidomics and Targeted Transcriptomics. Metabolomics 2019, 15, 153. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, S.; Qian, D.-W.; Shang, E.-X.; Guan, H.-L.; Ren, H.; Zhu, Z.-H.; Duan, J.-A. The Interaction between Ononin and Human Intestinal Bacteria. Yao Xue Xue Bao 2014, 49, 1162–1168. [Google Scholar]
- Wang, T.; Liu, Y.; Li, X.; Xu, Q.; Yang, S.; Feng, Y.; Yang, S. Isoflavones from Green Vegetable Soya Beans and Their Antimicrobial and Antioxidant Activities. J. Sci. Food Agric. 2018, 98, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A Structure–Activity Relationship Study of Flavonoids as Inhibitors of E. Coli by Membrane Interaction Effect. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2751–2756. [Google Scholar] [CrossRef] [Green Version]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView; Version 6.0. 16.; Semichem Inc.: Shawnee Mission, KS, USA, 2016; Volume 16. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated Docking of Flexible Ligands: Applications of AutoDock. J. Mol. Recognit. 1996, 9, 1–5. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. AutoDock-Related Material Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. Comput. Chem. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software News and Updates AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.J.O.; Vasconcelos, C.C.; Pereira, F.A.N.; Silva, R.H.M.; dos Queiroz, P.F.S.; Fernandes, C.V.; Garcia, J.B.S.; Ramos, R.M.; Rocha, C.Q.d.; Lima, S.T.d.J.R.M.; et al. Anti-Inflammatory and Antinociceptive Activity of Pollen Extract Collected by Stingless Bee Melipona Fasciculata. Int. J. Mol. Sci. 2019, 20, 4512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonça, A.M.S.; de Monteiro, C.A.; Moraes-Neto, R.N.; Monteiro, A.S.; Mondego-Oliveira, R.; Nascimento, C.E.C.; da Silva, L.C.N.; Lima-Neto, L.G.; Carvalho, R.C.; de Sousa, E.M. Ethyl Acetate Fraction of Punica Granatum and Its Galloyl-HHDP-Glucose Compound, Alone or in Combination with Fluconazole, Have Antifungal and Antivirulence Properties against Candida Spp. Antibiotics 2022, 11, 265. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.B.; Dantas, T.B.; de Figuerêdo Silva, D.; Ferreira, P.B.; de Melo, T.R.; de Oliveira Lima, E. In Silico and In Vitro Investigation of the Antifungal Activity of Isoeugenol against Penicillium Citrinum. Curr. Top. Med. Chem. 2019, 18, 2186–2196. [Google Scholar] [CrossRef]
- Saddala, M.S.; Adi, P.J. Discovery of Small Molecules through Pharmacophore Modeling, Docking and Molecular Dynamics Simulation against Plasmodium Vivax Vivapain-3 (VP-3). Heliyon 2018, 4, e00612. [Google Scholar] [CrossRef]
- Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inform. 2011, 30, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 3rd ed. 2008; Volume 28.
- Sharma, Y.; Rastogi, S.K.; Perwez, A.; Rizvi, M.A.; Manzoor, N. β-Citronellol Alters Cell Surface Properties of Candida Albicans to Influence Pathogenicity Related Traits. Med. Mycol. 2020, 58, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Lohse, M.B.; Ennis, C.L.; Gonzalez, R.E.; Perry, A.M.; Bapat, P.; Arevalo, A.V.; Rodriguez, D.L.; Nobile, C.J. In Vitro Culturing and Screening of Candida Albicans Biofilms. Curr. Protoc. Microbiol. 2018, 50, e60. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.B.; Gulati, M.; Valle Arevalo, A.; Fishburn, A.; Johnson, A.D.; Nobile, C.J. Assessment and Optimizations of Candida Albicans In Vitro Biofilm Assays. Antimicrob. Agents Chemother. 2017, 61, e02749-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, P.C.; Morey, A.T.; Castanheira, G.M.; Bocate, K.P.; Panagio, L.A.; Ito, F.A.; Furlaneto, M.C.; Yamada-Ogatta, S.F.; Costa, I.N.; Mora-Montes, H.M.; et al. Tenebrio Molitor (Coleoptera: Tenebrionidae) as an Alternative Host to Study Fungal Infections. J. Microbiol. Methods 2015, 118, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Morey, A.T.; De Souza, F.C.; Santos, J.P.; Pereira, C.A.; Cardoso, J.D.; De Almeida, R.S.; Costa, M.A.; De Mello, J.C.; Nakamura, C.V.; Pinge-Filho, P.; et al. Antifungal Activity of Condensed Tannins from Stryphnodendron Adstringens: Effect on Candida Tropicalis Growth and Adhesion Properties. Curr. Pharm. Biotechnol. 2016, 17, 365–375. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Gibbs, D.L.; Newell, V.A.; Ellis, D.; Tullio, V.; Rodloff, A.; Fu, W.; Ling, T.A. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: A 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by CLSI Standardized Disk Diffusion. J. Clin. Microbiol. 2010, 48, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida Albicans and Emerging Non-Albicans Candida Species. Front. Microbiol. 2016, 7, 2173. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.E.; Warrilow, A.G.S.; Cools, H.J.; Fraaije, B.A.; Lucas, J.A.; Rigdova, K.; Griffiths, W.J.; Kelly, D.E.; Kelly, S.L. Prothioconazole and Prothioconazole-Desthio Activities against Candida Albicans Sterol 14-α-Demethylase. Appl. Environ. Microbiol. 2013, 79, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 2018, 9, 1351. [Google Scholar] [CrossRef]
- Break, T.J.; Desai, J.V.; Natarajan, M.; Ferre, E.M.N.; Henderson, C.; Zelazny, A.M.; Siebenlist, U.; Hoekstra, W.J.; Schotzinger, R.J.; Garvey, E.P.; et al. VT-1161 Protects Mice against Oropharyngeal Candidiasis Caused by Fluconazole-Susceptible and -Resistant Candida Albicans. J. Antimicrob. Chemother. 2018, 73, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I.; Peter Guengerich, F.; et al. Structural Analyses of Candida Albicans Sterol 14α-Demethylase Complexed with Azole Drugs Address the Molecular Basis of Azole-Mediated Inhibition of Fungal Sterol Biosynthesis. J. Biol. Chem. 2017, 292, 6728–6743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhang, M.; Ahmed, M.; Surapaneni, K.M.; Veeraraghavan, V.P.; Arulselvan, P. Neuroprotective Effects of Ononin against the Aluminium Chloride-Induced Alzheimer’s Disease in Rats. Saudi J. Biol. Sci. 2021, 28, 4232–4239. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Ji, J.; Xiao, X.; Li, M.; Niu, S.; He, Y.; Tong, G.; Pan, C. Ononin Induces Cell Apoptosis and Reduces Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Alleviating MAPK and NF-ΚB Signaling Pathways. Acta Biochim. Pol. 2021, 68, 239–245. [Google Scholar] [CrossRef]
- Marchaim, D.; Lemanek, L.; Sobel, J.D.; Kaye, K.S. Fluconazole-Resistant Candida. Obstet. Gynecol. 2012, 120, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
- Brandolt, T.M.; Klafke, G.B.; Gonçalves, C.V.; Bitencourt, L.R.; de Martinez, A.M.B.; Mendes, J.F.; Meireles, M.C.A.; Xavier, M.O. Prevalence of Candida Spp. in Cervical-Vaginal Samples and the in Vitro Susceptibility of Isolates. Brazilian J. Microbiol. 2017, 48, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Warrilow, A.G.S.; Martel, C.M.; Parker, J.E.; Melo, N.; Lamb, D.C.; Nes, W.D.; Kelly, D.E.; Kelly, S.L. Azole Binding Properties of Candida Albicans Sterol 14-α Demethylase (CaCYP51). Antimicrob. Agents Chemother. 2010, 54, 4235–4245. [Google Scholar] [CrossRef] [Green Version]
- Muthamil, S.; Balasubramaniam, B.; Balamurugan, K.; Pandian, S.K. Synergistic Effect of Quinic Acid Derived From Syzygium Cumini and Undecanoic Acid Against Candida Spp. Biofilm and Virulence. Front. Microbiol. 2018, 9, 2835. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.P.S.; da Silva, L.C.N.; da Fonseca, C.S.M.; de Araújo, J.M.; dos Correia, M.T.S.; da Cavalcanti, M.S.; de Lima, V.L.M. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome Spinosa Jaqc. Front. Microbiol. 2016, 7, 963. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Fatima, Z.; Hameed, S. Anticandidal Effect and Mechanisms of Monoterpenoid, Perillyl Alcohol against Candida Albicans. PLoS ONE 2016, 11, e0162465. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Damu, G.L.V.; Cui, S.F.; Mi, J.L.; Tangadanchu, V.K.R.; Zhou, C.H. Discovery of Potential Antifungal Triazoles: Design, Synthesis, Biological Evaluation, and Preliminary Antifungal Mechanism Exploration. Medchemcomm 2017, 8, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Szafrański, K.; Sławiński, J.; Kȩdzia, A.; Kwapisz, E.; Kędzia, A.; Kwapisz, E. Syntheses of Novel 4-Substituted N-(5-Amino-1H-1,2,4-Triazol-3-Yl)Pyridine-3-Sulfonamide Derivatives with Potential Antifungal Activity. Molecules 2017, 22, 1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canteri de Souza, P.; Custódio Caloni, C.; Wilson, D.; Sergio Almeida, R. An Invertebrate Host to Study Fungal Infections, Mycotoxins and Antifungal Drugs: Tenebrio Molitor. J. Fungi 2018, 4, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Jo, Y.H.; Park, K.B.; Ko, H.J.; Kim, C.E.; Bae, Y.M.; Kim, B.; Jun, S.A.; Bang, I.S.; Lee, Y.S.; et al. TmToll-7 Plays a Crucial Role in Innate Immune Responses Against Gram-Negative Bacteria by Regulating 5 AMP Genes in Tenebrio Molitor. Front. Immunol. 2019, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Bae, Y.M.; Kim, D.H.; Lee, Y.S.; Han, Y.S. TmSpz4 Plays an Important Role in Regulating the Production of Antimicrobial Peptides in Response to Escherichia Coli and Candida Albicans Infections. Int. J. Mol. Sci. 2020, 21, 1878. [Google Scholar] [CrossRef] [Green Version]
- Pagano, M.; Faggio, C. The Use of Erythrocyte Fragility to Assess Xenobiotic Cytotoxicity. Cell Biochem. Funct. 2015, 33, 351–355. [Google Scholar] [CrossRef]
Ligand | ΔGbind (kcal/mol) * | Ki (μM) ** |
---|---|---|
Ononin | −10.89 | 0.01 |
Orientin | −6.48 | 17.79 |
Vitexin | −5.75 | 61.49 |
Quinic acid | −4.39 | 602.41 |
Fukugentin | −1.32 | 1080.40 |
Posaconazole | −8.75 | 0.38 |
Fluconazole | −6.14 | 31.61 |
Activity | Pa a | Pi b |
---|---|---|
Anti-infective | 0.942 | 0.003 |
Hepatoprotectant | 0.913 | 0.002 |
Antioxidant | 0.711 | 0.004 |
Antifungal | 0.648 | 0.014 |
Anti-inflammatory | 0.64 | 0.024 |
Parameter | Ononin |
---|---|
Oral Toxicity (LD50 mg/Kg) | 3,041,000 |
Intravenous Toxicity (LD50 mg/Kg) | 1,406,000 |
Subcutaneous Toxicity (LD50 mg/Kg) | 6,079,000 |
Intraperitoneal Toxicity (LD50 mg/Kg) | 652,600 |
Cytochrome | Ononin | Toxicity |
---|---|---|
CYP1A2 | 0.994 a | NT |
CYP2C19 | 0.982 a | NT |
CYP2C9 | 0.879 a | NT |
CYP2D6 | 0.950 a | NT |
CYP3A4 | 0.984 a | NT |
C. Albicans Strains | Ononin | Fluconazole | ||
---|---|---|---|---|
MIC (µg/mL) | MFC (µg/mL) | MIC (µg/mL) | MFC (µg/mL) | |
ATCC 10231 | 7.8 | 31.2 | 0.5 | 16 |
CaS | 3.9 | 15.6 | 0.25 | 8 |
CaR | 7.8 | 62.5 | >128 | >128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.F.d.; Farias, J.R.; Franco, D.C.G.; Galiza, A.A.; Motta, E.P.; Oliveira, A.d.S.; Vasconcelos, C.C.; Cartágenes, M.d.S.d.S.; Rocha, C.Q.d.; Silva, M.C.P.d.; et al. Anti-Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART. Metabolites 2022, 12, 1014. https://doi.org/10.3390/metabo12111014
Silva AFd, Farias JR, Franco DCG, Galiza AA, Motta EP, Oliveira AdS, Vasconcelos CC, Cartágenes MdSdS, Rocha CQd, Silva MCPd, et al. Anti-Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART. Metabolites. 2022; 12(11):1014. https://doi.org/10.3390/metabo12111014
Chicago/Turabian StyleSilva, Anderson França da, Josivan Regis Farias, Danielle Cristine Gomes Franco, Andrea Araruna Galiza, Elizangela Pestana Motta, Aluísio da Silva Oliveira, Cleydlenne Costa Vasconcelos, Maria do Socorro de Sousa Cartágenes, Claudia Quintino da Rocha, Mayara Cristina Pinto da Silva, and et al. 2022. "Anti-Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART" Metabolites 12, no. 11: 1014. https://doi.org/10.3390/metabo12111014
APA StyleSilva, A. F. d., Farias, J. R., Franco, D. C. G., Galiza, A. A., Motta, E. P., Oliveira, A. d. S., Vasconcelos, C. C., Cartágenes, M. d. S. d. S., Rocha, C. Q. d., Silva, M. C. P. d., Lopes, A. J. O., Nascimento, F. R. F. d., Monteiro, C. A., & Guerra, R. N. M. (2022). Anti-Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART. Metabolites, 12(11), 1014. https://doi.org/10.3390/metabo12111014