Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Mining for Rooibos Bioactive Constituents
2.2. Acquiring and Preparing Identified Compounds and Proteins
2.3. Network Creation Using Intersecting Targets
2.4. Layout of Network for Pathway Compound Target (PCT)
2.5. Assessing Kyoto Encyclopedia of Gens and Genomes (KEGG) Routes in Overlapping Targets
2.6. Ligand and Receptor Preparation for Molecular Docking
2.7. Molecular Docking and Dynamics Simulation Studies
3. Results
3.1. Rooibos Constituent Compounds Filtering
3.2. Intersecting Compounds’ Targets in the STP and SEA Databases Analyses
3.3. Potential Target Overlaps between T2DM Genes and Rooibos Compounds Linked to 228 Intersecting Genes
3.4. Network Analysis (Protein Interactions) of 197 Overlapping Targets
3.5. Enrichment Pathways (KEGG) Analysis of 197 Overlapping Targets
3.6. Docking Interaction of the Identified Ligands against EGFR and IGF1R in the HIF-1 Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 2017, 8th ed.; Suvi, K., Joao da Rocha Fernandes, B.M., Eds.; International Diabetes Fedration: Brussels, Belgium, 2017; Available online: http://www.diabetesatlas.org (accessed on 27 February 2018).
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pr. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Milibari, A.A.; Matuure, E.Y.; Gadah, E.M. Prevalence, determinants, prevention of type 2 diabetes mellitus (T2DM) in Arabic countries: A systematic review study. Health Sci. J. 2020, 14, 701. [Google Scholar]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, M.R.M. Polyphenols in Diabetic Vascular Complications: From Mechanisms to Identification of Therapeutic Targets. Ph.D. Thesis, University of Porto, Porto, Portugal, 2017. [Google Scholar]
- Fu, Q.-Y.; Li, Q.-S.; Lin, X.-M.; Qiao, R.-Y.; Yang, R.; Li, X.-M.; Dong, Z.-B.; Xiang, L.-P.; Zheng, X.-Q.; Lu, J.-L.; et al. Antidiabetic effects of tea. Molecules 2017, 22, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.H.; Choi, H.S.; Kim, D.H.; Han, M.Y.; Chang, U.J.; Yim, S.V.; Song, B.C.; Kim, C.H.; Kang, S.A. Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells. J. Med. Food 2008, 11, 429–434. [Google Scholar] [CrossRef]
- Collins, Q.F.; Liu, H.Y.; Pi, J.; Liu, Z.; Quon, M.J.; Cao, W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 50-AMP-activated protein kinase. J. Biol. Chem. 2007, 282, 30143–30149. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, B.E. A broad review of commercially important southern African medicinal plants. J. Ethnopharmacol. 2008, 119, 342–355. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Gericke, N. People’s Plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2000; ISBN 978-1-875093-19-9. [Google Scholar]
- Light, M.E.; Sparg, S.G.; Stafford, G.I.; van Staden, J. Riding the wave: South Africa’s contribution to ethnopharmacological research over the last 25 years. J. Ethnopharmacol. 2005, 100, 127–130. [Google Scholar] [CrossRef]
- Marnewick, J.L. Rooibos and honeybush: Recent advances in chemistry, biological activity and pharmacognosy. In African Natural Plants Products: New Discoveries and Challenges in Chemistry and Quality; Juliani, H., Simon, J.E., Ho, C.T., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2010; pp. 277–294. [Google Scholar]
- Mousavi, A.; Vafa, M.; Neyestani, T.; Khamseh, M.; Hoseini, F. The effects of green tea consumption on metabolic and anthropometric indices in patients with type 2 diabetes. J. Res. Med. Sci. 2013, 18, 1080–1086. [Google Scholar]
- Yoon, S.P.; Maeng, Y.H.; Hong, R.; Lee, B.R.; Kim, C.G.; Kim, H.L.; Chung, J.H.; Shin, B.C. Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochem. 2014, 116, 1210–1215. [Google Scholar] [CrossRef]
- Ma, Q.; Chen, D.; Sun, H.-P.; Yan, N.; Xu, Y.; Pan, C.-W. Regular Chinese green tea consumption is protective for diabetic retinopathy: A clinic-based case-control study. J. Diabetes Res. 2015, 2015, 231570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [PubMed]
- Sampatha, C.; Rashid, M.R.; Sangb, S.; Ahmedna, M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via Nrf2 pathway in mice with high fat diet-induced obesity. Biomed. Pharmacother. 2017, 87, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Nogueira de Amorima, L.M.; Vaza, S.R.; Cesárioa, G.; Coelhob, A.S.G.; Botelhoa, P.G. Effect of green tea extract on bone mass and body composition in individuals with diabetes. J. Funct. Foods 2018, 40, 589–594. [Google Scholar] [CrossRef]
- Adnan, M.; Jeon, B.-B.; Chowdhury, M.H.U.; Oh, K.-K.; Das, T.; Chy, M.N.U.; Cho, D.-H. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L. Wood against type-2 diabetes mellitus. Life 2022, 12, 277. [Google Scholar] [CrossRef]
- Shimamura, N.; Miyase, T.; Umehara, K.; Warashina, T.; Fujii, S. Phytoestrogens from Aspalathus linearis. Biol. Pharm. Bull. 2006, 29, 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Koeppen, B.; Roux, D. C-glycosylflavonoids. The chemistry of aspalathin. Biochem. J. 1966, 99, 604–609. [Google Scholar] [CrossRef] [Green Version]
- Najafian, M.; Najafian, B.; Najafian, Z. The effect of aspalathin on levels of sugar and lipids in streptozotocin-induced diabetic and normal rats. Zahedan. J. Res. Med. Sci. 2016, 18, e4963. [Google Scholar]
- Muller, C.J.; Joubert, E.; Chellan, N.; Miura, Y.; Yagasaki, K. New insights into the efficacy of aspalathin and other related phytochemicals in type 2 diabetes—A Review. Int. J. Mol. Sci. 2021, 23, 356. [Google Scholar] [CrossRef]
- Ajuwon, O.R.; Ayeleso, A.O.; Adefolaju, G.A. The Potential of South African Herbal Tisanes, Rooibos and Honeybush in the Management of Type 2 Diabetes Mellitus. Molecules 2018, 23, 3207. [Google Scholar] [CrossRef] [Green Version]
- Joubert, E.; Gelderblom, W.; De Beer, D. Phenolic contribution of South African herbal teas to a healthy diet. Nat. Prod. Commun. 2009, 4, 701–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krafczyk, N.; Glomb, M.A. Characterization of phenolic compounds in rooibos tea. J. Agric. Food Chem. 2008, 56, 3368–3376. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Nishida, N.; Shimada, M.A. Beneficial role of rooibos in diabetes mellitus: A systematic review and meta-analysis. Molecules 2018, 23, 839. [Google Scholar] [CrossRef] [PubMed]
- Ulicna, O.; Vancova, O.; Bozek, P.; Carsky, J.; Sebekova, K.; Boor, P.; Nakano, M.; Greksák, M. Rooibos tea (Aspalathus linearis) partially prevents oxidative stress in streptozotocin-induced diabetic rats. Physiol. Res. 2006, 55, 157–164. [Google Scholar] [CrossRef]
- Ayeleso, A.O.; Oguntibeju, O.O.; Brooks, N.L. Impact of co-administration of red palm oil (Elaeis guineensis Arecaceae) and rooibos (Aspalathus linearis Fabaceae) on glycaemic parameters, liver function and key glycolytic enzymes in diabetic rats. Trop. J. Pharm. Res. 2015, 14, 1613–1619. [Google Scholar] [CrossRef]
- Dludla, P.; Muller, C.J.F.; Louw, J.; Joubert, E.; Salie, R.; Opoku, A.R.; Johnson, R. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine 2014, 21, 595–601. [Google Scholar] [CrossRef]
- Dludla, P.V.; Muller, C.J.; Joubert, E.; Louw, J.; Essop, M.F.; Gabuza, K.B.; Ghoor, S.; Huisamen, B.; Johnson, R. Aspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression. Molecules 2017, 22, 129. [Google Scholar] [CrossRef]
- Kawano, A.; Nakamura, H.; Hata, S.; Minakawa, M.; Miura, Y.; Yagasaki, K. Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine 2009, 16, 437–443. [Google Scholar] [CrossRef]
- Awoniyi, D.O.; Aboua, Y.G.; Marnewick, J.; Brooks, N. The Effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phytother. Res. 2012, 26, 1231–1239. [Google Scholar] [CrossRef]
- Kamakura, R.; Son, M.J.; de Beer, D.; Joubert, E.; Miura, Y.; Yagasaki, K. Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-Ay mice. Cytotechnology 2015, 67, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.; Mazibuko, S.E.; Joubert, E.; de Beer, D.; Johnson, R.; Pheiffer, C.; Louw, J.; Muller, C.J. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine 2014, 21, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Nash, L.A.; Ward, W.E. Comparison of black, green and rooibos tea on osteoblast activity. Food Funct. 2016, 7, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Himpe, E.; Cunha, D.A.; Song, I.; Bugliani, M.; Marchetti, P.; Cnop, M.; Bouwens, L. Phenylpropenoic acid glucoside from rooibos protects pancreatic beta cells against cell death induced by acute Injury. PLoS ONE 2016, 11, e0157604. [Google Scholar] [CrossRef] [PubMed]
- Windvogel, S. Rooibos (Aspalathus linearis) and Honeybush (Cyclopia spp.): From bush teas to potential therapy for cardiovascular disease. In Nutraceuticals-Past, Present and Future; IntechOpen: London, UK, 2019; p. 27. [Google Scholar]
- Xiao, X.; Erukainure, O.L.; Sanni, O.; Koorbanally, N.A.; Islam, M. Phytochemical properties of black tea (Camellia sinensis) and rooibos tea (Aspalathus linearis); and their modulatory effects on key hyperglycaemic processes and oxidative stress. J. Food Sci. Technol. 2020, 57, 4345–4354. [Google Scholar] [CrossRef]
- Lim, W.X.J.; Gammon, C.S.; von Hurst, P.R.; Chepulis, L.; Mugridge, O.; Page, R.A. Hypoglycemic effects of antioxidant-rich plant extracts on postprandial glycemic responses in participants with prediabetes (GLARE study). J. Funct. Food Health Dis. 2021, 11, 604–626. [Google Scholar] [CrossRef]
- Dwivedi, P.S.R.; Patil, R.; Khanal, P.; Gurav, N.S.; Murade, V.D.; Hase, D.P.; Kalaskar, M.G.; Ayyanar, M.; Chikhale, R.V.; Gurav, S.S. Exploring the therapeutic mechanisms of Cassia glauca in diabetes mellitus through network pharmacology, molecular docking and molecular dynamics. RSC Adv. 2021, 11, 39362. [Google Scholar] [CrossRef]
- Ko, M.; Kim, Y.; Kim, H.H.; Jeong, S.; Ahn, D.; Chung, S.J.; Kim, H. Network pharmacology and molecular docking approaches to elucidate the potential compounds and targets of Saeng-Ji-Hwang-Ko for treatment of type 2 diabetes mellitus. Comp. Biol. Med. 2022, 149, 106041. [Google Scholar] [CrossRef]
- Oh, K.K.; Adnan, M.; Cho, D.H. Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus. PLoS ONE 2020, 15, e0240873. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Blommaert, K.L.J.; Steenkamp, J. Tannien-en moontlike kafeieninhoud van rooibostee, Aspalathus (Subgen. Nortiera) linearis (Burm. Fil) R. Dahlgr. Agroplantae 1978, 10, 49. [Google Scholar]
- Sakle, N.S.; More, S.A.; Mokale, S.N. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Sci. Rep. 2020, 10, 17217. [Google Scholar] [CrossRef] [PubMed]
- Kazuno, S.; Yanagida, M.; Shindo, N.; Murayama, K. Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Anal. Biochem. 2005, 347, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Branden, G.; Sjogren, T.; Schnecke, V.; Xue, Y. Structure-based ligand design to overcome CYP inhibition in drug discovery projects. Drug Discov. Today 2014, 19, 905–911. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Aribisala, J.O.; Sabiu, S. Cheminformatics Identification of Phenolics as Modulators of Penicillin-Binding Protein 2a of Staphylococcus aureus: A Structure-Activity-Relationship-Based Study. Pharmaceutics 2022, 14, 1818. [Google Scholar] [CrossRef] [PubMed]
- Idowu, K.; Ramharack, P.; Nlooto, M.; Gordon, M. Molecular dynamic mechanism(s) of inhibition of bioactive antiviral phytochemical compounds targeting cytochrome P450 3A4 and P-glycoprotein. J. Biomol. Struct. Dyn. 2020, 3, 1221–1233. [Google Scholar]
- Uhomoibhi, J.O.; Idowu, K.A.; Shode, F.O.; Sabiu, S. Molecular modelling identification of potential drug candidates from selected African plants against SARS-CoV-2 key druggable proteins. Sci. Afr. 2022, 17, e01279. [Google Scholar] [CrossRef]
- Basconi, J.E.; Shirts, M.R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 2013, 9, 2887–2899. [Google Scholar] [CrossRef]
- Uhomoibhi, J.O.; Shode, F.O.; Idowu, K.A.; Sabiu, S. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2. J. Mol. Graph. Model. 2022, 114, 108185. [Google Scholar] [CrossRef]
- Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model. 2014, 54, 1552. [Google Scholar] [CrossRef]
- Balogun, F.O.; Naidoo, K.; Aribisala, J.O.; Pillay, C.; Sabiu, S. Cheminformatics Identification and Validation of Dipeptidyl Peptidase-IV Modulators from Shikimate Pathway-Derived Phenolic Acids towards Interventive Type-2 Diabetes Therapy. Metabolites 2022, 12, 937. [Google Scholar] [CrossRef]
- Li, L.; Dai, W.; Li, W.; Zhang, Y.; Wu, Y.; Guan, C.; Zhang, A.; Huang, H.; Li, Y. Integrated network pharmacology and metabonomics to reveal the myocardial protection effect of Huang-Lian-Jie-Du-Tang on myocardial ischemia. Front. Pharmacol. 2020, 11, 2246. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Qiu, P.; Zhu, R.; Zhao, L.; Zhang, P.; Wang, Y.; Li, C.; Chai, K.; Shou, D.; Zhao, H. A combined phytochemistry and network pharmacology approach to reveal the potential antitumor effective substances and mechanism of Phellinus igniarius. Front. Pharmacol. 2019, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Cerychova, R.; Pavlinkova, G. HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front. Endocrinol. 2018, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol. 2016, 57, R93–R108. [Google Scholar] [CrossRef]
- Ross, J.S.; Russo, S.B.; Chavis, G.C.; Cowart, L.A. Sphingolipid regulators of cellular dysfunction in type 2 diabetes mellitus: A systems overview. Clin. Lipidol. 2017, 9, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Fang, W.; Ma, L.; Wang, Z.-D.; Yang, Y.-M.; Lu, Y.-Q. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes. Medicine 2018, 97, e0415. [Google Scholar] [CrossRef]
- Li, J.; Rice, M.S.; Huang, T.; Hankinson, S.E.; Clevenger, C.V.; Hu, F.B.; Tworoger, S.S. Circulating prolactin concentrations and risk of type 2 diabetes in US women. Diabetologia 2018, 61, 2549–2560. [Google Scholar] [CrossRef] [Green Version]
- Estrogen Treatment Helps to Prevent Type 2 Diabetes. Available online: http://www.diabetesincontrol.com/estrogen-treatment-helps-to-prevent-type-2-diabetes/ (accessed on 22 September 2022).
- Kettner, A.; Di Matteo, M.; Santoni, A. Insulin potentiates FcεRI-mediated signaling in mouse bone marrow-derived mast cells. Mol. Immunol. 2010, 47, 1039–1046. [Google Scholar] [CrossRef]
- Nyambuya, T.M.; Dludla, P.V.; Nkambule, B.B. T cell activation and cardiovascular risk in type 2 diabetes mellitus: A protocol for a systematic review and meta-analysis. Syst. Rev. 2018, 7, 167. [Google Scholar] [CrossRef]
- Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications. Ann. N. Y. Acad. Sci. 2011, 1243, 88–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brännmark, C.; Nyman, E.; Fagerholm, S.; Bergenholm, L.; Ekstrand, E.M.; Cedersund, G.; Strålfors, P. Insulin signaling in type 2 diabetes: Experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes. J. Biol. Chem. 2013, 288, 9867–9880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hameed, I.; Masoodi, S.R.; Mir, S.A.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 2015, 6, 598. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Wei, Y.H. Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes. J. Biomed. Sci. 2017, 24, 70. [Google Scholar] [CrossRef]
- Mazibuko, S.E.; Joubert, E.; Johnson, R.; Louw, J.; Opoku, A.R.; Muller, C.J. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol. Nutr. Food Res. 2015, 59, 2199–2208. [Google Scholar] [CrossRef]
- Mazibuko-Mbeje, S.E.; Dludla, P.V.; Roux, C.; Ghoor, S.; Joubert, E.; Louw, J.; Opoku, A.R.; Muller, C.J. Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways. Int. J. Mol. Sci. 2019, 20, 633. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Chen, N.; Liu, T.; Zhu, J.; Wang, J.; He, X.; Jin, Y. Large-scale transcriptome analysis of cucumber konand Botrytis cinerea during Infection. Lee, Y.-H, editor. PLoS ONE 2015, 10, e0142221. [Google Scholar] [CrossRef] [Green Version]
- Kumi, R.O.; Soremekun, O.S.; Issahaku, A.R.; Fisayo, C.A.; Olotu, A.; Soliman, M.E.S. Exploring the ring potential of 2,4-diaminopyrimidine derivatives towards the identification of novel caspase-1 inhibitors in Alzheimer’s disease therapy. J. Mol. Model. 2020, 26, 1–17. [Google Scholar] [CrossRef]
- Hess, B. Convergence of sampling in protein simulations. Phys. Rev. 2002, 65, 031910. Available online: https://coronavirus.jhu.edu/map.html (accessed on 20 October 2022). [CrossRef] [Green Version]
- Shode, F.O.; Idowu, A.S.K.; Uhomoibhi, O.J.; Sabiu, S. Repurposing drugs and identification of inhibitors of integral proteins (spike protein and main protease) of SARS-CoV-2. J. Biomol. Struct. Dyn. 2021, 40, 1–16. [Google Scholar] [CrossRef]
- Sindhu, T.; Srinivasan, P. Exploring the binding properties of agonists interacting with human TGR5 using structural modelling, molecular docking and dynamics simulations. RSC Adv. 2015, 5, 14202–14213. [Google Scholar] [CrossRef]
- Orlowski, R.; Clark, J.A.; Derr, J.B.; Gryko, D.T. Role of intramolecular hydrogen bonds in promoting electron flow through amino acid and oligopeptide conjugates. Proc. Natl. Acad. Sci. USA 2021, 118, e2026462118. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Tumilaar, S.G.; Idroes, R.; Mahmud, S.; Celik, I.; Ağagündüz, D.; Tallei, T.E.; Emran, T.B.; et al. In silico evaluation of Iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2. Molecules 2021, 26, 5724. [Google Scholar] [CrossRef] [PubMed]
- Aribisala, J.O.; Aruwa, C.E.; Uthman, T.O.; Nurain, I.O.; Idowu, K.; Sabiu, S. Cheminformatics Bioprospection of Broad Spectrum Plant Secondary Metabolites Targeting the Spike Proteins of Omicron Variant and Wild-Type SARS-CoV-2. Metabolites 2022, 12, 982. [Google Scholar] [CrossRef]
- Izadi, H.; Stewart, K.M.; Penlidis, A. Role of contact electrification and electrostatic interactions in gecko adhesion. J. R. Soc. Interface 2014, 11, 20140371. [Google Scholar] [CrossRef]
- Aribisala, J.O.; Abdulsalam, R.A.; Dweba, Y.; Madonsela, K.; Sabiu, S. Identification of secondary metabolites from Crescentia cujete as promising antibacterial therapeutics targeting type 2A topoisomerases through molecular dynamics simulation. Comput. Biol. Med. 2022, 145, e105432. [Google Scholar] [CrossRef]
S/N | Compounds | Passed Lipinski’s Rule/ No. of Violations |
---|---|---|
1 | (+)-catechin | Yes |
2 | Apigenin | Yes |
3 | Chlorogenic acid | Yes/1 |
4 | Chrysoeriol | Yes |
5 | Dihydrochalcone | Yes |
6 | Esculin | Yes |
7 | Ferulic | Yes |
8 | Isovitexin | Yes |
9 | Kaempferol | Yes |
10 | Nothofagin | Yes/1 |
11 | p-coumaric acid | Yes |
12 | Sinapic acid | Yes |
13 | Vitexin | Yes/1 |
Pathway | No of Genes | Score | FDR | Genes |
---|---|---|---|---|
AGE-RAGE signaling pathway in diabetic complications | 11 | 1.05 | 2.20 × 10−7 | MMP2, NOX4, PRKCB, CASP3, F3, PIM1, PRKCZ, RELA, TNF, HRAS, AKT1 |
Prolactin signalling pathway | 6 | 0.94 | 0.00036 | GSK3B, ESR2, RELA, ESR1, HRAS, AKT1 |
Estrogen signalling pathway | 9 | 0.83 | 6.57 × 10−5 | MMP2, EGFR, PRKACA, PGR, ESR2, MMP9, ESR1, HRAS, AKT1 |
Fc epsilon RI signalling pathway | 5 | 0.88 | 0.0018 | ALOX5, SYK, TNF, HRAS, AKT1 |
T cell receptor signaling pathway | 6 | 0.77 | 0.0018 | IL2, GSK3B, RELA, TNF, HRAS, AKT1 |
VEGF signalling pathway | 5 | 0.94 | 0.0011 | PRKCG, PRKCB, PTGS2, HRAS, AKT1 |
Sphingolipid signalling pathway | 10 | 0.93 | 4.95 × 10−6 | PRKCG, TP53, PRKCB, ADORA1, PRKCZ, ABCC1, RELA, TNF, HRAS, AKT1 |
Insulin signalling pathway | 10 | 0.87 | 1.25 × 10−5 | PYGM, HK2, INSR, PRKACA, GSK3B, PTPN1, PRKCZ, HK1, HRAS, AKT1 |
Insulin secretion | 5 | 0.78 | 0.0041 | PRKCG, PRKCB, PRKACA, CAMK2B, CAMK2A |
Insulin resistance | 10 | 0.97 | 3.16 × 10−6 | PYGM, INSR, PRKCB, GSK3B, PTPN1, PRKCZ, RPS6KA3, RELA, TNF, AKT1 |
cAMP signalling pathway | 13 | 0.79 | 3.62 × 10−6 | CFTR, GLI1, PTGER2, EP300, PRKACA, ADORA2A, PTGER3, ADORA1, HCAR2, CAMK2B, CAMK2A, RELA, AKT1 |
HIF-1 signalling pathway | 14 | 1.12 | 7.66 × 10−10 | EP300, PRKCG, IGF1R, EGFR, HK2, INSR, PRKCB, CAMK2B, CAMK2A, RELA, HK1, HIF1A, PFKFB3, AKT1 |
Energy Components (Kcal/mol) | ||||||
---|---|---|---|---|---|---|
Complex | Docking Score | ΔEvdW | ΔEelec | ΔGgas | ΔGsolv | ΔGbind |
EGFR | ||||||
Apigenin | −8.4 | −32.1 ± 3.71 | −23.23 ± 12.10 | −55.72 ± 11.10 | 22.04 ± 7.30 | −33.68 ± 6.21 |
Chlorogenic acid | −7.5 | −36.77 ± 4.19 | −58.50 ± 10.07 | −95.28 ± 8.35 | 53.69 ± 6.70 | −41.59 ± 4.30 |
Chrysoeriol | −8.6 | −41.49 ± 2.93 | −14.12 ± 9.73 | −55.62 ± 9.28 | 18.88 ± 6.95 | −36.74 ± 4.15 |
Esculin | −9.4 | −43.75 ± 3.75 | −67.08 ± 9.15 | −110.83 ± 8.28 | 58.40 ± 6.00 | −52.43 ± 4.69 |
Ferulic | −6.1 | −25.88 ± 2.81 | −28.24 ± 6.00 | −54.13 ± 6.06 | 28.28 ± 4.87 | −25.84 ± 3.48 |
Isovitexin | −7.0 | −38.40 ± 4.59 | −60.38 ± 14.16 | −98.78 ± 12.60 | 55.55 ± 8.72 | −43.23 ± 5.78 |
Kaempferol | −8.4 | −38.61 ± 3.28 | −37.73 ± 9.76 | −76.34 ± 9.39 | 37.66 ± 6.22 | −38.68 ± 4.78 |
P−courmaric acid | −5.5 | −19.90 ± 2.84 | −26.83 ± 5.51 | −46.73 ± 5.35 | 15.43 ± 3.07 | −31.30 ± 3.93 |
Sinapic acid | −6.3 | −29.46 ± 2.51 | −21.08 ± 9.69 | −50.54 ± 9.93 | 25.26 ± 6.19 | −25.27± 4.49 |
Vitexin | −9.8 | −44.85 ± 4.01 | −68.30 ± 12.61 | −113.15 ± 11.48 | 54.53 ± 7.06 | −58.61 ± 6.67 |
Erlotinib | −7.2 | − | − | − | − | − |
IGF1R | ||||||
Apigenin | −7.7 | −33.39 ± 2.71 | −27.10 ± 6.10 | −60.49 ± 5.33 | 23.88 ± 3.43 | −36.61 ± 2.97 |
Chlorogenic acid | −7.3 | −33.36 ± 4.85 | −24.14 ± 20.17 | −57.50 ± 17.77 | 27.74 ± 11.79 | −29.75 ± 7.41 |
Chrysoeriol | −7.9 | −36.78 ± 2.49 | −14.82 ± 6.38 | −51.60 ± 6.10 | 18.71 ± 4.80 | −32.89 ± 2.88 |
Isovitexin | −6.8 | −31.31 ± 4.76 | −26.05 ± 9.96 | −57.36 ± 9.83 | 29.99 ± 6.29 | −27.36 ± 4.82 |
Kaempferol | −7.1 | −37.69 ± 3.12 | −24.94 ± 6.05 | −62.64 ± 6.37 | 26.20 ± 3.58 | −36.44 ± 3.80 |
NVP−ADW742 | −7.4 | −42.94 ± 3.73 | −180.05 ± 13.38 | −223.00 ± 15.12 | 187.28 ± 12.97 | −35.71 ± 4.50 |
Post-Dynamics Data | |||||
---|---|---|---|---|---|
Complex | RMSD (Å) | RMSF (Å) | RoG (Å) | SASA (Å) | Number of H-Bonds |
EGFR | |||||
Unbound | 3.78 ± 0.62 | 1.76 ± 1.83 | 20.16 ± 0.13 | 15551 ± 431 | 133.42 ± 820 |
Apigenin | 2.52 ± 0.3 | 1.49 ± 0.95 | 20.19 ± 0.13 | 15495 ± 359 | 132.58 ± 7.96 |
Chlorogenic acid | 2.66 ± 0.31 | 1.41 ± 0.93 | 20.42 ± 0.15 | 15800 ± 305 | 130.85 ± 7.56 |
Chrysoeriol | 4.19 ± 0.64 | 1.62 ± 1.30 | 20.68 ± 0.15 | 15915 ± 375 | 127.25 ± 7.81 |
Esculin | 2.44 ± 0.21 | 1.43 ± 0.84 | 20.39 ± 0.09 | 15536 ± 273 | 131.77 ± 7.76 |
Ferulic | 2.40 ± 0.24 | 1.46 ± 0.84 | 20.18 ± 0.10 | 15430 ± 340 | 134.90 ± 8.39 |
Isovitexin | 2.75 ± 0.35 | 1.43 ± 0.96 | 20.26 ± 0.09 | 15383 ± 322 | 138.34 ± 8.57 |
Kaempferol | 2.64 ± 0.43 | 1.51 ± 1.17 | 20.14 ± 0.11 | 15103 ± 374 | 138.18 ± 7.99 |
P-courmaric acid | 3.42 ± 0.48 | 1.48 ± 0.92 | 20.35 ± 0.11 | 15395 ± 363 | 129.04 ± 7.84 |
Sinapic acid | 4.51 ± 0.95 | 1.80 ± 2.18 | 20.43 ± 0.15 | 15569 ± 295 | 132.93 ± 7.74 |
Vitexin | 2.29 ± 0.20 | 1.40 ± 0.94 | 20.19 ± 0.09 | 15057 ± 329 | 140.17 ± 8.82 |
IGF1R | |||||
Unbound | 2.16 ± 0.23 | 1.38 ± 0.72 | 20. 01 ± 0.15 | 15672 ± 286 | 146.79 ± 7.91 |
Apigenin | 2.41 ± 0.27 | 1.31 ± 0.84 | 20.02 ± 0.12 | 15399 ± 283 | 148.65 ± 8.05 |
Chlorogenic acid | 2.49 ± 0.27 | 1.36 ± 0.73 | 20.07 ± 0.13 | 15787 ± 336 | 148.70 ± 8.06 |
Chrysoeriol | 2.47 ± 0.30 | 1.30 ± 0.81 | 19.94 ± 0.11 | 15081 ± 294 | 147.95 ± 7.92 |
Isovitexin | 2.01 ± 0.19 | 1.29 ± 0.70 | 19.97 ± 0.10 | 15673 ± 288 | 148.45 ± 7.95 |
Kaempferol | 2.16 ± 0.32 | 1.31 ± 0.73 | 19.99 ± 0.16 | 15276 ± 361 | 147.04 ± 7.92 |
NVP-ADW742 | 2.33 ± 0.33 | 1.50 ± 0,82 | 19.91 ± 0.11 | 15167 ± 393 | 146.79 ± 7.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akoonjee, A.; Rampadarath, A.; Aruwa, C.E.; Ajiboye, T.A.; Ajao, A.A.-n.; Sabiu, S. Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care. Metabolites 2022, 12, 1013. https://doi.org/10.3390/metabo12111013
Akoonjee A, Rampadarath A, Aruwa CE, Ajiboye TA, Ajao AA-n, Sabiu S. Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care. Metabolites. 2022; 12(11):1013. https://doi.org/10.3390/metabo12111013
Chicago/Turabian StyleAkoonjee, Ayesha, Athika Rampadarath, Christiana Eleojo Aruwa, Taibat Arinola Ajiboye, Abdulwakeel Ayokun-nun Ajao, and Saheed Sabiu. 2022. "Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care" Metabolites 12, no. 11: 1013. https://doi.org/10.3390/metabo12111013
APA StyleAkoonjee, A., Rampadarath, A., Aruwa, C. E., Ajiboye, T. A., Ajao, A. A. -n., & Sabiu, S. (2022). Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care. Metabolites, 12(11), 1013. https://doi.org/10.3390/metabo12111013