Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics
Abstract
:1. Introduction
2. Results
2.1. GC-MS Analysis of Serum
2.2. GC-MS Analysis of Urine
2.3. Metabolic Effects of Heroin and Morphine Treatment on Serum Metabolites
2.4. Metabolic Effects of Heroin and Morphine Treatment on Urine Metabolites
2.5. Potential Markers of Opiate Abuse
3. Discussion
4. Material and Methods
4.1. Materials and Reagents
4.2. Instrumentation
4.3. Animal Treatment and Sample Collection
4.4. Sample Preparation, Derivatization, and GC-MS Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murphy, P.B.; Bechmann, S.; Barrett, M.J. Morphine; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Shirooie, S.; Esmaeili, J.; Sureda, A.; Esmaeili, N.; Saffari, P.M.; Yousefi-Manesh, H.; Dehpour, A.R. Evaluation of the effects of metformin administration on morphine tolerance in mice. Neurosci. Lett. 2020, 716, 134638. [Google Scholar] [CrossRef] [PubMed]
- Králík, F.; Fagan, P.; Kuchař, M.; Setnička, V. Structure of heroin in a solution revealed by chiroptical spectroscopy. Chirality 2020, 32, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Oelhaf, R.C.; Azadfard, M. Heroin Toxicity; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Zhang, C.-H.; Kim, K.; Jin, Z.; Zheng, F.; Zhan, C.-G. Systematic Structure-Based Virtual Screening Approach to Antibody Selection and Design of a Humanized Antibody against Multiple Addictive Opioids without Affecting Treatment Agents Naloxone and Naltrexone. ACS Chem. Neurosci. 2021, 12, 184–194. [Google Scholar] [CrossRef]
- Huecker, M.R.; Koutsothanasis, G.A.; Abbasy, M.S.U.; Marraffa, J. Heroin; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Hedegaard, H.; Chen, L.-H.; Warner, M. Drug-poisoning deaths involving heroin: United States, 2000–2013. NCHS Data Brief 2015, 190, 1–8. [Google Scholar]
- Hedegaard, H.; Minino, A.M.; Warner, M. Drug Overdose Deaths in the United States, 1999–2018. NCHS Data Brief 2020, 356, 1–8. [Google Scholar]
- Hedegaard, H.; Minino, A.M.; Warner, M. Drug Overdose Deaths in the United States, 1999–2017. NCHS Data Brief 2018, 329, 1–8. [Google Scholar]
- Hill, R.; Santhakumar, R.; Dewey, W.; Kelly, E.; Henderson, G. Fentanyl depression of respiration: Comparison with heroin and morphine. Br. J. Pharmacol. 2020, 177, 254–265. [Google Scholar] [CrossRef]
- Kiyatkin, E.A. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019, 151, 219–226. [Google Scholar] [CrossRef]
- Dydyk, A.M.; Jain, N.K.; Gupta, M. Opioid Use Disorder; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Ge, S.; Geng, X.; Wang, X.; Li, N.; Chen, L.; Zhang, X.; Huang, Y.; Li, Y.; Chen, Y.; Wang, S.; et al. Oscillatory local field potentials of the nucleus accumbens and the anterior limb of the internal capsule in heroin addicts. Clin. Neurophysiol. 2018, 129, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-C.; Xiao, L.-F.; Zhang, C.; Sun, T.; Sun, K.-S. Intra-nucleus accumbens shell injection of baclofen blocks the reconsolidation of conditioned place preference in morphine-addicted mice. Sheng Li Xue Bao 2020, 72, 255–261. [Google Scholar]
- Choi, M.R.; Jin, Y.-B.; Bang, S.H.; Im, C.-N.; Lee, Y.; Kim, H.-N.; Chang, K.-T.; Lee, S.-R.; Kim, D.-J. Age-related Effects of Heroin on Gene Expression in the Hippocampus and Striatum of Cynomolgus Monkeys. Clin. Psychopharmacol. Neurosci. 2020, 18, 93–108. [Google Scholar] [CrossRef]
- Ujcikova, H.; Cechova, K.; Jagr, M.; Roubalova, L.; Vosahlikova, M.; Svoboda, P. Proteomic analysis of protein composition of rat hippocampus exposed to morphine for 10 days; comparison with animals after 20 days of morphine withdrawal. PLoS ONE 2020, 15, e0231721. [Google Scholar] [CrossRef] [PubMed]
- Hutson, L.W.; Lebonville, C.L.; Jones, M.E.; Fuchs, R.A.; Lysle, D.T. Interleukin-1 signaling in the basolateral amygdala is necessary for heroin-conditioned immunosuppression. Brain Behav. Immun. 2017, 62, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, M.; Dong, Y.; Lai, B.; Zheng, P. Chronic morphine selectively sensitizes the effect of D1 receptor agonist on presynaptic glutamate release in basolateral amygdala neurons that project to prelimbic cortex. Neuropharmacology 2018, 133, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kvello, A.M.S.; Andersen, J.M.; Boix, F.; Mørland, J.; Bogen, I.L. The role of 6-acetylmorphine in heroin-induced reward and locomotor sensitization in mice. Addict. Biol. 2020, 25, e12727. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, M.; Ma, Q.; Sheng, H.; Cui, D.; Shao, D.; Lai, B.; Zheng, P. Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA, inducing reward. Neuropharmacology 2020, 176, 108217. [Google Scholar] [CrossRef] [PubMed]
- Crummy, E.A.; Donckels, E.A.; Baskin, B.M.; Bentzley, B.; Ferguson, S.M. The impact of cocaine and heroin drug history on motivation and cue sensitivity in a rat model of polydrug abuse. Psychopharmacology 2019, 237, 55–68. [Google Scholar] [CrossRef]
- McKendrick, G.; Garrett, H.; Jones, H.E.; McDevitt, D.S.; Sharma, S.; Silberman, Y.; Graziane, N.M. Ketamine Blocks Morphine-Induced Conditioned Place Preference and Anxiety-Like Behaviors in Mice. Front. Behav. Neurosci. 2020, 14, 75. [Google Scholar] [CrossRef]
- Wolter, M.; Huff, A.E.; Baidoo, N.; Jardine, K.H.; Pulles, Z.; Winters, B.D.; Leri, F. Modulation of object memory consolidation by heroin and heroin-conditioned stimuli: Role of opioid and noradrenergic systems. Eur. Neuropsychopharmacol. 2020, 33, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; Zhao, Y.; Cao, K.; Liu, Y.; Xiao, R.; Wang, C.; Li, Y.; Huang, W.; Wang, X.; et al. Dopamine D1 receptor agonist treatment alleviates morphine-exposure-induced learning and memory impairments. Brain Res. 2019, 1711, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Volkow, N.D. Brain default-mode network dysfunction in addiction. NeuroImage 2019, 200, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Zhu, J.; Li, Y.; Liu, W.; Xue, J.; Shi, H.; Li, Q.; Wang, W. Assessing effect of long-term abstinence on coupling of three core brain networks in male heroin addicts: A resting-state functional magnetic resonance imaging study. Addict. Biol. 2020, 26, e12982. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J. Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. J. Forensic Leg. Med. 2019, 61, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Takeda, T.; Ohshima, T.; Yamada, H.; Ishii, Y. Metabolomic profiling of brain tissues of mice chronically exposed to heroin. Drug Metab. Pharmacokinet. 2017, 32, 108–111. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, C.; Zhang, Y.; Sun, F.; Wang, S.; Ma, J.; Lin, K.; Wang, X.; Lin, G.; Hu, L. Serum metabolomics in rats models of ketamine abuse by gas chromatography–mass spectrometry. J. Chromatogr. B 2015, 1006, 99–103. [Google Scholar] [CrossRef]
- Tsugawa, H.; Tsujimoto, Y.; Arita, M.; Bamba, T.; Fukusaki, E. GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC Bioinform. 2011, 12, 131. [Google Scholar] [CrossRef]
- Ghimire, P.; Dhamoon, A.S. Ketoacidosis; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 8767. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Leng, C.; Chen, L.; Ma, B.; Gong, X. Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on 1H-nuclear magnetic resonance spectra. BMC Neurosci. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, L.; Aa, J.; Wang, G.; Cao, B.; Li, M.; Shi, J.; Wang, X.; Zhao, C.; Gu, R.; et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend. 2013, 127, 177–186. [Google Scholar] [CrossRef]
- Larson, A.A.; Takemori, A.E. Effect of narcotics on the uptake of serotonin precursors by the rat brain. J. Pharmacol. Exp. Ther. 1977, 200, 216–223. [Google Scholar]
- Torres, L.R.; Kaplan, C.; Valdez, A. Health Consequences of Long-Term Injection Heroin Use Among Aging Mexican American Men. J. Aging Health 2011, 23, 912–932. [Google Scholar] [CrossRef]
- Testino, G.; Balbinot, P.; Pellicano, R. Substances use disorders and liver injury: A concise review. Minerva Gastroenterol. (Torino) 2021. [Google Scholar] [CrossRef]
- Baum, M.K.; Tamargo, J.A.; Ehman, R.L.; Sherman, K.E.; Chen, J.; Liu, Q.; Mandler, R.N.; Teeman, C.; Martinez, S.S.; Campa, A. Heroin use is associated with liver fibrosis in the Miami Adult Studies on HIV (MASH) cohort. Drug Alcohol Depend. 2021, 220, 108531. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.-L.; Farzi, A.; Zhu, W.-Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Bosi, A.; Banfi, D.; Bistoletti, M.; Giaroni, C.; Baj, A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int. J. Tryptophan Res. 2020, 13, 1178646920928984. [Google Scholar] [CrossRef]
- Tong, J.; Meyer, J.H.; Boileau, I.; Ang, L.-C.; Fletcher, P.J.; Furukawa, Y.; Kish, S.J. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology 2020, 237, 2661–2671. [Google Scholar] [CrossRef] [PubMed]
- Jiye, A.; Huang, Q.; Wang, G.; Zha, W.; Yan, B.; Ren, H.; Gu, S.; Zhang, Y.; Zhang, Q.; Shao, F.; et al. Global analysis of metabolites in rat and human urine based on gas chromatography/time-of-flight mass spectrometry. Anal. Biochem. 2008, 379, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Aa, J.; Shao, F.; Wang, G.; Huang, Q.; Zha, W.; Yan, B.; Zheng, T.; Liu, L.; Cao, B.; Shi, J.; et al. Gas chromatography time-of-flight mass spectrometry based metabolomic approach to evaluating toxicity of triptolide. Metabolomics 2011, 7, 217–225. [Google Scholar] [CrossRef]
- Liu, L.; Aa, J.; Wang, G.; Yan, B.; Zhang, Y.; Wang, X.; Zhao, C.; Cao, B.; Shi, J.; Li, M.; et al. Differences in metabolite profile between blood plasma and serum. Anal. Biochem. 2010, 406, 105–112. [Google Scholar] [CrossRef]
- Jonsson, P.; Johansson, A.I.; Gullberg, J.; Trygg, J.; Grung, B.; Marklund, S.; Sjöström, M.; Antti, A.H.; Moritz, T. High-Throughput Data Analysis for Detecting and Identifying Differences between Samples in GC/MS-Based Metabolomic Analyses. Anal. Chem. 2005, 77, 5635–5642. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in Metabonomics. J. Proteome Res. 2007, 6, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Favé, G.; Beckmann, M.; Lloyd, A.J.; Zhou, S.; Harold, G.; Lin, W.; Tailliart, K.; Xie, L.; Draper, J.; Mathers, J.C. Development and validation of a standardized protocol to monitor human dietary exposure by metabolite fingerprinting of urine samples. Metabolomics 2011, 7, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Kettanehwold, N.; Trygg, J.; Wikström, C.; Wold, S. Multi- and Megavariate Data Analysis: Part I: Basic Principles and Applications; Umetrics Academy: Umea, Sweden, 2006. [Google Scholar]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed]
Metabolic Pathways | Compounds | Heroin Serum Metabolites | Morphine Serum Metabolites | ||||
---|---|---|---|---|---|---|---|
Exposure | Withdrawal | Relapse | Exposure | Withdrawal | Relapse | ||
Lipid metabolism | Palmitic acid | ↑↑ | ↑↑ | ↓↓ | ↑ | - | - |
3-hydroxybutyric acid | ↑↑ | ↑ | ↓ | ↑ | ↑↑ | ↑ | |
Cis-9-hexadecenoic acid | ↑ | ↑↑ | ↓ | ↑ | ↑↑ | - | |
Carbohydrate metabolism | Citric acid | ↑↑ | - | ↓↓ | - | ↓ | ↓ |
2-ketoglutaric acid | ↓ | ↓ | ↓↓ | ↓↓ | ↑↑ | ↑ | |
Lactic acid | ↓↓ | - | ↓↓ | - | - | - | |
Glucose | ↓ | ↓↓ | - | ↓↓ | ↑↑ | - | |
Pyruvic acid | ↓↓ | ↑ | - | ↓↓ | ↑↑ | ↑↑ | |
GSH | Methionine | ↓ | - | - | ↓↓ | ↑ | ↑↑ |
Cysteine | ↓ | - | ↓ | ↓↓ | ↑↑ | ↑↑ | |
Serine | ↓↓ | ↑↑ | ↓ | ↓↓ | ↑↑ | ↑↑ | |
Amino acid metabolism | Alanine | ↓↓ | ↓ | ↓ | ↓↓ | ↑↑ | ↑↑ |
Aspartic acid | ↑↑ | ↓↓ | ↓↓ | ↓ | ↓ | - | |
Proline | ↓↓ | - | ↓↓ | ↓↓ | ↑ | ↑↑ | |
Valine | ↑↑ | ↓↓ | - | ↓ | ↓↓ | ↓ | |
Threonine | ↓↓ | ↑ | - | ↓↓ | ↑↑ | ↑↑ | |
Tryptophan | ↓↓ | ↓ | ↓ | ↓↓ | ↓ | ↓ | |
Isoleucine | ↑↑ | ↓ | - | ↑ | ↓ | ↓ | |
Tyrosine | ↓↓ | ↓↓ | ↓ | ↓↓ | - | ↓ | |
Others | α-tocopherol | ↑↑ | - | ↑↑ | ↑↑ | ↑↑ | - |
5-hydroxytryptamine | ↓ | ↑ | - | ↓↓ | ↑↑ | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Zhang, R.; Sheng, W.; Feng, L.; Xu, P.; Wang, Y.; Xie, Y.; Xu, H.; Wang, G.; Aa, J. Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics. Metabolites 2021, 11, 607. https://doi.org/10.3390/metabo11090607
Lu W, Zhang R, Sheng W, Feng L, Xu P, Wang Y, Xie Y, Xu H, Wang G, Aa J. Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics. Metabolites. 2021; 11(9):607. https://doi.org/10.3390/metabo11090607
Chicago/Turabian StyleLu, Wuhuan, Ran Zhang, Wei Sheng, Luohua Feng, Peng Xu, Youmei Wang, Yuan Xie, Hui Xu, Guangji Wang, and Jiye Aa. 2021. "Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics" Metabolites 11, no. 9: 607. https://doi.org/10.3390/metabo11090607
APA StyleLu, W., Zhang, R., Sheng, W., Feng, L., Xu, P., Wang, Y., Xie, Y., Xu, H., Wang, G., & Aa, J. (2021). Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics. Metabolites, 11(9), 607. https://doi.org/10.3390/metabo11090607