Pleiotropic Actions of Aldehyde Reductase (AKR1A)
Abstract
:1. Introduction
2. Characteristics of the Akr1a Gene and the Regulation of Its Expression in Mammals
3. Protein Structure and Catalytic Reaction of AKR1A
4. NADPH-Dependent Reduction of a Variety of Aldehyde Compounds
4.1. Aldehydes Produced by Lipid Peroxidation
4.2. Methylglyoxal as a Carbohydrate-Derived Substrate
4.3. Aldehydes Produced from Monoamine Metabolism
4.4. Roles of Akr1a in Drug Metabolism
4.5. Roles of AKR1A in the Synthesis of Bioactive Compounds
5. AKR1A as a Suppressor of Diabetic Complications
5.1. Glycation as a Potent Non-Enzymatic Reaction Responsible for Diabetic Complications
5.2. AKR1A Is an Enzyme Detoxifying 3-DG
5.3. Protection of Akr1a against Diabetic Complications
6. Roles of AKR1A in Ascorbate Biosynthesis and Action in Mice
7. Akr1a Functions That Are Not Directly Associated with Diabetic Complications or Ascorbate Synthesis
8. AKR1A Plays Antithetic Roles in Cancer Development
9. AKR1A Catalyzes the Reduction of S-Nitrosoglutathione and S-Nitroso-Coenzyme A
10. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Jez, J.M.; Flynn, T.G.; Penning, T.M. A new nomenclature for the aldo-keto reductase superfamily. Biochem. Pharmacol. 1997, 54, 639–647. [Google Scholar] [CrossRef]
- Wirth, H.P.; Wermuth, B. Immunohistochemical localisation of aldehyde and aldose reductase in human tissues. Prog. Clin. Biol. Res. 1985, 174, 231–239. [Google Scholar] [PubMed]
- Stomberski, C.T.; Anand, P.; Venetos, N.M.; Hausladen, A.; Zhou, H.L.; Premont, R.T.; Stamler, J.S. AKR1A1 is a novel mammalian S-nitroso-glutathione reductase. J. Biol. Chem. 2019, 294, 18285–18293. [Google Scholar] [CrossRef] [PubMed]
- Stomberski, C.T.; Hess, D.T.; Stamler, J.S. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid. Redox Signal. 2019, 30, 1331–1351. [Google Scholar] [CrossRef] [PubMed]
- Danesh, F.R.; Wada, J.; Wallner, E.I.; Sahai, A.; Srivastava, S.K.; Kanwar, Y.S. Gene regulation of aldose-, aldehyde- and a renal specific oxido reductase (RSOR) in the pathobiology of diabetes mellitus. Curr. Med. Chem. 2003, 10, 1399–1406. [Google Scholar] [CrossRef]
- Jez, J.M.; Bennett, M.J.; Schlegel, B.P.; Lewis, M.; Penning, T.M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J. 1997, 326, 625–636. [Google Scholar] [CrossRef]
- AKR Super Family Web Site. Available online: https://hosting.med.upenn.edu/akr (accessed on 10 May 2021).
- Barski, O.A.; Gabbay, K.H.; Bohren, K.M. Characterization of the human aldehyde reductase gene and promoter. Genomics 1999, 60, 188–198. [Google Scholar] [CrossRef]
- Ensembl. Available online: http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000117448;r=1:45550543-45570049 (accessed on 10 May 2021).
- Bohren, K.M.; Bullock, B.; Wermuth, B.; Gabbay, K.H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J. Biol. Chem. 1989, 264, 9547–9551. [Google Scholar]
- Takahashi, M.; Fujii, J.; Teshima, T.; Suzuki, K.; Shiba, T.; Taniguchi, N. Identity of a major 3-deoxyglucosone-reducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene 1993, 127, 249–253. [Google Scholar] [CrossRef]
- Flynn, T.G.; Green, N.C.; Bhatia, M.B.; El-Kabbani, O. Structure and mechanism of aldehyde reductase. Adv. Exp. Med. Biol. 1995, 372, 193–201. [Google Scholar] [CrossRef]
- Allan, D.; Lohnes, D. Cloning and developmental expression of mouse aldehyde reductase (AKR1A4). Mech. Dev. 2000, 94, 271–275. [Google Scholar] [CrossRef]
- Graham, A.; Heath, P.; Morten, J.E.; Markham, A.F. The human aldose reductase gene maps to chromosome region 7q35. Hum. Genet. 1991, 86, 509–514. [Google Scholar] [CrossRef]
- Graham, A.; Brown, L.; Hedge, P.J.; Gammack, A.J.; Markham, A.F. Structure of the human aldose reductase gene. J. Biol. Chem. 1991, 266, 6872–6877. [Google Scholar] [CrossRef]
- Fujii, J.; Takahashi, M.; Hamaoka, R.; Kawasaki, Y.; Miyazawa, N.; Taniguchi, N. Physiological relevance of aldehyde reductase and aldose reductase gene expression. Adv. Exp. Med. Biol. 1999, 463, 419–426. [Google Scholar] [CrossRef]
- Fujii, J.; Hamaoka, R.; Matsumoto, A.; Fujii, T.; Yamaguchi, Y.; Egashira, M.; Miyoshi, O.; Niikawa, N.; Taniguchi, N. The structural organization of the human aldehyde reductase gene, AKR1A1, and mapping to chromosome 1p33-->p32. Cytogenet. Cell Genet. 1999, 84, 230–232. [Google Scholar] [CrossRef]
- Ron, D.; Habener, J.F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992, 6, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.A.; Choi, B.H.; Nam, C.W.; Song, M.; Kim, S.T.; Lee, J.Y.; Kwak, M.K. Identification of aldo-keto reductases as NRF2-target marker genes in human cells. Toxicol. Lett. 2013, 218, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Bohren, K.M.; Page, J.L.; Shankar, R.; Henry, S.P.; Gabbay, K.H. Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J. Biol. Chem. 1991, 266, 24031–24037. [Google Scholar]
- El-Kabbani, O.; Green, N.C.; Lin, G.; Carson, M.; Narayana, S.V.L.; Moore, K.M.; Flynn, T.G.; DeLucas, L.J. Structures of human and porcine aldehyde reductase: An enzyme implicated in diabetic complications. Acta Crystallogr. D Biol. Crystallogr. 1994, 50, 859–868. [Google Scholar] [CrossRef]
- El-Kabbani, O.; Judge, K.; Ginell, S.L.; Myles, D.A.; DeLucas, L.J.; Flynn, T.G. Structure of porcine aldehyde reductase holoenzyme. Nat. Struct. Biol. 1995, 2, 687–692. [Google Scholar] [CrossRef]
- Ye, Q.; Hyndman, D.; Green, N.C.; Li, L.; Jia, Z.; Flynn, T.G. The crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Chem. Biol. Interact. 2001, 130–132, 651–658. [Google Scholar] [CrossRef]
- Faucher, F.; Cantin, L.; Luu-The, V.; Labrie, F.; Breton, R. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition. Biochemistry 2008, 47, 13537–13546. [Google Scholar] [CrossRef] [PubMed]
- Carbone, V.; Chung, R.; Endo, S.; Hara, A.; El-Kabbani, O. Structure of aldehyde reductase in ternary complex with coenzyme and the potent 20α-hydroxysteroid dehydrogenase inhibitor 3,5-dichlorosalicylic acid: Implications for inhibitor binding and selectivity. Arch. Biochem. Biophys. 2008, 479, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Faucher, F.; Jia, Z. High-resolution structure of AKR1a4 in the apo form and its interaction with ligands. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 1271–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Sreenath, K.; Pavithra, L.; Roy, S.; Chattopadhyay, S. MAR1 regulates free radical stress through modulation of AKR1a4 enzyme activity. Int. J. Biochem. Cell. Biol. 2010, 42, 1105–1114. [Google Scholar] [CrossRef]
- Barski, O.A.; Tipparaju, S.M.; Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008, 40, 553–624. [Google Scholar] [CrossRef] [Green Version]
- Spite, M.; Baba, S.P.; Ahmed, Y.; Barski, O.A.; Nijhawan, K.; Petrash, J.M.; Bhatnagar, A.; Srivastava, S. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes. Biochem. J. 2007, 405, 95–105. [Google Scholar] [CrossRef] [Green Version]
- O’connor, T.; Ireland, L.S.; Harrison, D.J.; Hayes, J.D. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem. J. 1999, 343, 487–504. [Google Scholar] [CrossRef]
- Sousa, B.C.; Pitt, A.R.; Spickett, C.M. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radic. Biol. Med. 2017, 111, 294–308. [Google Scholar] [CrossRef]
- Sultana, R.; Perluigi, M.; Butterfield, D.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med. 2013, 62, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Uchida, K. HNE as an inducer of COX-2. Free Radic. Biol. Med. 2017, 111, 169–172. [Google Scholar] [CrossRef]
- Burczynski, M.E.; Sridhar, G.R.; Palackal, N.T.; Penning, T.M. The reactive oxygen species—And Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha,beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J. Biol. Chem. 2001, 276, 2890–2897. [Google Scholar] [CrossRef] [Green Version]
- Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019, 218, 112–131. [Google Scholar] [CrossRef]
- Moretto, N.; Volpi, G.; Pastore, F.; Facchinetti, F. Acrolein effects in pulmonary cells: Relevance to chronic obstructive pulmonary disease. Ann. N. Y. Acad. Sci. 2012, 1259, 39–46. [Google Scholar] [CrossRef]
- Tang, M.S.; Wang, H.T.; Hu, Y.; Chen, W.S.; Akao, M.; Feng, Z.; Hu, W. Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol. Nutr. Food Res. 2011, 55, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Corradi, M.; Pignatti, P.; Manini, P.; Andreoli, R.; Goldoni, M.; Poppa, M.; Moscato, G.; Balbi, B.; Mutti, A. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur. Respir. J. 2004, 24, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Iuchi, Y.; Kaneko, T.; Matsuki, S.; Ishii, T.; Ikeda, Y.; Uchida, K.; Fujii, J. Carbonyl stress and detoxification ability in the male genital tract and testis of rats. Histochem. Cell Biol. 2004, 121, 123–130. [Google Scholar] [CrossRef]
- Jarboe, L.R. YqhD: A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl. Microbiol. Biotechnol. 2011, 89, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Kurahashi, T.; Kwon, M.; Homma, T.; Saito, Y.; Lee, J.; Takahashi, M.; Yamada, K.; Miyata, S.; Fujii, J. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals. Biochem. Biophys. Res. Commun. 2014, 452, 136–141. [Google Scholar] [CrossRef]
- Gardner, R.; Kazi, S.; Ellis, E.M. Detoxication of the environmental pollutant acrolein by a rat liver aldo-keto reductase. Toxicol. Lett. 2004, 148, 65–72. [Google Scholar] [CrossRef]
- Kang, J.S.; Wanibuchi, H.; Morimura, K.; Wongpoomchai, R.; Chusiri, Y.; Gonzalez, F.J.; Fukushima, S. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol. Appl. Pharmacol. 2008, 228, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ferrari, M.; Ellis, E.M. Human aldo-keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79-4 cells. Chem. Biol. Interact. 2012, 195, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Jagoe, W.N.; Howe, K.; O’Brien, S.C.; Carroll, J. Identification of a role for a mouse sperm surface aldo-keto reductase (AKR1B7) and its human analogue in the detoxification of the reactive aldehyde, acrolein. Andrologia 2013, 45, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Lyon, R.C.; Li, D.; McGarvie, G.; Ellis, E.M. Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y cells. Neurochem. Int. 2013, 62, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U.C.S.; Ramana, K.V.; Srivastava, S.K. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells. Free Radic. Biol. Med. 2013, 65, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okado, A.; Kawasaki, Y.; Hasuike, Y.; Takahashi, M.; Teshima, T.; Fujii, J.; Taniguchi, N. Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem. Biophys. Res. Commun. 1996, 225, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Vander Jagt, D.L.; Robinson, B.; Taylor, K.K.; Hunsaker, L.A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem. 1992, 267, 4364–4369. [Google Scholar]
- Thornalley, P.J. The glyoxalase system in health and disease. Mol. Aspects Med. 1993, 14, 287–371. [Google Scholar] [CrossRef]
- Shinohara, M.; Thornalley, P.J.; Giardino, I.; Beisswenger, P.; Thorpe, S.R.; Onorato, J.; Brownlee, M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Investig. 1998, 101, 1142–1147. [Google Scholar] [CrossRef]
- Turner, A.J.; Illingworth, J.A.; Tipton, K.F. Simulation of biogenic amine metabolism in the brain. Biochem. J. 1974, 144, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.L.; Wermuth, B.; von Wartburg, J.P. Human brain aldehyde reductases: Relationship to succinic semialdehyde reductase and aldose reductase. J. Neurochem. 1980, 35, 354–366. [Google Scholar] [CrossRef]
- Kelly, V.P.; Sherratt, P.J.; Crouch, D.H.; Hayes, J.D. Novel homodimeric and heterodimeric rat gamma-hydroxybutyrate synthases that associate with the Golgi apparatus define a distinct subclass of aldo-keto reductase 7 family proteins. Biochem. J. 2002, 366, 847–861. [Google Scholar] [CrossRef] [Green Version]
- Alzeer, S.; Ellis, E.M. The role of aldehyde reductase AKR1A1 in the metabolism of gamma-hydroxybutyrate in 1321N1 human astrocytoma cells. Chem. Biol. Interact. 2011, 191, 303–307. [Google Scholar] [CrossRef]
- Alzeer, S.; Ellis, E.M. Metabolism of gamma hydroxybutyrate in human hepatoma HepG2 cells by the aldo-keto reductase AKR1A1. Biochem. Pharmacol. 2014, 92, 499–505. [Google Scholar] [CrossRef]
- Rendic, S.; Guengerich, F.P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Bains, O.S.; Karkling, M.J.; Lubieniecka, J.M.; Grigliatti, T.A.; Reid, R.E.; Riggs, K.W. Naturally occurring variants of human CBR3 alter anthracycline in vitro metabolism. J. Pharmacol. Exp. Ther. 2010, 332, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Plebuch, M.; Soldan, M.; Hungerer, C.; Koch, L.; Maser, E. Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes. Cancer Lett. 2007, 255, 49–56. [Google Scholar] [CrossRef]
- Pirolli, D.; Giardina, B.; Mordente, A.; Ficarra, S.; De Rosa, M.C. Understanding the binding of daunorubicin and doxorubicin to NADPH-dependent cytosolic reductases by computational methods. Eur. J. Med. Chem. 2012, 56, 145–154. [Google Scholar] [CrossRef]
- Hofman, J.; Skarka, A.; Havrankova, J.; Wsol, V. Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases. Biochem. Pharmacol. 2015, 96, 168–178. [Google Scholar] [CrossRef]
- Andrýs, R.; Zemanová, L.; Lenčo, J.; Bílková, Z.; Wsól, V. Carbonyl-reducing enzymes as targets of a drug-immobilised affinity carrier. Chem. Biol. Interact. 2015, 234, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Wan, L.L.; Yang, Q.J.; Han, Y.L.; Li, D.; Lu, J.; Guo, C. Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model. Toxicol. Lett. 2016, 259, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, R.H.; Bains, O.S.; Pfeifer, T.A.; Grigliatti, T.A.; Reid, R.E.; Riggs, K.W. Aldo-keto reductase 1C2 fails to metabolize doxorubicin and daunorubicin in vitro. Drug Metab. Dispos. 2008, 36, 991–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bains, O.S.; Takahashi, R.H.; Pfeifer, T.A.; Grigliatti, T.A.; Reid, R.E.; Riggs, K.W. Two allelic variants of aldo-keto reductase 1A1 exhibit reduced in vitro metabolism of daunorubicin. Drug Metab. Dispos. 2008, 36, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Novotná, E.; Morell, A.; Büküm, N.; Hofman, J.; Danielisová, P.; Wsól, V. Interactions of antileukemic drugs with daunorubicin reductases: Could reductases affect the clinical efficacy of daunorubicin chemoregimens? Arch. Toxicol. 2020, 94, 3059–3068. [Google Scholar] [CrossRef]
- Malátková, P.; Skarka, A.; Musilová, K.; Wsól, V. Reductive metabolism of tiaprofenic acid by the human liver and recombinant carbonyl reducing enzymes. Chem. Biol. Interact. 2017, 276, 121–126. [Google Scholar] [CrossRef]
- Wermuth, B.; Monder, C. Aldose and aldehyde reductase exhibit isocorticosteroid reductase activity. Eur. J. Biochem. 1983, 131, 423–426. [Google Scholar] [CrossRef]
- Penning, T.M.; Wangtrakuldee, P.; Auchus, R.J. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr. Rev. 2019, 40, 447–475. [Google Scholar] [CrossRef]
- Byrns, M.C.; Jin, Y.; Penning, T.M. Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): Overview and structural insights. J. Steroid. Biochem. Mol. Biol. 2011, 125, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K. Recent reports about enzymes related to the synthesis of prostaglandin (PG) F(2) (PGF(2α) and 9α, 11β-PGF(2)). J. Biochem. 2011, 150, 593–596. [Google Scholar] [CrossRef]
- Pastel, E.; Pointud, J.C.; Volat, F.; Martinez, A.; Lefrançois-Martinez, A.M. Aldo-Keto Reductases 1B in Endocrinology and Metabolism. Front. Pharmacol. 2012, 3, 148. [Google Scholar] [CrossRef] [Green Version]
- Pastel, E.; Pointud, J.C.; Loubeau, G.; Dani, C.; Slim, K.; Martin, G.; Volat, F.; Sahut-Barnola, I.; Val, P.; Martinez, A.; et al. Aldose reductases influence prostaglandin F2alpha levels and adipocyte differentiation in male mouse and human species. Endocrinology 2015, 156, 1671–1684. [Google Scholar] [CrossRef] [Green Version]
- Lacroix Pépin, N.; Chapdelaine, P.; Fortier, M.A. Evaluation of the prostaglandin F synthase activity of human and bovine aldo-keto reductases: AKR1A1s complement AKR1B1s as potent PGF synthases. Prostaglandins Other Lipid Mediat. 2013, 106, 124–132. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020, 101799. [Google Scholar] [CrossRef]
- Yabe-Nishimura, C. Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacol. Rev. 1998, 50, 21–33. [Google Scholar]
- Monnier, V.M. Intervention against the Maillard reaction in vivo. Arch. Biochem. Biophys. 2003, 419, 1–15. [Google Scholar] [CrossRef]
- Niwa, T. 3-Deoxyglucosone: Metabolism, analysis, biological activity, and clinical implication. J. Chromatogr. B Biomed. Sci. Appl. 1999, 731, 23–36. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018, 93, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Aragonès, G.; Rowan, S.G.; Francisco, S.; Yang, W.; Weinberg, J.; Taylor, A.; Bejarano, E. Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy. Antioxidants 2020, 9, 1062. [Google Scholar] [CrossRef]
- Prantner, D.; Nallar, S.; Vogel, S.N. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J. 2020, 34, 15659–15674. [Google Scholar] [CrossRef]
- Miyazawa, N.; Kawasaki, Y.; Fujii, J.; Theingi, M.; Hoshi, A.; Hamaoka, R.; Matsumoto, A.; Uozumi, N.; Teshima, T.; Taniguchi, N. Immunological detection of fructated proteins in vitro and in vivo. Biochem. J. 1998, 336, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, Y.; Fujii, J.; Miyazawa, N.; Hoshi, A.; Okado, A.; Tano, Y.; Taniguchi, N. Specific detections of the early process of the glycation reaction by fructose and glucose in diabetic rat lens. FEBS Lett. 1998, 441, 116–220. [Google Scholar] [CrossRef] [Green Version]
- Szwergold, B.S.; Kappler, F.; Brown, T.R. Identification of fructose 3-phosphate in the lens of diabetic rats. Science 1990, 247, 451–454. [Google Scholar] [CrossRef]
- Hayase, F.; Nagaraj, R.H.; Miyata, S.; Njoroge, F.G.; Monnier, V.M. Aging of proteins: Immunological detection of a glucose-derived pyrrole formed during maillard reaction in vivo. J. Biol. Chem. 1989, 264, 3758–3764. [Google Scholar] [CrossRef]
- Miyata, S.; Monnier, V. Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J. Clin. Investig. 1992, 89, 1102–1112. [Google Scholar] [CrossRef]
- Yamada, H.; Miyata, S.; Igaki, N.; Yatabe, H.; Miyauchi, Y.; Ohara, T.; Sakai, M.; Shoda, H.; Oimomi, M.; Kasuga, M. Increase in 3-deoxyglucosone levels in diabetic rat plasma. J. Biol. Chem. 1994, 269, 20275–20280. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999, 44, 109–116. [Google Scholar] [CrossRef]
- Kusunoki, H.; Miyata, S.; Ohara, T.; Liu, B.F.; Uriuhara, A.; Kojima, H.; Suzuki, K.; Miyazaki, H.; Yamashita, Y.; Inaba, K.; et al. Relation between serum 3-deoxyglucosone and development of diabetic microangiopathy. Diabetes Care 2003, 26, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Beisswenger, P.J.; Drummond, K.S.; Nelson, R.G.; Howell, S.K.; Szwergold, B.S.; Mauerm, M. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 2005, 54, 3274–3281. [Google Scholar] [CrossRef]
- Sakiyama, H.; Takahashi, M.; Yamamoto, T.; Teshima, T.; Lee, S.H.; Miyamoto, Y.; Misonou, Y.; Taniguchi, N. The internalization and metabolism of 3-deoxyglucosone in human umbilical vein endothelial cells. J. Biochem. 2006, 139, 245–253. [Google Scholar] [CrossRef]
- Kato, H.; van Chuyen, N.; Shinoda, T.; Sekiya, F.; Hayase, F. Metabolism of 3-deoxyglucosone, an intermediate compound in the Maillard reaction, administered orally or intravenously to rats. Biochim. Biophys. Acta. 1990, 1035, 71–76. [Google Scholar] [CrossRef]
- Knecht, K.J.; Feather, M.S.; Baynes, J.W. Detection of 3-deoxyfructose and 3-deoxyglucosone in human urine and plasma: Evidence for intermediate stages of the Maillard reaction in vivo. Arch. Biochem. Biophys. 1992, 294, 130–137. [Google Scholar] [CrossRef]
- Wells-Knecht, K.J.; Lyons, T.J.; McCance, D.R.; Thorpe, S.R.; Feather, M.S.; Baynes, J.W. 3-Deoxyfructose concentrations are increased in human plasma and urine in diabetes. Diabetes 1994, 43, 1152–1156. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Hayase, F.; Kato, H. Purification and characterization of NADPH-dependent 2-oxoaldehyde reductase from porcine liver. A self-defence enzyme preventing the advanced stage of the Maillard reaction. Eur. J. Biochem. 1991, 197, 373–379. [Google Scholar] [CrossRef]
- Kanazu, T.; Shinoda, M.; Nakayama, T.; Deyashiki, Y.; Hara, A.; Sawada, H. Aldehyde reductase is a major protein associated with 3-deoxyglucosone reductase activity in rat, pig and human livers. Biochem. J. 1991, 279, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Feather, M.S.; Flynn, T.G.; Munro, K.A.; Kubiseski, T.J.; Walton, D.J. Catalysis of reduction of carbohydrate 2-oxoaldehydes (osones) by mammalian aldose reductase and aldehyde reductase. Biochim. Biophys. Acta. 1995, 1244, 10–16. [Google Scholar] [CrossRef]
- Sato, K.; Inazu, A.; Yamaguchi, S.; Nakayama, T.; Deyashiki, Y.; Sawada, H.; Hara, A. Monkey 3-deoxyglucosone reductase: Tissue distribution and purification of three multiple forms of the kidney enzyme that are identical with dihydrodiol dehydrogenase, aldehyde reductase, and aldose reductase. Arch. Biochem. Biophys. 1993, 307, 286–294. [Google Scholar] [CrossRef]
- Matsuura, K.; Sato, K.; Deyashiki, Y.; Nakanishi, M.; Hara, A. 3-Deoxyglucosone reductase in dog adrenal glands. Identification as aldose reductase. Biol. Pharm. Bull. 1995, 18, 1765–1767. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Lu, Y.B.; Myint, T.; Fujii, J.; Wada, Y.; Taniguchi, N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: Identification of glycation sites. Biochemistry 1995, 34, 1433–1438. [Google Scholar] [CrossRef]
- Jiang, Q.; (Kobe University Graduate School of Medicine, Kobe, Japan); Muramoto, O.; (Kobe University Graduate School of Medicine, Kobe, Japan); Higo, S.; (Kobe University Graduate School of Medicine, Kobe, Japan); Odani, H.; (Fujita Health University School of Medicine, Toyoake, Japan); Tashiro, F.; (Osaka University Graduate School of Medicine, Osaka, Japan); Miyazaki, J.; (Osaka University Graduate School of Medicine, Osaka, Japan); Kasuga, M.; (Kobe University Graduate School of Medicine, Kobe, Japan); Miyata, S.; (Kobe University Graduate School of Medicine, Kobe, Japan). Personal communication, 2021.
- Flynn, T.G.; Shires, J.; Walton, D.J. Properties of the nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductase from pig kidney. Amino acid composition, reactivity of cysteinyl residues, and stereochemistry of d-glyceraldehyde reduction. J. Biol. Chem. 1975, 250, 2933–2940. [Google Scholar]
- Wermuth, B.; Münch, J.D.; von Wartburg, J.P. Purification and properties of NADPH-dependent aldehyde reductase from human liver. J. Biol. Chem. 1977, 252, 3821–3828. [Google Scholar] [CrossRef]
- Linster, C.L.; Van Schaftingen, E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 1994, 269, 13685–13688. [Google Scholar] [CrossRef]
- Buettner, G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. [Google Scholar] [CrossRef]
- Fujii, J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J. Clin. Biochem. Nutr. 2021, in press. [Google Scholar] [CrossRef]
- Gabbay, K.H.; Bohren, K.M.; Morello, R.; Bertin, T.; Liu, J.; Vogel, P. Ascorbate synthesis pathway: Dual role of ascorbate in bone homeostasis. J. Biol. Chem. 2010, 285, 19510–19520. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.W.; Chen, H.L.; Tu, M.Y.; Lin, W.Y.; Röhrig, T.; Yang, S.H.; Lan, Y.W.; Chong, K.Y.; Chen, C.M. A novel osteoporosis model with ascorbic acid deficiency in Akr1A1 gene knockout mice. Oncotarget 2017, 8, 7357–7369. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Miyata, S.; Fujii, J.; Inai, Y.; Ueyama, S.; Araki, M.; Soga, T.; Fujinawa, R.; Nishitani, C.; Ariki, S.; et al. In vivo role of aldehyde reductase. Biochim. Biophys. Acta. 2012, 1820, 1787–1796. [Google Scholar] [CrossRef]
- Ito, J.; Otsuki, N.; Zhang, X.; Konno, T.; Kurahashi, T.; Takahashi, M.; Yamato, M.; Matsuoka, Y.; Yamada, K.; Miyata, S.; et al. Ascorbic acid reverses the prolonged anesthetic action of pentobarbital in Akr1a-knockout mice. Life Sci. 2014, 95, 1–8. [Google Scholar] [CrossRef]
- Kurihara, K.; Homma, T.; Kobayashi, S.; Shichiri, M.; Fujiwara, H.; Fujii, S.; Yamada, K.I.; Nakane, M.; Kawamae, K.; Fujii, J. Ascorbic acid insufficiency impairs spatial memory formation in juvenile AKR1A-knockout mice. J. Clin. Biochem. Nutr. 2019, 65, 209–216. [Google Scholar] [CrossRef]
- Ishii, N.; Homma, T.; Takeda, Y.; Naing, Y.A.; Yamada, K.; Miyata, S.; Asao, H.; Yamakawa, M.; Fujii, J. Developmental retardation in neonates of aldehyde reductase (AKR1A)-deficient mice is associated with low ascorbic acid and high corticosterone levels. J. Nutr. Biochem. 2021, 91, 108604. [Google Scholar] [CrossRef]
- Akihara, R.; Homma, T.; Lee, J.; Yamada, K.; Miyata, S.; Fujii, J. Ablation of aldehyde reductase aggravates carbon tetrachloride-induced acute hepatic injury involving oxidative stress and endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2016, 478, 765–771. [Google Scholar] [CrossRef]
- Kurahashi, T.; Lee, J.; Nabeshima, A.; Homma, T.; Kang, E.S.; Saito, Y.; Yamada, S.; Nakayama, T.; Yamada, K.; Miyata, S.; et al. Ascorbic acid prevents acetaminophen-induced hepatotoxicity in mice by ameliorating glutathione recovery and autophagy. Arch. Biochem. Biophys. 2016, 604, 36–46. [Google Scholar] [CrossRef]
- Kang, E.S.; Lee, J.; Homma, T.; Kurahashi, T.; Kobayashi, S.; Nabeshima, A.; Yamada, S.; Seo, H.G.; Miyata, S.; Sato, H.; et al. xCT deficiency aggravates acetaminophen-induced hepatotoxicity under inhibition of the transsulfuration pathway. Free Radic. Res. 2017, 51, 80–90. [Google Scholar] [CrossRef]
- Homma, T.; Takeda, Y.; Nakano, T.; Akatsuka, S.; Kinoshita, D.; Kurahashi, T.; Saitoh, S.; Yamada, K.I.; Miyata, S.; Asao, H.; et al. Defective biosynthesis of ascorbic acid in Sod1-deficient mice results in lethal damage to lung tissue. Free Radic. Biol. Med. 2021, 162, 255–265. [Google Scholar] [CrossRef]
- Nishida, H.; Kurahashi, T.; Saito, Y.; Otsuki, N.; Kwon, M.; Ohtake, H.; Yamakawa, M.; Yamada, K.I.; Miyata, S.; Tomita, Y.; et al. Kidney fibrosis is independent of the amount of ascorbic acid in mice with unilateral ureteral obstruction. Free Radic. Res. 2014, 48, 1115–1124. [Google Scholar] [CrossRef]
- Homma, T.; Akihara, R.; Okano, S.; Shichiri, M.; Yoshida, Y.; Yamada, K.I.; Miyata, S.; Nakajima, O.; Fujii, J. Heightened aggressive behavior in mice deficient in aldo-keto reductase 1a (Akr1a). Behav. Brain Res. 2017, 319, 219–224. [Google Scholar] [CrossRef]
- Chen, Y.; Curran, C.P.; Nebert, D.W.; Patel, K.V.; Williams, M.T.; Vorhees, C.V. Effect of vitamin C deficiency during postnatal development on adult behavior: Functional phenotype of Gulo-/-knockout mice. Genes Brain Behav. 2012, 11, 269–277. [Google Scholar] [CrossRef]
- Takahashi, M.; Homma, T.; Yamada, K.I.; Miyata, S.; Nakajima, O.; Fujii, J. Genetic ablation of aldehyde reductase (Akr1a) augments exercise endurance in mice via activation of the PGC-1α-involved pathway. Life Sci. 2020, 249, 117501. [Google Scholar] [CrossRef]
- Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Sasson, S. 4-Hydroxyalkenal-activated PPARdelta mediates hormetic interactions in diabetes. Biochimie 2017, 136, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Homma, T.; Shirato, T.; Akihara, R.; Kobayashi, S.; Lee, J.; Yamada, K.I.; Miyata, S.; Takahashi, M.; Fujii, J. Mice deficient in aldo-keto reductase 1a (Akr1a) are resistant to thioacetamide-induced liver injury. Toxicol. Lett. 2018, 294, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Moon, G.; Kobayashi, S.; Naing, A.Y.; Yamada, K.I.; Yamakawa, M.; Fujii, J. Iron loading exerts synergistic action via a different mechanistic pathway from that of acetaminophen-induced hepatic injury in mice. Free Radic. Res. 2020, 54, 606–619. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, B.; Zhou, B.; Yang, L.; Cha, C.; Xu, S.; Qiu, X.; Wang, Q.; Sun, H.; Lou, X.; et al. Quantitative analysis of the human AKR family members in cancer cell lines using the mTRAQ/MRM approach. J. Proteome. Res. 2013, 12, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Wei, M.; Zhao, L.; Yu, Y.; Li, G. Identification of a novel glycolysis-related gene signature that can predict the survival of patients with lung adenocarcinoma. Cell Cycle 2019, 18, 568–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmachevskaya, O.V.; Shumaev, K.B.; Topunov, A.F. Electrophilic Signaling: The Role of Reactive Carbonyl Compounds. Biochemistry (Mosc.) 2019, 84 (Suppl. S1), S206–S224. [Google Scholar] [CrossRef]
- Lan, Q.; Zheng, T.; Shen, M.; Zhang, Y.; Wang, S.S.; Zahm, S.H.; Holford, T.R.; Leaderer, B.; Boyle, P.; Chanock, S. Genetic polymorphisms in the oxidative stress pathway and susceptibility to non-Hodgkin lymphoma. Hum. Genet. 2007, 121, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Milkovic, L.; Zarkovic, N.; Saso, L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. 2017, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Chang, J.W.; Yun, H.S.; Yang, K.M.; Hong, E.H.; Kim, D.H.; Um, H.D.; Lee, K.H.; Lee, S.J.; Hwang, G. Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production. Proteomics 2010, 10, 2589–2604. [Google Scholar] [CrossRef]
- Kim, J.S.; Chang, J.W.; Park, J.K.; Hwang, S.G. Increased aldehyde reductase expression mediates acquired radioresistance of laryngeal cancer cells via modulating p53. Cancer Biol. Ther. 2012, 13, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Short, D.M.; Lyon, R.; Watson, D.G.; Barski, O.A.; McGarvie, G.; Ellis, E.M. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4. Toxicol. Appl. Pharmacol. 2006, 210, 163–720. [Google Scholar] [CrossRef]
- Palackal, N.T.; Burczynski, M.E.; Harvey, R.G.; Penning, T.M. Metabolic activation of polycyclic aromatic hydrocarbon trans-dihydrodiols by ubiquitously expressed aldehyde reductase (AKR1A1). Chem. Biol. Interact. 2001, 130–132, 815–824. [Google Scholar] [CrossRef]
- Palackal, N.T.; Burczynski, M.E.; Harvey, R.G.; Penning, T.M. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: Potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 2001, 40, 10901–10910. [Google Scholar] [CrossRef]
- Penning, T.M.; Burczynski, M.E.; Hung, C.F.; McCoull, K.D.; Palackal, N.T.; Tsuruda, L.S. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chem. Res. Toxicol. 1999, 12, 1–18. [Google Scholar] [CrossRef]
- Jiang, H.; Shen, Y.M.; Quinn, A.M.; Penning, T.M. Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (+/−)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Chem. Res. Toxicol. 2005, 18, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Vudathala, D.K.; Blair, I.A.; Penning, T.M. Competing roles of aldo-keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells: Role of AKRs in P4501B1 induction. Chem. Res. Toxicol. 2006, 19, 68–78. [Google Scholar] [CrossRef]
- Park, J.H.; Mangal, D.; Tacka, K.A.; Quinn, A.M.; Harvey, R.G.; Blair, I.A.; Penning, T.M. Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proc. Natl. Acad. Sci. USA 2008, 105, 6846–6851. [Google Scholar] [CrossRef] [Green Version]
- Abedin, Z.; Sen, S.; Field, J. Aldo-keto reductases protect lung adenocarcinoma cells from the acute toxicity of B[a]P-7,8-trans-dihydrodiol. Chem. Res. Toxicol. 2012, 25, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caino, M.C.; Oliva, J.L.; Jiang, H.; Penning, T.M.; Kazanietz, M.G. Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells. Mol. Pharmacol. 2007, 71, 744–750. [Google Scholar] [CrossRef]
- Canuto, R.A.; Muzio, G.; Maggiora, M.; Biocca, M.E.; Dianzani, M.U. Glutathione-S-transferase, alcohol dehydrogenase and aldehyde reductase activities during diethylnitrosamine-carcinogenesis in rat liver. Cancer Lett. 1993, 8, 177–183. [Google Scholar] [CrossRef]
- Koh, Y.H.; Park, Y.S.; Takahashi, M.; Suzuki, K.; Taniguchi, N. Aldehyde reductase gene expression by lipid peroxidation end products, MDA and HNE. Free Radic. Res. 2000, 33, 739–746. [Google Scholar] [CrossRef]
- Ishii, N.; Homma, T.; Guo, X.; Yamada, K.I.; Yamada, S.; Fujii, J. Ascorbic acid prevents N-nitrosodiethylamine-induced hepatic injury and hepatocarcinogenesis in Akr1a-knockout mice. Toxicol. Lett. 2020, 333, 192–201. [Google Scholar] [CrossRef]
- Takahashi, M.; Fujii, J.; Miyoshi, E.; Hoshi, A.; Taniguchi, N. Elevation of aldose reductase gene expression in rat primary hepatoma and hepatoma cell lines: Implication in detoxification of cytotoxic aldehydes. Int. J. Cancer. 1995, 62, 749–754. [Google Scholar] [CrossRef]
- Takahashi, M.; Hoshi, A.; Fujii, J.; Miyoshi, E.; Kasahara, T.; Suzuki, K.; Aozasa, K.; Taniguchi, N. Induction of aldose reductase gene expression in LEC rats during the development of the hereditary hepatitis and hepatoma. Jpn. J. Cancer Res. 1996, 87, 337–341. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Zhang, S.; Dong, W.; Lou, X.; Liu, S. Quantitative evaluation of aldo-keto reductase expression in hepatocellular carcinoma (HCC) cell lines. Genom. Proteom. Bioinform. 2013, 11, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Seth, D.; Hess, D.T.; Hausladen, A.; Wang, L.; Wang, Y.J.; Stamler, J.S. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation. Mol. Cell. 2018, 69, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Protein S-nitrosylation: A physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001, 3, 193–197. [Google Scholar] [CrossRef]
- Benhar, M.; Forrester, M.T.; Stamler, J.S. Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 2009, 10, 721–732. [Google Scholar] [CrossRef]
- Hess, D.T.; Matsumoto, A.; Kim, S.O.; Marshall, H.E.; Stamler, J.S. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol. 2005, 6, 150–166. [Google Scholar] [CrossRef]
- Kayki-Mutlu, G.; Koch, W.J. Nitric Oxide and S-Nitrosylation in Cardiac Regulation: G Protein-Coupled Receptor Kinase-2 and β-Arrestins as Targets. Int. J. Mol. Sci. 2021, 22, E521. [Google Scholar] [CrossRef]
- Jensen, D.E.; Belka, G.K.; Du Bois, G.C. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem. J. 1998, 331, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Hausladen, A.; Zeng, M.; Que, L.; Heitman, J.; Stamler, J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 2001, 410, 490–494. [Google Scholar] [CrossRef]
- Bateman, R.L.; Rauh, D.; Tavshanjian, B.; Shokat, K.M. Human carbonyl reductase 1 is an S-nitrosoglutathione reductase. J. Biol. Chem. 2008, 283, 35756–35762. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Hausladen, A.; Wang, Y.J.; Zhang, G.F.; Stomberski, C.; Brunengraber, H.; Hess, D.T.; Stamler, J.S. Identification of S-nitroso-CoA reductases that regulate protein S-nitrosylation. Proc. Natl. Acad. Sci. USA 2014, 111, 18572–18577. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.L.; Zhang, R.; Anand, P.; Stomberski, C.T.; Qian, Z.; Hausladen, A.; Wang, L.; Rhee, E.P.; Parikh, S.M.; Karumanchi, S.A.; et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 2019, 565, 96–100. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujii, J.; Homma, T.; Miyata, S.; Takahashi, M. Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites 2021, 11, 343. https://doi.org/10.3390/metabo11060343
Fujii J, Homma T, Miyata S, Takahashi M. Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites. 2021; 11(6):343. https://doi.org/10.3390/metabo11060343
Chicago/Turabian StyleFujii, Junichi, Takujiro Homma, Satoshi Miyata, and Motoko Takahashi. 2021. "Pleiotropic Actions of Aldehyde Reductase (AKR1A)" Metabolites 11, no. 6: 343. https://doi.org/10.3390/metabo11060343
APA StyleFujii, J., Homma, T., Miyata, S., & Takahashi, M. (2021). Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites, 11(6), 343. https://doi.org/10.3390/metabo11060343