Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model
Abstract
:1. Introduction
2. Results
2.1. Maternal Body Weight and Glucose Metabolism
2.2. Body Weight and Systemic Metabolism in the Offspring
2.3. Liver and Thymus Glucose Uptake in the Offspring
2.4. Liver Histology, Transaminases, Triglycerides
2.5. Correlations
3. Discussion
4. Materials and Methods
4.1. Animal Model and Study Design
4.2. [18F]-FDG PET
4.3. Histological Analysis
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzzardi, M.A.; Liistro, T.; Gargani, L.; Ait Ali, L.; D’Angelo, G.; Rocchiccioli, S.; La Rosa, F.; Kemeny, A.; Sanguinetti, E.; Ucciferri, N.; et al. Maternal obesity and cardiac development in the offspring: Study in human neonates and minipigs. J. Am. Coll. Cardiol. Cardiovasc. Imaging 2018, 11, 1750–1755. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, E.; Liistro, T.; Mainardi, M.; Pardini, S.; Salvadori, P.A.; Vannucci, A.; Burchielli, S.; Iozzo, P. Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: Positron emission tomography study in a porcine model. Diabetologia 2016, 59, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. A Fetal origins of coronary heart disease. BMJ 1995, 311, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.G.; Sandboge, S.; Salonen, M.K.; Kajantie, E.; Osmond, C. Long-term consequences of maternal overweight in pregnancy on offspring later health: Findings from the Helsinki birth cohort study. Ann. Med. 2014, 46, 434–438. [Google Scholar] [CrossRef]
- Johns, J.L.; Christopher, M.M. Extramedullary hematopoiesis: A new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet. Pathol. 2012, 49, 508–523. [Google Scholar] [CrossRef]
- Yamamoto, K.; Miwa, Y.; Abe-Suzuki, S.; Abe, S.; Kirimura, S.; Onishi, I.; Kitagawa, M.; Kurata, M. Extramedullary hematopoiesis: Elucidating the function of the hematopoietic stem cell niche (Review). Mol. Med. Rep. 2016, 13, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Liu, F. Fetal liver: An ideal niche for hematopoietic stem cell expansion. Sci. China Life Sci. 2018, 61, 885–892. [Google Scholar] [CrossRef]
- Fanni, D.; Angotzi, F.; Lai, F.; Gerosa, C.; Senes, G.; Fanos, V.; Faa, G. Four stages of hepatic hematopoiesis in human embryos and fetuses. J. Matern.-Fetal Neonatal Med. 2018, 31, 701–707. [Google Scholar] [CrossRef]
- Kordes, C.; Haussinger, D. Hepatic stem cell niches. J. Clin. Investig. 2013, 123, 1874–1880. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, H.; Ohmura, K.; Hattori, N.; Katsura, Y. Hemopoietic progenitors in the murine fetal liver capable of rapidly generating T cells. J. Immunol. 1997, 158, 3118–3124. [Google Scholar] [PubMed]
- Borgelt, J.M.A.; Mollers, M.; Falkenberg, M.K.; Amler, S.; Klockenbusch, W.; Schmitz, R. Assessment of first-trimester thymus size and correlation with maternal diseases and fetal outcome. Acta Obstet. Gynecol. Scand. 2016, 95, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Rabinowich, H.; Umiel, T.; Globerson, A. T cell progenitors in the mouse fetal liver. Transplantation 1983, 35, 40–48. [Google Scholar] [CrossRef]
- Kamimae-Lanning, A.N.; Krasnow, S.M.; Goloviznina, N.A.; Zhu, X.; Roth-Carter, Q.R.; Levasseur, P.R.; Jeng, S.; McWeeney, S.K.; Kurre, P.; Marks, D.L. Maternal high-fat diet and obesity compromise fetal hematopoiesis. Mol. Metab. 2014, 4, 25–38. [Google Scholar] [CrossRef]
- Michalek, R.D.; Rathmell, J.C. The metabolic life and times of a T-cell. Immunol. Rev. 2010, 236, 190–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, B.D.; Rudrappa, S.G. Increased glucose availability activates chicken thymocyte metabolism and survival. J. Nutr. 2008, 138, 1153–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinzón, O.A.; Sánchez, J.C.; Sepúlveda-Arias, J.C.; López-Zapata, D.F. Assessment of human lymphocyte proliferation associated with metabolic syndrome. J. Endocrinol. Investig. 2015, 38, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.; Harrell, A.; Liu, X.; Gilchrist, J.M.; Ronis, M.J.J.; Badger, T.M. Maternal obesity at conception programs obesity in the offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R528–R538. [Google Scholar] [CrossRef]
- Ashino, N.G.; Saito, K.N.; Souza, F.D.; Nakutz, F.S.; Roman, E.A.; Velloso, L.A.; Torsoni, A.S.; Torsoni, M.A. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J. Nutr. Biochem. 2012, 23, 341–348. [Google Scholar] [CrossRef]
- Fisher, R.E.; Steele, M.; Karrow, N.A. Fetal programming of the neuroendocrine-immune system and metabolic disease. J. Pregnancy 2012, 2012, 792934. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Perez, G.; Santana dos Santos, L.; dos Santos Cordeiro, G.; Matos Paraguassú, G.; Abensur Athanazio, D.; Couto, R.D.; Bonfim de Jesus Deiró, T.C.; Manhães de Castro, R.; Barreto-Medeiros, J.M. Maternal and post-weaning exposure to a high fat diet promotes visceral obesity and hepatic steatosis in adult rats. Nutr. Hosp. 2015, 32, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Bruce, K.D.; Cagampang, F.R.; Argenton, M.; Zhang, J.; Ethirajan, P.L.; Burdge, G.C.; Bateman, A.C.; Clough, G.F.; Poston, L.; Hanson, M.A.; et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 2009, 50, 1796–1808. [Google Scholar] [CrossRef]
- Spurlock, M.E.; Gabler, N.K. The development of porcine models of obesity and the metabolic syndrome. J. Nutr. 2008, 138, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Rebholz, S.L.; Jones, T.; Burke, K.T.; Jaeschke, A.; Tso, P.; D’Alessio, D.A.; Woollett, L.A. Multiparity leads to obesity and inflammation in mothers and obesity in male offspring. Am. J. Physiol. Endocrinol. Metab. 2011, 302, E449–E457. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.M.; Presley, L.; Minium, J.; Hauguel-de Mouzon, S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 2009, 32, 1076–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Reynolds, C.M.; Sloboda, D.M.; Gray, C.; Vickers, M.H. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. PLoS ONE 2013, 8, e76961. [Google Scholar] [CrossRef] [Green Version]
- Odaka, Y.; Nakano, M.; Tanaka, T.; Kaburagi, T.; Yoshino, H.; Sato-Mito, N.; Sato, K. The influence of a high-fat dietary environment in the fetal period on postnatal metabolic and immune function. Obesity 2010, 18, 1688–1694. [Google Scholar] [CrossRef]
- Iozzo, P.; Holmes, M.; Schmidt, M.V.; Cirulli, F.; Guzzardi, M.A.; Berry, A.; Balsevich, G.; Andreassi, M.G.; Wesselink, J.J.; Liistro, T.; et al. Developmental ORIgins of Healthy and Unhealthy AgeiNg: The role of maternal obesity-introduction to DORIAN. Obes. Facts 2014, 7, 130–151. [Google Scholar] [CrossRef]
- Bodey, B.; Bodey, B., Jr.; Siegel, S.E.; Kaiser, H.E. Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 1997, 11, 421–440. [Google Scholar]
- Westphal, S.A. Obesity, abdominal obesity, and insulin resistance. Clin. Cornerstone 2008, 9, 23–31. [Google Scholar] [CrossRef]
- Bell, A.W.; Bauman, D.E. Adaptations of Glucose Metabolism during Pregnancy and Lactation. J. Mammary Gland Biol. Neoplasia 1997, 2, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.C.; Smith, M.S.; Connolly, C.C. Pregnancy augments hepatic glucose storage in response to a mixed meal. Br. J. Nutr. 2012, 107, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Jungheim, E.S.; Schoeller, E.L.; Marquard, K.L.; Louden, E.D.; Schaffer, J.E.; Moley, K.H. Diet-induced obesity model: Abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 2010, 51, 4039–4046. [Google Scholar] [CrossRef] [Green Version]
- Christians, J.K.; Lennie, K.I.; Wild, L.K.; Garcha, R. Effects of high-fat diets on fetal growth in rodents: A systematic review. Reprod. Biol. Endocrinol. 2019, 17, 39. [Google Scholar] [CrossRef]
- Ong, K.K.; Ahmed, M.L.; Emmett, P.M.; Preece, M.A.; Dunger, D.B. Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. BMJ 2000, 320, 967–971. [Google Scholar] [CrossRef] [Green Version]
- Poston, L.; Harthoorn, L.F.; Van Der Beek, E.M. Obesity in pregnancy: Implications for the mother and lifelong health of the child. A consensus statement. Pediatr. Res. 2011, 69, 175–180. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Tong, C.; Zhang, H.; Lawlis, G.B.; Li, Y.; Zang, M.; Ren, J.; Nijland, M.J.; Ford, S.P.; et al. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. Fed. Am. Soc. Exp. Biol. J. 2010, 24, 2066–2076. [Google Scholar] [CrossRef] [Green Version]
- Lomas-Soria, C.; Reyes-Castro, L.A.; Rodríguez-González, G.L.; Ibáñez, C.A.; Bautista, C.J.; Cox, L.A.; Nathanielsz, P.W.; Zambrano, E. Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J. Physiol. 2018, 596, 4611–4628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiducci, L.; Lionetti, V.; Burchielli, S.; Simi, C.; Masi, S.; Liistro, T.; Pardini, S.; Porciello, C.; Di Cecco, P.; Vettor, R.; et al. A dose-response elevation in hepatic glucose uptake is paralleled by liver triglyceride synthesis and release. Endocr. Res. 2011, 36, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Misra, A. Hepatic steatosis, insulin resistance, and adipose tissue disorders. J. Clin. Endocrinol. Metab. 2002, 87, 3019–3022. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.D.; Cismowski, M.J.; Trask, A.J.; Lallier, S.W.; Graf, A.E.; Rogers, L.K.; Lucchesi, P.A.; Brigstock, D.R. Enhanced steatosis and fibrosis in liver of adult offspring exposed to maternal high-fat diet. Gene Expr. 2016, 17, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Kačarević, Ž.P.; Grgić, A.; Šnajder, D.; Bijelić, N.; Belovari, T.; Cvijanović, O.; Blažičević, V.; Radić, R. Different combinations of maternal and postnatal diet are reflected in changes of hepatic parenchyma and hepatic TNF-alpha expression in male rat offspring. Acta Histochem. 2017, 119, 719–726. [Google Scholar] [CrossRef]
- McCurdy, C.E.; Bishop, J.M.; Williams, S.M.; Grayson, B.E.; Smith, M.S.; Friedman, J.E.; Grove, K.L. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J. Clin. Investig. 2009, 119, 323–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes 2020, 12, 1824564. [Google Scholar] [CrossRef]
- Trottier, M.D.; Naaz, A.; Li, Y.; Fraker, P.J. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc. Natl. Acad. Sci. USA 2012, 109, 7622–7629. [Google Scholar] [CrossRef] [Green Version]
- Frauwirth, K.A.; Thompson, C.B. Regulation of T lymphocyte metabolism. J. Immunol. 2004, 172, 4661–4665. [Google Scholar] [CrossRef] [Green Version]
- Stentz, F.B.; Kitabchi, A.E. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes. Genom. Proteom. Bioinform. 2007, 5, 216–235. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, S.R.; Han, D.H.; Yu, H.T.; Han, Y.D.; Kim, J.H.; Kim, S.H.; Lee, C.J.; Min, B.H.; Kim, D.H.; et al. Senescent T Cells Predict the Development of Hyperglycemia in Humans. Diabetes 2019, 68, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thie, J.A. Clarification of a fractional uptake concept. J. Nucl. Med. 1995, 36, 711–712. [Google Scholar] [PubMed]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, U.D.; Zhong, Y.; Kang, P.; Alfaro, M.; Chintapalli, S.V.; Piccolo, B.D.; Mercer, K.E.; Andres, A.; Thakali, K.M.; Shankar, K. Maternal High-Fat Diet Programs Offspring Liver Steatosis in a Sexually Dimorphic Manner in Association with Changes in Gut Microbial Ecology in Mice. Sci. Rep. 2018, 8, 16502. [Google Scholar] [CrossRef] [PubMed]
- Savva, C.; Helguero, L.A.; González-Granillo, M.; Couto, D.; Melo, T.; Li, X.; Angelin, B.; Domingues, M.R.; Kutter, C.; Korach-André, M. Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Commun. Biol. 2021, 4, 14. [Google Scholar] [CrossRef] [PubMed]
FIRST PREGNANCY | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | ND | n | HFD | p | n | ND | n | HFD | p | |
Before Gestation | During Gestation (Two Weeks before Delivery) | |||||||||
Body weight (kg) | 5 | 24.8 ± 2.1 | 5 | 33.0 ± 2.8 | 0.05 | 5 | 41.6 ± 2.0 | 5 | 55.6 ± 4.0 | 0.01 |
Waist circumference (cm) | 5 | 82.2 ± 0.9 | 5 | 90.6 ± 4.6 | ns | 5 | 103.4 ± 2.1 | 5 | 113.4 ± 3.3 | 0.03 |
Fasting glycemia (mmol/L) | 5 | 2.87 ± 0.27 | 5 | 3.20 ± 0.32 | ns | 5 | 2.63 ± 0.48 | 5 | 2.79 ± 0.28 | ns |
Whole body insulin sensitivity (mg/(kg·min)) | 5 | 8.03 ± 0.61 | 5 | 6.29 ± 0.84 | ns | 5 | 7.54 ± 0.79 | 5 | 5.86 ± 0.86 | ns |
Liver glucose uptake (GU) (µmol/(mL·min)) | 5 | 0.13 ± 0.02 | 5 | 0.16 ± 0.01 | ns | 5 | 0.19 ± 0.03 # | 5 | 0.15 ± 0.01 | ns |
Duration of first gestation (days) | - | - | - | - | - | 5 | 112 ± 1 | 4 | 111 ± 2 | ns |
SECOND PREGNANCY | ||||||||||
n | ND | n | NdD | p | n | ND | n | NdD | p | |
Before Gestation | During Gestation (Two Weeks before Delivery) | |||||||||
Body weight (kg) | 4 | 48.8 ± 4.8 | 4 | 47.5 ± 3.2 | ns | 3 | 60.00 ± 2.89 | 4 | 59.75 ± 1.03 | ns |
Weight gain between two pregnancies (kg) | 4 | 6.5 ± 3.2 | 4 | −7.0 ± 2.7 | 0.02 | - | - | - | - | - |
Waist circumference (cm) | 4 | 105.3 ± 3.5 | 4 | 102.3 ± 3.9 | ns | 3 | 118.33 ± 3.67 | 4 | 117.75 ± 2.75 | ns |
Fasting glycemia (mmol/L) | 4 | 3.60 ± 0.47 | 4 | 2.60 ± 0.31 | ns | 3 | 2.60 ± 0.21 | 4 | 2.85 ± 0.21 | ns |
Whole body insulin sensitivity (mg/(kg·min)) | 4 | 5.12 ± 1.05 | 4 | 3.77 ± 0.61 | ns | 3 | 6.23 ± 0.68 | 4 | 6.14 ± 0.48 # | ns |
Liver glucose uptake (GU) (µmol/(mL·min)) | 4 | 0.16 ± 0.03 | 3 | 0.18 ± 0.01 | ns | 3 | 0.20 ± 0.03 | 4 | 0.12 ± 0.02 # | 0.06 |
Duration of second gestation (days) | - | - | - | - | - | 3 | 109 ± 2 | 4 | 111 ± 0 | ns |
FIRST PREGNANCY | |||
---|---|---|---|
Waist Circumference (cm) | Basal Glycemia (mmol/L) | Basal Insulinemia (mU/L) | |
One-week (At birth) | |||
NDoff | 22.9 ± 1.3 (n = 11) | 6.6 ± 0.6 (n = 11) | 11.4 ± 2.9 (n = 9) |
HFDoff | 24.3 ± 0.8 (n = 8) | 8.3 ± 0.7 ^ (n = 8) | 22.6 ± 7.8 ^ (n = 3) |
1-month (Infancy) | |||
NDoff | 37.1 ± 1.1 (n = 17) | 5.3 ± 0.2 (n = 16) | 11.1 ± 2.6 (n = 7) |
HFDoff | 37.0 ± 0.7 (n = 20) | 5.8 ± 0.4 (n = 20) | 10.6 ± 3.2 (n = 5) |
6-months (Early adulthood) | |||
NDoff | 62.2 ± 1.2 (n = 13) | 3.7 ± 0.4 (n = 13) | 4.6 ± 1.1 (n = 10) |
HFDoff | 64.2 ± 1.6 (n = 12) | 3.2 ± 0.2 (n = 12) | 9.6 ± 3.8 (n = 9) |
12-months (Late adulthood) | |||
NDoff | 75.3 ± 2.9 (n = 4) | 3.4 ± 0.2 (n = 4) | 2.8 ± 0.9 (n = 4) |
HFDoff | 75.8 ± 4.0 (n = 4) | 2.6 ± 0.9 (n = 4) | 3.1 ± 2.0 (n = 3) |
SECOND PREGNANCY | |||
One-week (At birth) | |||
NDoff | 24.9 ± 0.5 (n = 9) | 7.7 ± 0.4 (n = 9) | 13.7 ± 2.7 (n = 9) |
NdDoff | 27.0 ± 0.4 (n = 4) | 8.3 ± 0.5 (n = 4) | 7.5 ± 6.1 (n = 2) |
1-month (Infancy) | |||
NDoff | 39.5 ± 0.7 § (n = 15) | 5.1 ± 0.2 (n = 15) | 17.1 ± 4.2 (n = 4) |
NdDoff | 39.6 ± 0.8 # (n = 11) | 6.3 ± 0.5 * (n = 11) | 5.0 ± 0.9 * (n = 6) |
6-months (Early adulthood) | |||
NDoff | 71.5 ± 1.7 ### (n = 8) | 3.6 ± 0.3 (n = 8) | 6.2 ± 1.3 (n = 7) |
NdDoff | 62.8 ± 1.6 ** (n = 9) | 3.8 ± 0.4 (n = 9) | 3.4 ± 0.8 (n = 8) |
12-months (Late adulthood) | |||
NDoff | 91.5 ± 0.5 # (n = 2) | 2.1 ± 0.2 § (n = 2) | 3.0 ± 1.8 (n = 2) |
NdDoff | 74.0 ± 2.3 * (n = 3) | 3.5 ± 0.7 ^^ (n = 3) | 2.3 ± 1.7 (n = 3) |
First Pregnancy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
At One-Week | At 6-Months | At 12-Months | ||||||||
Score | NDoff | HFDoff | p | NDoff | HFDoff | p | NDoff | HFDoff | p | |
Microcirculation | ||||||||||
PV dilatation | Yes/No | 100/0 | 100/0 | ns | 100/0 | 100/0 | ns | 100/0 | 100/0 | ns |
CV dilatation | Yes/No | 100/0 | 100/0 | ns | 100/0 | 100/0 | ns | 100/0 | 100/0 | ns |
Sinusoid dilatation | Yes/No | 36/64 | 43/57 | ns | 100/0 | 100/0 | ns | 75/25 | 100/0 | ns |
Fibrosis | ||||||||||
Portal | Yes/No | 9/91 | 0/100 | ns | 50/50 | 67/33 | ns | 100/0 | 75/25 | ns |
Perisinusoidal | Yes/No | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns |
Perivenous | Yes/No | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns | 25/75 | 0/100 | ns |
Portal inflammation | Yes/No | 27/73 | 29/71 | ns | 17/83 | 33/67 | ns | 75/25 | 75/25 | ns |
Lobular damage | ||||||||||
Lobular inflammation | Yes/No | 9/91 | 29/71 | ns | 17/83 | 0/100 | ns | 25/75 | 25/75 | ns |
Ballooning degeneration | Yes/No | 36/64 | 71/29 | ns | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns |
Cumulative steato-inflammatory score § | NAFLD/Healthy | 82/18 | 86/14 | ns | 17/83 | 100/0 | * | 0/100 | 50/50 | ns |
Second pregnancy | ||||||||||
NDoff | NdDoff | NDoff | NdDoff | NDoff | NdDoff | |||||
Microcirculation | ||||||||||
PV dilatation | Yes/No | 100/0 | 100/0 | ns | 100/0 | 100/0 | ns | 100/0 | 100/0 | ns |
CV dilatation | Yes/No | 89/11 | 100/0 | ns | 100/0 | 100/0 | ns | 50/50 | 100/0 | ns |
Sinusoid dilatation | Yes/No | 11/89 | 0/100 | ns | 80/20 | 60/40 | ns | 50/50 | 100/0 | ns |
Fibrosis | ||||||||||
Portal | Yes/No | 0/100 | 0/100 | ns | 0/100 | 40/60 | ns | 50/50 | 33/67 | ns |
Perisinusoidal | Yes/No | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns |
Perivenous | Yes/No | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns |
Portal inflammation | Yes/No | 56/44 | 33/67 | ns | 20/80 | 80/20 | ns | 50/50 | 33/67 | ns |
Lobular damage | ||||||||||
Lobular inflammation | Yes/No | 0/100 | 33/67 | # | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns |
Ballooning degeneration | Yes/No | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns | 0/100 | 0/100 | ns |
Cumulative steato-inflammatory score § | NAFLD/Healthy | 0/100 | 0/100 | ns | 40/60 | 40/60 | ns | 50/50 | 100/0 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Rosa, F.; Guiducci, L.; Guzzardi, M.A.; Cacciato Insilla, A.; Burchielli, S.; Brunetto, M.R.; Bonino, F.; Campani, D.; Iozzo, P. Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model. Metabolites 2021, 11, 800. https://doi.org/10.3390/metabo11120800
La Rosa F, Guiducci L, Guzzardi MA, Cacciato Insilla A, Burchielli S, Brunetto MR, Bonino F, Campani D, Iozzo P. Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model. Metabolites. 2021; 11(12):800. https://doi.org/10.3390/metabo11120800
Chicago/Turabian StyleLa Rosa, Federica, Letizia Guiducci, Maria Angela Guzzardi, Andrea Cacciato Insilla, Silvia Burchielli, Maurizia Rossana Brunetto, Ferruccio Bonino, Daniela Campani, and Patricia Iozzo. 2021. "Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model" Metabolites 11, no. 12: 800. https://doi.org/10.3390/metabo11120800
APA StyleLa Rosa, F., Guiducci, L., Guzzardi, M. A., Cacciato Insilla, A., Burchielli, S., Brunetto, M. R., Bonino, F., Campani, D., & Iozzo, P. (2021). Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model. Metabolites, 11(12), 800. https://doi.org/10.3390/metabo11120800