1H NMR Based Metabolomics in Human Sepsis and Healthy Serum
Abstract
:1. Introduction
2. Results
2.1. Patients
2.2. Serum Metabolites
3. Discussion
4. Material and Methods
4.1. Patients
4.2. Blood Samples
4.3. Proton Nuclear Magnetic Resonance Spectroscopy
4.4. Statistical Analysis
4.5. Ethics Approval and Consent to Participate
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.-L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Huang, Y.; Zhu, Y.; Xia, L.; Wang, R.; Xiao, K.; Wang, H.; Yan, P.; Wen, B.; Cao, L.; et al. Discrimination of sepsis stage metabolic profiles with an LC/MS-MS-based metabolomics approach. BMJ Open Respir. Res. 2014, 1, e000056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierrakos, C.; Vincent, J.-L. Sepsis biomarkers: A review. Crit. Care 2010, 14, R15. [Google Scholar] [CrossRef] [Green Version]
- Haas, S.A.; Lange, T.; Saugel, B.; Petzoldt, M.; Fuhrmann, V.; Metschke, M.; Kluge, S. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med. 2016, 42, 202–210. [Google Scholar] [CrossRef]
- Yu, H.; Qi, Z.; Hang, C.; Fang, Y.; Shao, R.; Li, C. Evaluating the value of dynamic procalcitonin and presepsin measurements for patients with severe sepsis. Am. J. Emerg. Med. 2017, 35, 835–841. [Google Scholar] [CrossRef]
- Singh, S.; Chatterji, T.; Sen, M.; Dhayal, R.; Mishra, S.; Husain, N.; Goel, A.; Roy, R. Serum procalcitonin levels in combination with 1H NMR spectroscopy: A rapid indicator for differentiation of urosepsis. Clin. Chim. Acta 2016, 453, 205–214. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Foxall, P.J.D.; Spraul, M.; Farrant, R.D.; Lindon, J.C. 750 MHz 1H and 1H-13C NMR Spectroscopy of Human Blood Plasma. Anal. Chem. 1995, 67, 793–811. [Google Scholar] [CrossRef]
- Mao, H.; Wang, H.; Wang, B.; Liu, X.; Gao, H.; Xu, M.; Zhao, H.; Deng, X.; Lin, D. Systemic Metabolic Changes of Traumatic Critically Ill Patients Revealed by an NMR-Based Metabonomic Approach. J. Proteome Res. 2009, 8, 5423–5430. [Google Scholar] [CrossRef]
- Mickiewicz, B.; Vogel, H.J.; Wong, H.R.; Winston, B.W. Metabolomics as a Novel Approach for Early Diagnosis of Pediatric Septic Shock and Its Mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Stringer, K.A.; Serkova, N.J.; Karnovsky, A.; Guire, K.; Paine, R., III; Standiford, T.J. Metabolic consequences of sepsis-induced acute lung injury revealed by plasma 1 H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 300, 4–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaise, B.J.; Gouel-Cheon, A.; Floccard, B.; Monneret, G.; Allaouchiche, B. Metabolic Phenotyping of Traumatized Patients Reveals a Susceptibility to Sepsis. Anal. Chem. 2013, 85, 10850–10855. [Google Scholar] [CrossRef] [PubMed]
- Mickiewicz, B.; Duggan, G.E.; Winston, B.W.; Doig, C.; Kubes, P.; Vogel, H.J. Alberta Sepsis Network Metabolic Profiling of Serum Samples by 1H Nuclear Magnetic Resonance Spectroscopy as a Potential Diagnostic Approach for Septic Shock. Crit. Care Med. 2014, 42, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Mickiewicz, B.; Tam, P.; Jenne, C.N.; Leger, C.; Wong, J.; Winston, B.W.; Doig, C.; Kubes, P.; Vogel, H.J. Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. Crit. Care 2015, 19, 11. [Google Scholar] [CrossRef] [Green Version]
- Mickiewicz, B.; Thompson, G.C.; Blackwood, J.; Jenne, C.N.; Winston, B.W.; Vogel, H.J.; Joffe, A.R. Development of metabolic and inflammatory mediator biomarker phenotyping for early diagnosis and triage of pediatric sepsis. Crit. Care 2015, 19, 320. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Triba, M.N.; Amathieu, R.; Lin, X.; Bouchemal, N.; Hantz, E.; Le Moyec, L.; Savarin, P. Nuclear magnetic resonance-based serum metabolomic analysis reveals different disease evolution profiles between septic shock survivors and non-survivors. Crit. Care 2019, 23, 169. [Google Scholar] [CrossRef] [Green Version]
- Gäddnäs, F.; Koskela, M.; Koivukangas, V.; Risteli, J.; Oikarinen, A.; Laurila, J.; Saarnio, J.; Ala-Kokko, T. Markers of collagen synthesis and degradation are increased in serum in severe sepsis: A longitudinal study of 44 patients. Crit. Care 2009, 13, R53. [Google Scholar] [CrossRef] [Green Version]
- Marik, P.E.; Bellomo, R. Stress hyperglycemia: An essential survival response! Crit. Care 2013, 17, 305. [Google Scholar] [CrossRef] [Green Version]
- Schmerler, D.; Neugebauer, S.; Ludewig, K.; Bremer-Streck, S.; Brunkhorst, F.M.; Kiehntopf, M. Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. J. Lipid Res. 2012, 53, 1369–1375. [Google Scholar] [CrossRef] [Green Version]
- Iacobazzi, V.; Infantino, V. Citrate—New functions for an old metabolite. Biol. Chem. 2014, 395, 387–399. [Google Scholar] [CrossRef]
- Costello, L.C.; Franklin, R.B. Plasma Citrate Homeostasis: How It Is Regulated; and Its Physiological and Clinical Implications. An Important, But Neglected, Relationship in Medicine. J. Hum. Endocrinol. 2016, 1, 005. [Google Scholar] [CrossRef]
- Freund, H.R.; Ryan, J.A.; Fischer, J.E. Amino acid derangements in patients with sepsis: Treatment with branched chain amino acid rich infusions. Ann. Surg. 1978, 188, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.P.; Carchman, E.H.; Kautza, B.; Nassour, I.; Mollen, K.; Escobar, D.; Gomez, H.; Rosengart, M.A.; Shiva, S.; Zuckerbraun, B.S. Polymicrobial sepsis is associated with decreased hepatic oxidative phosphorylation and an altered metabolic profile. J. Surg. Res. 2014, 186, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.W.; Boldogh, I.; Popov, V.L.; Saini, S.S.; Chopra, A.K. Anti-inflammatory and antisecretory potential of histidine in Salmonella-challenged mouse small intestine. Lab. Investig. 1998, 78, 523–534. [Google Scholar] [PubMed]
- Watanabe, M.; Suliman, M.E.; Qureshi, A.R.; Garcia-Lopez, E.; Bárány, P.; Heimbürger, O.; Stenvinkel, P.; Lindholm, B. Consequences of low plasma histidine in chronic kidney disease patients: Associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 2008, 87, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Druml, W.; Heinzel, G.; Kleinberger, G. Amino acid kinetics in patients with sepsis. Am. J. Clin. Nutr. 2001, 73, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Zarjou, A.; Agarwal, A. Sepsis and acute kidney injury. J. Am. Soc. Nephrol. 2011, 22, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Bagga, A.; Bakkaloglu, A.; Bonventre, J.V.; et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [Green Version]
- Hochepied, T.; Berger, F.G.; Baumann, H.; Libert, C. α1-Acid glycoprotein: An acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev. 2003, 14, 25–34. [Google Scholar] [CrossRef]
- Luo, Z.; Lei, H.; Sun, Y.; Liu, X.; Su, D.-F. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem. 2015, 71, 329–340. [Google Scholar] [CrossRef]
- Fournier, T.; Medjoubi, N.-N.; Porquet, D. Alpha-1-acid glycoprotein. Biochim. Biophys. Acta 2000, 1482, 157–171. [Google Scholar] [CrossRef]
- Xiao, K.; Su, L.; Yan, P.; Han, B.; Li, J.; Wang, H.; Jia, Y.; Li, X.; Xie, L. α-1-Acid glycoprotein as a biomarker for the early diagnosis and monitoring the prognosis of sepsis. J. Crit. Care 2015, 30, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Kettunen, J.; Wü Rtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Nu Esko, T.; Tammesoo, M.-L.; Mä Gi, R.; et al. Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons. PLoS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.B.; Rivers, E.P.; Knoblich, B.P.; Jacobsen, G.; Muzzin, A.; Ressler, J.A.; Tomlanovich, M.C. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit. Care Med. 2004, 32, 1637–1642. [Google Scholar] [CrossRef]
- Langley, R.J.; Tsalik, E.L.; van Velkinburgh, J.C.; Glickman, S.W.; Rice, B.J.; Wang, C.; Chen, B.; Carin, L.; Suarez, A.; Mohney, R.P.; et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci. Transl. Med. 2013, 5, 195ra95. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.J.; McGeachie, M.; Baron, R.M.; Gazourian, L.; Haspel, J.A.; Nakahira, K.; Fredenburgh, L.E.; Hunninghake, G.M.; Raby, B.A.; Matthay, M.A.; et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS ONE 2014, 9, e87538. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.-B.; Lin, Z.-Y.; Meng, H.-B.; Yan, S.-K.; Yang, Y.; Liu, X.-R.; Li, J.-B.; Deng, X.-M.; Zhang, W.-D.; Zhang, W.-D. A metabonomic approach to early prognostic evaluation of experimental sepsis. J. Infect. 2008, 56, 474–481. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Carlet, J.M.; Masur, H.; Gerlach, H.; Calandra, T.; Cohen, J.; Gea-Banacloche, J.; Keh, D.; Marshall, J.C.; Parker, M.M.; et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit. Care Med. 2004, 32, 858–873. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 2011, 49, 231–243. [Google Scholar] [CrossRef]
- Stringer, K.A.; McKay, R.T.; Karnovsky, A.; Quémerais, B.; Lacy, P. Metabolomics and Its Application to Acute Lung Diseases. Front. Immunol. 2016, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soininen, P.; Haarala, J.; Vepsäläinen, J.; Niemitz, M.; Laatikainen, R. Strategies for organic impurity quantification by 1H NMR spectroscopy: Constrained total-line-shape fitting. Anal. Chim. Acta 2005, 542, 178–185. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Tukiainen, T.; Tynkkynen, T.; Laatikainen, R.; Järvelin, M.-R.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 2009, 134, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Variables | |||
---|---|---|---|---|
All Patients (n = 44) | Survivors (n = 33) | Non-Survivors (n = 11) | p Value Survivors vs. Non-Survivors | |
Male gender, n (%) | 29 (66%) | 20 (61%) | 9 (82%) | 0.282 |
Age, years | 63 (56 to 71) | 61 (55 to 67) | 71 (61 to 75) | 0.063 |
Septic shock, n (%) | 38 (86%) | 27 (82%) | 11 (100%) | 0.311 |
Length of stay in the ICU, days | 7 (4 to 12) | 6 (4 to 10) | 11 (6 to 16) | 0.159 |
APACHE II on admission, points | 26 (22 to 31) | 24 (22 to 28) | 31 (26 to 38) | <0.01* |
SOFA score on admission, points | 8 (6 to 12) | 8 (6 to 11) | 11 (8 to 15) | 0.083 |
SOFA score maximum, points | 10 (7 to 16) | 8 (7 to 12) | 16 (10 to 21) | <0.01* |
MODS, n (%) | 14 (32%) | 13 (39%) | 1 (9%) | 0.076 |
MOF, n (%) | 30 (68%) | 20 (61%) | 10 (91%) | 0.076 |
Focus of infection, n (%) | ||||
Lungs | 18 (41%) | 13 (39%) | 5 (46%) | 0.738 |
Intra-abdominal | 16 (36%) | 12 (36%) | 4 (36%) | 1.000 |
Primary blood | 3 (7%) | 2 (6%) | 1 (9%) | 1.000 |
Urinary | 1 (2%) | 1 (3%) | 0 | 1.000 |
Other | 6 (14%) | 5 (15%) | 1 (9%) | 1.000 |
Chronic diseases, n (%) | ||||
Coronary artery disease | 9 (20%) | 5 (15%) | 4 (36%) | 0.195 |
Chronic obstructive pulmonary disease | 5 (11%) | 4 (12%) | 1 (9%) | 1.000 |
Asthma | 4 (9%) | 4 (12%) | 0 (0%) | 0.558 |
Diabetes | 10 (23%) | 9 (27%) | 1 (9%) | 0.408 |
Arteriosclerosis obliterans | 4 (9%) | 3 (9%) | 1 (9%) | 1.000 |
Hypertension | 17 (39%) | 13 (39%) | 4 (36%) | 1.000 |
Metabolite | Healthy | Sepsis | p-Value | Cases n Sepsis (%) and n Control (%) |
---|---|---|---|---|
Glucose | 4.13 (3.60 to 4.65) | 5.63 (4.65 to 6.74) | <0.01* | 44 (100 %) and 14 (100 %) |
Lactate | 1.44 (1.30 to 2.24) | 1.61 (1.23 to 2.70) | 0.52 | 44 (100 %) and 14 (100 %) |
Citrate | 0.10 (0.10 to 0.12) | 0.08 (0.06 to 0.11) | <0.01* | 41 (93 %) and 14 (100 %) |
Alanine | 0.50 (0.45 to 0.57) | 0.45 (0.34 to 0.66) | 0.533 | 44 (100 %) and 14 (100 %) |
Glycine | 0.31 (0.29 to 0.34) | 0.43 (0.35 to 0.89) | <0.001* | 44 (100 %) and 14 (100 %) |
Histidine | 0.08 (0.08 to 0.10) | 0.07 (0.05 to 0.09) | <0.05* | 44 (100 %) and 14 (100 %) |
Isoleucine | 0.07 (0.06 to 0.09) | 0.06 (0.05 to 0.08) | 0.247 | 44 (100 %) and 14 (100 %) |
Valine | 0.22 (0.18 to 0.25) | 0.18 (0.13 to 0.21) | 0.1 | 44 (100 %) and 14 (100 %) |
Tyrosine | 0.07 (0.06 to 0.08) | 0.05 (0.04 to 0.07) | 0.089 | 44 (100 %) and 14 (100 %) |
bOHBut | 0.11 (0.09 to 0.14) | 0.15 (0.12 to 0.21) | <0.01* | 44 (100 %) and 14 (100 %) |
Creatinine | 0.05 (0.05 to 0.06) | 0.11 (0.07 to 0.17) | <0.001* | 30 (68 %) and 14 (100 %) |
Glycoprotein acetyls | 1.34 (1.24 to 1.61) | 1.81 (1.50 to 2.14) | <0.001* | 44 (100 %) and 14 (100 %) |
Metabolite | Survivor | Non-Survivor | p-Value | Cases n Survivor (%) and Non-Survivor (%) |
---|---|---|---|---|
Glucose | 5.74 (4.51 to 7.00) | 5.44 (4.93 to 6.38) | 0.44 | 33 (100 %) and 11 (100 %) |
Lactate | 1.46 (1.20 to 2.18) | 2.49 (2.01 to 4.07) | <0.01* | 33 (100 %) and 11 (100 %) |
Citrate | 0.08 (0.06 to 0.09) | 0.10 (0.08 to 0.16) | <0.05* | 31 (94 %) and 10 (91 %) |
Alanine | 0.50 (0.34 to 0.64) | 0.45 (0.27 to 1.32) | 0.915 | 33 (100 %) and 11 (100 %) |
Glycine | 0.47 (0.35 to 0.88) | 0.39 (0.34 to 1.08) | 0.894 | 33 (100 %) and 11 (100 %) |
Histidine | 0.06 (0.05 to 0.08) | 0.08 (0.05 to 0.16) | 0.317 | 33 (100 %) and 11 (100 %) |
Isoleucine | 0.06 (0.05 to 0.08) | 0.07 (0.04 to 0.09) | 0.815 | 33 (100 %) and 11 (100 %) |
Valine | 0.18 (0.13 to 0.21) | 0.18 (0.09 to 0.27) | 0.931 | 33 (100 %) and 11 (100 %) |
Tyrosine | 0.05 (0.04 to 0.06) | 0.07 (0.03 to 0.10) | 0.280 | 33 (100 %) and 11 (100 %) |
bOHBut | 0.15 (0.12 to 0.20) | 0.15 (0.11 to 0.34) | 1.000 | 33 (100 %) and 11 (100 %) |
Glycoprotein acetyls | 1.73 (1.51 to 2.03) | 1.99 (1.46 to 2.45) | 0.626 | 33 (100 %) and 11 (100 %) |
Metabolite | Clinical Variable | Statistical Test | ||
---|---|---|---|---|
30-day Mortality | SOFA Score on Admission | SOFA Maximum | ||
bOHBut | r = 0.000 p = 1.000 | r = 0.015 p = 0.924 | r = 0.099 p = 0.523 | Spearman’s correlation |
Citrate | r = 0.341 p < 0.05* | r = 0.366 p < 0.05* | r = 0.472 p < 0.01* | Spearman’s correlation |
Creatinine | r = 0.076 p = 0.694 | r = 0.659 p < 0.001* | r = 0.636 p < 0.001* | Spearman’s correlation |
Glucose | r = −0.090 p = 0.560 | r= −0.193 p = 0.211 | r= −0.176 p = 0.253 | Pearson’s correlation |
Glycine | r = −0.023 p = 0.884 | r = 0.151 p = 0.327 | r = 0.254 p = 0.096 | Spearman’s correlation |
Glycoprotein acetyls | r = 0.116 p = 0.454 | r= −0.089 p = 0.566 | r = 0.088 p = 0.569 | Pearson’s correlation |
Histidine | r = 0.161 p = 0.296 | r = 0.299 p < 0.05* | r = 0.362 p < 0.05* | Spearman’s correlation |
Title | Age Group | Sample | Number of Participants | Patient Population | Computational Analysis Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stringer et al. Am J Physiol Lung Cell Mol Physiol 2011 [11] | Adult (>18 y) | Plasma, taken in the morning | 13 sepsis patients and 6 healthy controls | <7 days from the onset of Sepsis-induced ALI/ARDS | Comparison of concentrations with Student’s t-test (p ≤ 0.05) and FDR (q- value ≤ 0.05), Spearman’s rank correlation coefficient | ||||||||
Mickiewicz et al. Am J Resp Crit Care Med 2013 [10] | Pediatric (<11 y) | Serum, <24 h of diagnosis of septic shock | 60 septic shock patients and 40 healthy controls, also 40 PICU patients with SIRS | Diagnosis of septic shock at the PICU | PCA, PLS-DA, OPLS-DA to separate metabolic variation; AUROC for OPLS-DA | ||||||||
Singh et al. Clin Chim Acta 2016 [7] | Adult (>18 y) | Serum | 35 urosepsis patients and 32 healthy controls | Urosepsis cases were identified by measuring serum PCT levels (>0.5 ng/mL) | PCA, PLS-DA to separate metabolic variation; ROC for PLS-DA; independent t-test followed by DFA to identify significant biomarkers (p < 0.05) | ||||||||
Current study | Adult (>18 y) | Serum, <24 h of the diagnosis of severe sepsis | 44 sepsis patients and 14 healthy controls | Admission after the identification of the first sepsis-related organ dysfunction at the ICU | Comparison of concentrations with Student’s t-test or Mann-Whitney test (p < 0.05), Pearson’s or Spearman’s correlation coefficients | ||||||||
Higher concentrations in sepsis | Lower concentrations in sepsis | ||||||||||||
bOHBut | Acetate | Acetone | Citrate | Creatinine | α-Glucose | Glucose | Histidine | Phenylalanine | Acetate | Citrate | Histidine | ||
Stringer et al. Am J Physiol Lung Cell Mol Physiol 2011 [11] | - | - | - | - | - | - | - | - | - | - | - | - | |
Mickiewicz et al. Am J Resp Crit Care Med 2013 [10] | × | - | × | - | × | × | × | × | × | × | - | ||
Singh et al. Clin Chim Acta 2016 [7] | - | × | × | × | - | × | - | - | × | - | - | - | |
Current study | × | - | - | - | × | - | × | - | - | - | × | × |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaurila, H.; Koivukangas, V.; Koskela, M.; Gäddnäs, F.; Myllymaa, S.; Kullaa, A.; Salo, T.; Ala-Kokko, T.I. 1H NMR Based Metabolomics in Human Sepsis and Healthy Serum. Metabolites 2020, 10, 70. https://doi.org/10.3390/metabo10020070
Jaurila H, Koivukangas V, Koskela M, Gäddnäs F, Myllymaa S, Kullaa A, Salo T, Ala-Kokko TI. 1H NMR Based Metabolomics in Human Sepsis and Healthy Serum. Metabolites. 2020; 10(2):70. https://doi.org/10.3390/metabo10020070
Chicago/Turabian StyleJaurila, Henna, Vesa Koivukangas, Marjo Koskela, Fiia Gäddnäs, Sami Myllymaa, Arja Kullaa, Tuula Salo, and Tero I. Ala-Kokko. 2020. "1H NMR Based Metabolomics in Human Sepsis and Healthy Serum" Metabolites 10, no. 2: 70. https://doi.org/10.3390/metabo10020070
APA StyleJaurila, H., Koivukangas, V., Koskela, M., Gäddnäs, F., Myllymaa, S., Kullaa, A., Salo, T., & Ala-Kokko, T. I. (2020). 1H NMR Based Metabolomics in Human Sepsis and Healthy Serum. Metabolites, 10(2), 70. https://doi.org/10.3390/metabo10020070