Effects of Dietary Defatted Meat Species on Metabolomic Profiles of Murine Liver, Gastrocnemius Muscle, and Cecal Content
Abstract
:1. Introduction
2. Results
2.1. Growth Parameters and Tissue Weights
2.2. Targeted and Non-Targeted Metabolomic Analysis
2.2.1. Quantitative Analysis of Free Amino Acids in the Liver and Gastrocnemius Muscle
2.2.2. Quantitative Analysis of Short-Chained Fatty Acids in Cecal Content
2.2.3. Non-Targeted and Semi-Quantified Analyses of Metabolites in the Liver, Gastrocnemius Muscle, and Cecal Content
2.2.4. Integrated Analyses of Quantified and Semi-Quantified Metabolites
2.2.5. Carnosine, Anserine, and Taurine Levels in Experimental Protein Sources
3. Discussion
4. Materials and Methods
4.1. Animals and Diets
4.2. Gas Chromatography/Mass Spectrometry (GC–MS/MS)-Based Non-Targeted Metabolomic Analysis
4.3. GC–MS-Based Free Amino Acid Analysis
4.4. GC–MS/MS-Based Short-Chain Fatty Acid Analysis
4.5. Amino Acid Composition, Imidazole Dipeptides, and Taurine Quantification in Protein Sources
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gilbert, J.-A.; Bendsen, N.; Tremblay, A.; Astrup, A. Effect of proteins from different sources on body composition. Nutr. Metab. Cardiovasc. Dis. 2011, 21 (Suppl. S2), B16–B31. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, L.Q.; Lorenzen, J.K.; Bendsen, N.T.; Rasmussen, C.; Astrup, A. Effect of Dairy Proteins on Appetite, Energy Expenditure, Body Weight, and Composition: A Review of the Evidence from Controlled Clinical Trials. Adv. Nutr. 2013, 4, 418–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.M.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Tamakoshi, A.; Matsuo, K.; Wakai, K.; Nagata, C.; Inoue, M.; Tsugane, S.; et al. Meat Consumption and Colorectal Cancer Risk: An Evaluation Based on a Systematic Review of Epidemiologic Evidence Among the Japanese Population. Jpn. J. Clin. Oncol. 2014, 44, 641–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, L.; Sentandreu, A.M.A.; Toldrá, F. Hydrophilic Chromatographic Determination of Carnosine, Anserine, Balenine, Creatine, and Creatinine. J. Agric. Food Chem. 2007, 55, 4664–4669. [Google Scholar] [CrossRef] [PubMed]
- Uenoyama, R.; Miyazaki, M.; Miyazaki, T.; Shigeno, Y.; Tokairin, Y.; Konno, H.; Yamashita, T. LC-ESI-MS/MS quantification of carnosine, anserine, and balenine in meat samples. J. Chromatogr. B 2019, 1132, 121826. [Google Scholar] [CrossRef] [PubMed]
- Spitze, A.R.; Wong, D.L.; Rogers, Q.R.; Fascetti, A.J. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J. Anim. Physiol. Anim. Nutr. 2003, 87, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Kohen, R.; Yamamoto, Y.; Cundy, K.C.; Ames, B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 1988, 85, 3175–3179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Moscow) 2000, 65, 757–765. [Google Scholar]
- Stegen, S.; Stegen, B.; Aldini, G.; Altomare, A.; Cannizzaro, L.; Orioli, M.; Gerlo, S.; Deldicque, L.; Ramaekers, M.; Hespel, P.; et al. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress. Appl. Physiol. Nutr. Metab. 2015, 40, 868–876. [Google Scholar] [CrossRef]
- Tomonaga, S.; Yamane, H.; Onitsuka, E.; Yamada, S.; Sato, M.; Takahata, Y.; Morimatsu, F.; Furuse, M. Carnosine-induced antidepressant-like activity in rats. Pharmacol. Biochem. Behav. 2008, 89, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawalha, N.A.; Alshogran, O.Y.; Awawdeh, M.S.; Almomani, B.A. The effects of l-Carnosine on development of metabolic syndrome in rats. Life Sci. 2019, 237, 116905. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Nan, C.; Tian, J.; Jean-Charles, P.; Li, Y.; Weissbach, H.; Huang, X.-P. Protective effects of taurine against oxidative stress in the heart of MsrA knockout mice. J. Cell. Biochem. 2012, 113, 3559–3566. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Furuse, M. The impact of taurine- and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: Antidepressant versus anxiolytic-like effects. Amino Acids 2010, 39, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Murakami, T.; Sato, M.; Takahata, Y.; Morimatsu, F.; Furuse, M. Dietary animal proteins alter monoamine metabolism in the brain. Anim. Sci. J. 2011, 83, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Ezoe, M.; Wakamatsu, J.-I.; Takahata, Y.; Hasegawa, T.; Morimatsu, F.; Nishimura, T. Diet-Induced Thermogenesis and Expression Levels of Thyroid Hormone Target Genes and Their Products in Rats Differ between Meat Proteins. J. Nutr. Sci. Vitaminol. 2016, 62, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Nakata, R.; Sato, M.; Tomonaga, S. The effect of dietary carnosine supplementation on metabolite levels in the liver and cecal content of mice. Trace Nutr. Res. 2019, 36, 66–72. [Google Scholar]
- Ihara, H.; Kakihana, Y.; Yamakage, A.; Kai, K.; Shibata, T.; Nishida, M.; Yamada, K.-I.; Uchida, K. 2-Oxo-histidine–containing dipeptides are functional oxidation products. J. Biol. Chem. 2019, 294, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Tanabe, K.; Yoshinaga, K.; Shimura, F.; Oku, T. Effects of 1,5-anhydroglucitol on postprandial blood glucose and insulin levels and hydrogen excretion in rats and healthy humans. Br. J. Nutr. 2017, 118, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Hibino, M.; Takeshita, A. Dietary supplementation with myo -inositol reduces hepatic triglyceride accumulation and expression of both fructolytic and lipogenic genes in rats fed a high-fructose diet. Nutr. Res. 2017, 47, 21–27. [Google Scholar] [CrossRef]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, J.-I.; Fujii, R.; Yamaguchi, K.; Miyoshi, S.; Nishimura, T.; Hattori, A. Effects of meat species on the postprandial thermic effect in rats. Anim. Sci. J. 2012, 84, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Mori, H.; Shiota, S.; Tomonaga, S. Metabolomics Approach Reveals the Effects of Breed and Feed on the Composition of Chicken Eggs. Metabolites 2019, 9, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Kanazawa, M.; Ogiwara, A.; Arita, M. MRMPROBS suite for metabolomics using large-scale MRM assays. Bioinformatics 2014, 30, 2379–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
Casein | Beef Leg | Pork Leg | Chicken Leg | Chicken Breast | ANOVA | Metab. No. | |
---|---|---|---|---|---|---|---|
Acetic acid | 20.42 ± 0.97 | 17.24 ± 1.85 | 18.00 ± 1.98 | 23.29 ± 1.42 | 21.19 ± 1.38 | NS | - |
Propionic acid | 3.48 ± 0.28 a | 1.96 ± 0.30 b | 1.97 ± 0.32 b | 3.76 ± 0.24 a | 3.44 ± 0.58 a,b | <0.05 | 6 |
Butyric acid | 7.09 ± 0.42 b | 8.7 ± 0.93 a,b | 8.94 ± 0.37 a,b | 7.83 ± 0.36 b | 10.73 ± 0.91 a | <0.05 | - |
Casein | Beef Leg | Pork Leg | Chicken Leg | Chicken Breast | ANOVA | Metab. No. | |
---|---|---|---|---|---|---|---|
1,5-Anhydro-glucitol | 111 ± 4 a,b | 97 ± 5 b,c | 129 ± 8 a | 87 ± 4 c | 76 ± 5 c | <0.0001 | - |
2-Hydroxyisovaleric acid | 128 ± 9 a | 80 ± 3 c | 105 ± 5 a,b | 99 ± 2 b,c | 88 ± 6 b,c | <0.0001 | - |
β-Alanine | 85 ± 5 c | 88 ± 3 b,c | 117 ± 4 a | 100 ± 5 a,b,c | 111 ± 9 a,b | <0.05 | 6, 7, 15, 20 |
Carnosine | 7 ± 1 d | 125 ± 21 b | 242 ±30 a | 39 ± 5 c,d | 86 ± 19 b,c | <0.0001 | 7, 15 |
Dimethylglycine | 90 ± 10 a,b | 115 ± 14 a,b | 83 ± 10 a,b | 76 ± 4 b | 136 ± 24 a | <0.05 | - |
Glyoxylic acid | 91 ± 10 a,b | 114 ± 14 a,b | 83 ± 9 a,b | 76 ± 3 b | 136 ± 25 a | <0.05 | - |
Inositol | 82 ± 4 b | 96 ± 4 b | 101 ± 2 a,b | 121 ± 4 a | 101 ± 8 a,b | <0.05 | - |
Hydroxyproline | 98 ± 4 b | 91 ± 2 b | 104 ± 4 a,b | 120 ± 7 a | 87 ± 5 b | <0.05 | - |
Sorbitol | 86 ± 13 b | 86 ± 14 b | 92 ± 11 a,b | 137 ± 11 a | 98 ± 9 a,b | <0.05 | - |
Tartaric acid | 61 ± 8 c | 95 ± 14 a,b,c | 129 ±21 a,b | 143 ± 21 a | 72 ± 7 b,c | <0.05 | - |
Taurine | 95 ± 6 | 94 ± 5 | 105 ± 3 | 110 ± 4 | 97 ± 7 | NS | 22 |
Xylitol | 95 ± 4 a,b | 93 ± 6 b | 100 ± 2 a,b | 115 ± 4 a | 96 ± 7 a,b | <0.05 | - |
Casein | Beef Leg | Pork Leg | Chicken Leg | Chicken Breast | ANOVA | Metab. No. | |
---|---|---|---|---|---|---|---|
1,5-Anhydro-glucitol | 110 ± 9 a,b | 94 ± 2 b | 123 ± 5 a | 88 ± 5 b | 86 ± 7 b | <0.05 | - |
β-Alanine | 100 ± 10 | 96 ± 10 | 104 ± 10 | 98 ± 6 | 102 ± 10 | NS | 6, 7, 15, 20 |
Carnosine | 119 ± 21 | 81 ± 17 | 86 ± 14 | 105 ± 22 | 108 ± 26 | NS | 7, 15 |
Inositol | 83 ± 9 b | 104 ± 4 a,b | 97 ± 4 b | 123 ± 6 a | 93 ± 3 b | <0.05 | - |
Taurine | 99 ± 3 | 99 ± 1 | 101 ± 2 | 102 ± 4 | 100 ± 1 | NS | 22 |
Casein | Beef Leg | Pork Leg | Chicken Leg | Chicken Breast | ANOVA | Metab. No. | |
---|---|---|---|---|---|---|---|
2-Aminobutyric acid | 114 ± 12 a,b | 72 ± 9 b | 65 ± 13 b | 147 ± 26 a | 103 ± 23 a,b | <0.05 | 5 |
3-Hydroxypropionic acid | 83 ± 6 b | 127 ± 8 a | 90 ± 3 b | 104 ± 9 a,b | 97 ± 9 a,b | <0.05 | 6, 7 |
3-Methyl-2-oxovaleric acid | 80 ± 8 b | 82 ± 3 b | 99 ± 14 ab | 138 ± 12 a | 101 ± 21 a,b | <0.05 | - |
3-Sulfinoalanine | 55 ± 8 b | 88 ± 14 b | 103 ± 15 a,b | 167 ± 27 a | 87 ± 14 b | <0.05 | 5, 22 |
β-Alanine | 20 ± 3 b | 268 ± 30 a | 86 ± 14 b | 42 ± 4 b | 83 ± 18 b | <0.0001 | 6, 7, 15, 20 |
Carnosine | 0 ± 0 b | 289 ± 53 a | 180 ± 33 a | 4 ± 1 b | 27 ± 11 b | <0.0001 | 7, 15 |
Galactose | 148 ± 39 a | 48 ± 7 b | 77 ± 10 a,b | 153 ± 29 a | 74 ± 8 a,b | <0.05 | - |
Glutaric acid | 85 ± 16 b | 154 ± 20 a | 104 ± 10 a,b | 83 ± 5 b | 74 ± 5 b | <0.05 | - |
Glycerol 3-phosphate | 74 ± 13 a,b | 116 ± 17 a,b | 129 ± 14 a | 62 ± 14 b | 118 ± 18 a,b | <0.05 | - |
Glycine | 106 ± 13 a,b | 97 ± 16 a,b | 72 ± 13 b | 137 ± 13 a | 88 ± 9 ab | <0.05 | - |
Homocysteine | 134 ± 16 a | 87 ± 12 a,b | 100 ± 9 a,b | 61 ± 4 b | 117 ± 15 a | <0.05 | 5 |
Mannose 6-phosphate | 64 ± 14 b | 94 ± 14 a,b | 124 ± 21 a,b | 68 ± 19 b | 151 ± 26 a | <0.05 | - |
N-Acetylaspartic acid | 33 ± 8 c | 56 ± 11 b,c | 142 ± 28 a,b | 163 ± 22 a | 107 ± 36 a,b,c | <0.05 | - |
N-Acetylglutamine | 32 ± 7 c | 30 ± 4 c | 150 ± 32 a,b | 200 ± 13 a | 89 ± 40 b,c | <0.0001 | - |
Nicotinamide | 16 ± 1 d | 106 ± 6 b | 226 ± 13 a | 86 ± 5 bc | 65 ± 12 c | <0.0001 | - |
Pantothenic acid | 120 ± 18 a,b | 77 ± 8 b | 70 ± 7 b | 137 ± 18 a | 95 ± 13 a,b | <0.05 | 20 |
Phenylacetic acid | 42 ± 5 b | 97 ± 10 b | 100 ± 18 b | 174 ± 17 a | 86 ± 16 b | <0.0001 | - |
Ribose | 102 ± 10 a,b | 74 ± 8 b | 120 ± 5 a | 109 ± 8 a,b | 95 ± 13 a,b | <0.05 | - |
Taurine | ND | ND | ND | ND | ND | - | 22 |
Metab. No. | Pathway Name | Liver | Gastrocnemius Muscle | Cecal Content |
---|---|---|---|---|
1 | Aminoacyl-tRNA biosynthesis | * | ** | ** |
2 | Glycine, serine, and threonine metabolism | * | * | * |
3 | Valine, leucine, and isoleucine biosynthesis | ** | ** | |
4 | Valine, leucine, and isoleucine degradation | * | * | |
5 | Cysteine and methionine metabolism | * | * | |
6 | Propanoate metabolism | * | * | |
7 | β-Alanine metabolism | * | * | |
8 | Fructose and mannose metabolism | * | * | |
9 | Glycerolipid metabolism | * | * | |
10 | Alanine, aspartate, and glutamate metabolism | * | ||
11 | Arginine and proline metabolism | * | ||
12 | Butanoate metabolism | * | ||
13 | Glutamate metabolism | * | ||
14 | Glyoxylate and dicarboxylate metabolism | * | ||
15 | Histidine metabolism | * | ||
16 | Phenylalanine, tyrosine, and tryptophan biosynthesis | * | ||
17 | Phenylalanine metabolism | * | ||
18 | Amino sugar and nucleotide sugar metabolism | * | ||
19 | Galactose metabolism | * | ||
20 | Pantothenate and CoA biosynthesis | * | ||
21 | Pentose phosphate pathway | * | ||
22 | Taurine and hypotaurine metabolism | * |
Casein | Beef Leg | Pork Leg | Chicken Leg | Chicken Breast | |
---|---|---|---|---|---|
Carnosine | ND | 11,245 | 25,742 | 4763 | 9021 |
Anserine | ND | 2846 | 1040 | 10,615 | 26,601 |
Taurine | ND | 1246 | 2034 | 6421 | 1123 |
Beef Leg | Pork Leg | Chicken Leg | Chicken Breast | ANOVA | |
---|---|---|---|---|---|
Carnosine | 451 ± 12 b | 963 ± 20 a | 179 ± 3 d | 342 ± 7 c | <0.0001 |
Anserine | 114 ± 3 c | 39 ± 1 d | 400 ± 7 b | 1009 ± 21 a | <0.0001 |
Taurine | 50 ± 1 c | 76 ± 2 b | 242 ± 4 a | 43 ± 1 c | <0.0001 |
Metab. No. | Pathway Name | Cecal Content |
---|---|---|
1 | Aminoacyl-tRNA biosynthesis | ** |
2 | Glycine, serine and threonine metabolism | * |
3 | Valine, leucine and isoleucine biosynthesis | ** |
5 | Cysteine and methionine metabolism | * |
6 | Propanoate metabolism | * |
8 | Fructose and mannose metabolism | * |
10 | Alanine, aspartate and glutamate metabolism | * |
14 | Glyoxylate and dicarboxylate metabolism | * |
16 | Phenylalanine, tyrosine and tryptophan biosynthesis | * |
17 | Phenylalanine metabolism | * |
18 | Amino sugar and nucleotide sugar metabolism | * |
20 | Pantothenate and CoA biosynthesis | * |
22 | Taurine and hypotaurine metabolism | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakata, R.; Sato, M.; Tomonaga, S. Effects of Dietary Defatted Meat Species on Metabolomic Profiles of Murine Liver, Gastrocnemius Muscle, and Cecal Content. Metabolites 2020, 10, 503. https://doi.org/10.3390/metabo10120503
Nakata R, Sato M, Tomonaga S. Effects of Dietary Defatted Meat Species on Metabolomic Profiles of Murine Liver, Gastrocnemius Muscle, and Cecal Content. Metabolites. 2020; 10(12):503. https://doi.org/10.3390/metabo10120503
Chicago/Turabian StyleNakata, Rise, Mikako Sato, and Shozo Tomonaga. 2020. "Effects of Dietary Defatted Meat Species on Metabolomic Profiles of Murine Liver, Gastrocnemius Muscle, and Cecal Content" Metabolites 10, no. 12: 503. https://doi.org/10.3390/metabo10120503
APA StyleNakata, R., Sato, M., & Tomonaga, S. (2020). Effects of Dietary Defatted Meat Species on Metabolomic Profiles of Murine Liver, Gastrocnemius Muscle, and Cecal Content. Metabolites, 10(12), 503. https://doi.org/10.3390/metabo10120503