Metabolomic Analysis of Plasma from GABAB(1) Knock-Out Mice Reveals Decreased Levels of Elaidic Trans-Fatty Acid
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals and Sample Study Population
4.2. Samples Preparation and GC-MS Analysis
4.3. Statistical Analysis
4.4. Mice Food Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bettler, B.; Kaupmann, K.; Mosbacher, J.; Gassmann, M. Molecular Structure and Physiological Functions of GABAB Receptors. Physiol. Rev. 2004, 84, 835–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quéva, C.; Bremner-Danielsen, M.; Edlund, A.; Jonas Ekstrand, A.; Elg, S.; Erickson, S.; Johansson, T.; Lehmann, A.; Mattsson, J.P. Effects of GABA agonists on body temperature regulation in GABAB(1)−/− mice. Br. J. Pharmacol. 2003, 140, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosser, H.M.; Gill, C.H.; Hirst, W.D.; Grau, E.; Robbins, M.; Calver, A.; Soffin, E.M.; Farmer, C.E.; Lanneau, C.; Gray, J.; et al. Epileptogenesis and Enhanced Prepulse Inhibition in GABAB1-Deficient Mice. Mol. Cell. Neurosci. 2001, 17, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Haller, C.; Casanova, E.; Müller, M.; Vacher, C.-M.; Vigot, R.; Doll, T.; Barbieri, S.; Gassmann, M.; Bettler, B. Floxed allele for conditional inactivation of the GABAB(1) gene. Genesis 2004, 40, 125–130. [Google Scholar] [CrossRef]
- Fritzius, T.; Bettler, B. The organizing principle of GABA B receptor complexes: Physiological and pharmacological implications. Basic Clin. Pharm. Toxicol. 2020, 126, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chan, K.F.Y.; Eubanks, J.H.; Guin Ting Wong, C.; Cortez, M.A.; Shen, L.; Che Liu, C.; Perez Velazquez, J.; Tian Wang, Y.; Jia, Z.; et al. Transgenic mice over-expressing GABA(B)R1a receptors acquire an atypical absence epilepsy-like phenotype. Neurobiol. Dis. 2007, 26, 439–451. [Google Scholar] [CrossRef]
- Floris, G.; Cappai, A.L.; Asuni, G.P.; Isola, D.; Deriu, S.; Tocco, G.; Ibba, A.; Follesa, P. Voluntary Ethanol Drinking in GABAB Knock-Out Mice and Gene Expression of GABAA Receptors. Alcohol. Clin. Exp. Res. 2013, 37, 11A–253A. [Google Scholar] [CrossRef]
- Flores-Sierra, J.; Arredondo-Guerrero, M.; Cervantes-Paz, B.; Rodríguez-Ríos, D.; Alvarado-Caudillo, Y.; Nielsen, F.C.; Wrobel, K.; Wrobel, K.; Zaina, S.; Lund, G. The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis. 2016, 15, 75. [Google Scholar] [CrossRef] [Green Version]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.I.; Martínez-López, E.; Martínez, J.A. Fatty acids, epigenetic mechanisms and chronic diseases: A systematic review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- Stillwell, W. Membranes and Human Health. In An Introduction to Biological Membranes; Elsevier: Amsterdam, The Netherlands, 2016; pp. 521–537. ISBN 978-0-444-63772-7. [Google Scholar]
- Yu, W.; Liang, X.; Ensenauer, R.E.; Vockley, J.; Sweetman, L.; Schulz, H. Leaky β-Oxidation of a trans-Fatty Acid. J. Biol. Chem. 2004, 279, 52160–52167. [Google Scholar] [CrossRef] [Green Version]
- Hirata, Y.; Takahashi, M.; Kudoh, Y.; Kano, K.; Kawana, H.; Makide, K.; Shinoda, Y.; Yabuki, Y.; Fukunaga, K.; Aoki, J.; et al. trans-Fatty acids promote proinflammatory signaling and cell death by stimulating the apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway. J. Biol. Chem. 2017, 292, 8174–8185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Landa, J.F.; García-Ríos, R.I.; Cueto-Escobedo, J.; Bernal-Morales, B.; Contreras, C.M. Participation of GABAA chloride channels in the anxiolytic-like effects of a fatty acid mixture. BioMed Res. Int. 2013, 2013, 121794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mombereau, C.; Kaupmann, K.; Froestl, W.; Sansig, G.; van der Putten, H.; Cryan, J.F. Genetic and Pharmacological Evidence of a Role for GABA B Receptors in the Modulation of Anxiety- and Antidepressant-Like Behavior. Neuropsychopharmacology 2004, 29, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Kaupmann, K. Don’t worry ‘B’ happy!: A role for GABAB receptors in anxiety and depression. Trends Pharmacol. Sci. 2005, 26, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Mombereau, C.; Kaupmann, K.; Gassmann, M.; Bettler, B.; van der Putten, H.; Cryan, J.F. Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. NeuroReport 2005, 16, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, M.M.; Catalano, P.N.; Chamson-Reig, A.; Arany, E.; Hill, D.; Bettler, B.; Saravia, F.; Libertun, C.; Lux-Lantos, V.A. GABA B receptors and glucose homeostasis: Evaluation in GABA B receptor knockout mice. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E157–E167. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Hinoi, E.; Takarada, T.; Takahata, Y.; Yamamoto, T.; Fujita, H.; Takada, S.; Hashizume, S.; Yoneda, Y. Positive Regulation by GABABR1 Subunit of Leptin Expression through Gene Transactivation in Adipocytes. PLoS ONE 2011, 6, e20167. [Google Scholar] [CrossRef] [Green Version]
- Schuler, V.; Lüscher, C.; Blanchet, C.; Klix, N.; Sansig, G.; Klebs, K.; Schmutz, M.; Heid, J.; Gentry, C.; Urban, L.; et al. Epilepsy, Hyperalgesia, Impaired Memory, and Loss of Pre- and Postsynaptic GABAB Responses in Mice Lacking GABAB(1). Neuron 2001, 31, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Pak, Y.; Huang, L.C.; Lilley, K.J.; LarnerS, J. In Vivo Conversion of [3H]Myoinositolto [3H]Chiroinositol Rat Tissues. J. Biol. Chem. 1992, 267, 16904–16910. [Google Scholar]
- Nestler, J.E.; Jakubowicz, D.J.; Reamer, P.; Gunn, R.D.; Allan, G. Ovulatory and Metabolic Effects of d-Chiro-Inositol in the Polycystic Ovary Syndrome. N. Engl. J. Med. 1999, 340, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Bizzozzero-Hiriart, M.; Giorgio, N.P.D.; Libertun, C.; Lux-Lantos, V. GABAergic input through GABAB receptors is necessary during a perinatal window to shape gene expression of factors critical to reproduction such as Kiss1. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E901–E919. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Nakamichi, N.; Yoneyama, M.; Ozawa, S.; Fujimori, S.; Takahata, Y.; Nakamura, N.; Taniura, H.; Yoneda, Y. Modulation of cellular proliferation and differentiation through GABAB receptors expressed by undifferentiated neural progenitor cells isolated from fetal mouse brain. J. Cell. Physiol. 2008, 216, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Follesa, P.; Floris, G.; Asuni, G.P.; Ibba, A.; Tocco, M.G.; Zicca, L.; Mercante, B.; Deriu, F.; Gorini, G. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression. Front. Cell. Neurosci. 2015, 9, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberini, L.; Noto, A.; Fattuoni, C.; Satta, G.; Zucca, M.; Cabras, M.G.; Mura, E.; Cocco, P. The Metabolomic Profile of Lymphoma Subtypes: A Pilot Study. Molecules 2019, 24, 2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Barberini, L.; Noto, A.; Saba, L.; Palmas, F.; Fanos, V.; Dessì, A.; Zavattoni, M.; Fattuoni, C.; Mussap, M. Multivariate data validation for investigating primary HCMV infection in pregnancy. Data Brief 2016, 9, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Fattuoni, C.; Mandò, C.; Palmas, F.; Anelli, G.M.; Novielli, C.; Parejo Laudicina, E.; Savasi, V.M.; Barberini, L.; Dessì, A.; Pintus, R.; et al. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta 2018, 61, 89–95. [Google Scholar] [CrossRef]
Groups | Components | Accuracy | R2 | Q2 | B/W |
---|---|---|---|---|---|
WT/HZ (29/31) | 5 | 0.78333 | 0.81112 | 0.25494 | p < 0.01 |
WT/KO (29/9) | 4 | 0.81579 | 0.83169 | 0.25824 | p = 0.6 |
HZ/KO (34/9) | 4 | 0.90698 | 0.84588 | 0.34994 | p = 0.1 |
Metabolite | Chemical Class | WT vs. HZ | WT vs. KO | HZ vs. KO |
---|---|---|---|---|
2-Monostearin | Lipid | ↑ | ↓ | |
3-Hydroxybutyric acid | Hydroxy acid | ↓ | ||
3-Hydroxypicolinic acid | Hydroxy acid | ↑ | ||
4-Hydroxyproline | Amino acid | ↓ | ↑ | |
Arabitol | Polyol | ↑ | ↑ | |
Chiroinositol | Polyol | ↑ | ↑ | ↑ |
Cholesterol | Steroid | ↑ | ↑ | |
Citric acid | Carboxylic acid | ↑ | ||
Elaidic acid | Fatty acid | ↑ | ↑ | ↑ |
Ethanolamine | Amine | ↑ | ↓ | |
Glycerol | Polyol | ↓ | ||
Inositol | Polyol | ↑ | ||
Inositol isomer | Polyol | ↑ | ↑ | ↑ |
Lactose | Sugar | ↓ | ↑ | |
Linoleic acid | Fatty acid | ↑ | ↑ | |
Malic acid | Hydroxy acid | ↑ | ||
Mannitol | Polyol | ↓ | ||
Myristic acid | Fatty acid | ↑ | ↑ | |
Nicotinamide | Amide | ↑ | ||
Palmitoleic acid | Fatty acid | ↑ | ↑ | ↑ |
Proline | Amino acid | ↑ | ↑ | |
Sucrose | Sugar | ↓ | ↑ | |
Trimethanolmethylamine | Amine | ↓ | ||
Unknown acid | Unknown | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattuoni, C.; Barberini, L.; Noto, A.; Follesa, P. Metabolomic Analysis of Plasma from GABAB(1) Knock-Out Mice Reveals Decreased Levels of Elaidic Trans-Fatty Acid. Metabolites 2020, 10, 484. https://doi.org/10.3390/metabo10120484
Fattuoni C, Barberini L, Noto A, Follesa P. Metabolomic Analysis of Plasma from GABAB(1) Knock-Out Mice Reveals Decreased Levels of Elaidic Trans-Fatty Acid. Metabolites. 2020; 10(12):484. https://doi.org/10.3390/metabo10120484
Chicago/Turabian StyleFattuoni, Claudia, Luigi Barberini, Antonio Noto, and Paolo Follesa. 2020. "Metabolomic Analysis of Plasma from GABAB(1) Knock-Out Mice Reveals Decreased Levels of Elaidic Trans-Fatty Acid" Metabolites 10, no. 12: 484. https://doi.org/10.3390/metabo10120484
APA StyleFattuoni, C., Barberini, L., Noto, A., & Follesa, P. (2020). Metabolomic Analysis of Plasma from GABAB(1) Knock-Out Mice Reveals Decreased Levels of Elaidic Trans-Fatty Acid. Metabolites, 10(12), 484. https://doi.org/10.3390/metabo10120484