Evolution, Validation and Current Challenges in Bioanalytical Methods for Praziquantel: From Fluorometry to LC–MS/MS
Abstract
1. Introduction
2. Physicochemical Properties of Praziquantel
2.1. Physicochemical Characteristics
2.2. Chirality and Its Impact on Biological Activity
3. Biopharmaceutics and Pharmacokinetics of Praziquantel
3.1. Biopharmaceutical Properties
3.2. Absorption, Distribution, Metabolism and Excretion
4. Bioanalytical Methods for the Determination and Quantification of Praziquantel
4.1. Non-Chromatographic Techniques
4.1.1. Fluorometric Assay
4.1.2. Radiometric Assay
4.2. Chromatographic Techniques
4.2.1. Gas Chromatography
4.2.2. High-Performance Liquid Chromatography
4.2.3. Liquid Chromatography Coupled with Mass Spectrometry
Considerations for Enantioselective Methods
Sample Preparation
4.3. Importance of Bioanalytical Validation
4.4. Advantages and Disadvantages of Non-Chromatographic and Chromatographic Techniques
- Enhanced accuracy and precision: liquid chromatographic methods provide reliable and reproducible results, enabling precise quantification of PZQ and its metabolites across diverse biological matrices.
- Improved detection limits: With detection limits as low as nanogram levels, these methods are suitable for low-concentration analyses, which are essential for pharmacokinetic and pharmacodynamic studies.
- Minimal matrix interference: The advanced separation capabilities of liquid chromatographic methods, particularly when coupled to tandem mass spectrometry, reduce interference from biological components, ensuring accurate analysis.
- Versatility and Adaptability: These techniques can be applied to various matrices, including plasma, serum, muscle tissue, and even food products, making them highly versatile.
4.5. Implementation Challenges in Resource-Limited Settings
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SC | Schistosomiasis |
| NC | neurocysticercosis |
| PZQ | praziquantel |
| WHO | World Health Organization |
| MDA | Mass drug administration |
| GC | gas chromatography |
| LC | liquid chromatography |
| HPLC | high-performance liquid chromatography |
| MS | mass spectrometry |
| ICH | International Council for Harmonization |
| BCS | Biopharmaceutical Classification System |
| FA | fluorometric assay |
| MIP | Molecularly imprinted polymers |
| RA | Radiometric assay |
| ESI | electrospray ionization |
| LOQ | limit of quantification |
| LOD | limit of detection |
References
- Waechtler, A.; Cezanne, B.; Maillard, D.; Sun, R.; Wang, S.; Wang, J.; Harder, A. Praziquantel—50 Years of Research. ChemMedChem 2023, 18, e202300154. [Google Scholar] [CrossRef] [PubMed]
- Alwan, S.N.; Taylor, A.B.; Rhodes, J.; Tidwell, M.; McHardy, S.F.; LoVerde, P.T. Oxamniquine Derivatives Overcome Praziquantel Treatment Limitations for Schistosomiasis. PLoS Pathog. 2023, 19, e1011018. [Google Scholar] [CrossRef] [PubMed]
- Jung-Cook, H. Pharmacokinetic Variability of Anthelmintics: Implications for the Treatment of Neurocysticercosis. Expert Rev. Clin. Pharmacol. 2012, 5, 21–30. [Google Scholar] [CrossRef] [PubMed]
- WHO. Model Lists of Essential Medicines. Available online: https://www.who.int/groups/expert-committee-on-selection-and-use-of-essential-medicines/essential-medicines-lists (accessed on 11 February 2025).
- Stelzle, D.; Makasi, C.; Schmidt, V.; Trevisan, C.; Van Damme, I.; Ruether, C.; Dorny, P.; Magnussen, P.; Zulu, G.; Mwape, K.E.; et al. Efficacy and Safety of Antiparasitic Therapy for Neurocysticercosis in Rural Tanzania: A Prospective Cohort Study. Infection 2023, 51, 1127–1139. [Google Scholar] [CrossRef]
- Colley, D.G. Morbidity Control of Schistosomiasis by Mass Drug Administration: How Can We Do It Best and What Will It Take to Move on to Elimination? Trop. Med. Health 2014, 42, 25–32. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Wang, Z.; Shan, L.; Shen, Y.; He, J.; Liu, L.; Hu, Y.; Chen, J. New Use of Praziquantel as a Broad-Spectrum Anti-Parasitic Agent in Blocking MSRV Infection. Aquaculture 2025, 596, 741847. [Google Scholar] [CrossRef]
- Eastham, G.; Fausnacht, D.; Becker, M.H.; Gillen, A.; Moore, W. Praziquantel Resistance in Schistosomes: A Brief Report. Front. Parasitol. 2024, 3, 1471451. [Google Scholar] [CrossRef]
- N’Goran, E.K.; Yalkinoglu, Ö.; Kourany-Lefoll, E.; Tappert, A.; Hayward, B.; Yin, X.; Bezuidenhout, D.; Huber, E.; Aka, N.A.D.; Ouattara, M.; et al. Efficacy and Safety of New Orodispersible Tablet Formulations of Praziquantel (Racemate and L-Praziquantel) in Schistosoma Mansoni-Infected Preschool-Age Children and Infants: A Randomized Dose-Finding Phase 2 Study. Front. Trop. Dis. 2021, 2, 679373. [Google Scholar] [CrossRef]
- Kumar, A.; Chalannavar, R.K. Characterization of the Major Degradation Products of the Praziquantel API by Mass Spectrometry: Development and Validation of a Stability-Indicating Reversed Phase UPLC Method. J. Liq. Chromatogr. Relat. Technol. 2022, 45, 130–142. [Google Scholar] [CrossRef]
- Ding, T.-Y.; Shu, X.-G.; Xiong, R.-P.; Qiu, J.-L.; Li, L.; He, L.-M. Simultaneous Determination of Praziquantel and Its Main Metabolites in the Tissues of Black Goats and Their Residue Depletion. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 666–677. [Google Scholar] [CrossRef]
- El-Subbagh, H.I.; Al-Badr, A.A. Praziquantel. In Analytical Profiles of Drug Substances and Excipients; Elsevier: Amsterdam, The Netherlands, 1998; Volume 25, pp. 463–500. ISBN 978-0-12-260825-4. [Google Scholar]
- D’Abbrunzo, I.; Venier, E.; Selmin, F.; Škorić, I.; Bernardo, E.; Procida, G.; Perissutti, B. Stability of Ternary Drug–Drug–Drug Coamorphous Systems Obtained Through Mechanochemistry. Pharmaceutics 2025, 17, 92. [Google Scholar] [CrossRef]
- Polyzois, H.; Nguyen, H.T.; Roberto de Alvarenga Junior, B.; Taylor, L.S. Amorphous Solid Dispersion Formation for Enhanced Release Performance of Racemic and Enantiopure Praziquantel. Mol. Pharm. 2024, 21, 5285–5296. [Google Scholar] [CrossRef] [PubMed]
- Mengarda, A.C.; Iles, B.; Longo, J.P.F.; de Moraes, J. Recent Trends in Praziquantel Nanoformulations for Helminthiasis Treatment. Expert Opin. Drug Deliv. 2022, 19, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ruiz, C.; Salas-Zúñiga, R.; Sánchez-Guadarrama, M.O.; Delgado-Díaz, A.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Structural, Physicochemical, and Biopharmaceutical Properties of Cocrystals with RS- and R-Praziquantel─Generation and Prolongation of the Supersaturation State in the Presence of Cellulosic Polymers. Cryst. Growth Des. 2022, 22, 6023–6038. [Google Scholar] [CrossRef]
- Anumolu, P.D.; Gurrala, S.; Mathew, C.; Panchakatla, V.; Maddala, V. Degradation Kinetics, In Vitro Dissolution Studies, and Quantification of Praziquantel, Anchored in Emission Intensity by Spectrofluorimetry. Turk. J. Pharm. Sci. 2019, 16, 82–87. [Google Scholar] [CrossRef]
- Lima, R.M.; Ferreira, M.A.D.; Ponte, T.M.D.J.; Marques, M.P.; Takayanagui, O.M.; Garcia, H.H.; Coelho, E.B.; Bonato, P.S.; Lanchote, V.L. Enantioselective Analysis of Praziquantel and Trans-4-Hydroxypraziquantel in Human Plasma by Chiral LC–MS/MS: Application to Pharmacokinetics. J. Chromatogr. B 2009, 877, 3083–3088. [Google Scholar] [CrossRef]
- Jabor, V.A.P.; Bonato, P.S. Enantiomeric Determination of Praziquantel and Its Main Metabolite trans-4-Hydroxypraziquantel in Human Plasma by Cyclodextrin-Modified Micellar Electrokinetic Chromatography. Electrophoresis 2001, 22, 1399–1405. [Google Scholar] [CrossRef]
- Rosenberger, L.; Jenniches, J.; von Essen, C.; Khutia, A.; Kuhn, C.; Marx, A.; Georgi, K.; Hirsch, A.K.H.; Hartmann, R.W.; Badolo, L. Metabolic Profiling of S-Praziquantel: Structure Elucidation Using the Crystalline Sponge Method in Combination with Mass Spectrometry and Nuclear Magnetic Resonance. Drug Metab. Dispos. 2022, 50, 320–326. [Google Scholar] [CrossRef]
- Santiago-Villarreal, O.; Rojas-González, L.; Bernad-Bernad, M.J.; Miranda-Calderón, J.E. Self-Emulsifying Drug Delivery System for Praziquantel with Enhanced Ex Vivo Permeation. J. Pharm. Innov. 2023, 18, 525–537. [Google Scholar] [CrossRef]
- D’Abbrunzo, I.; Procida, G.; Perissutti, B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023, 16, 27. [Google Scholar] [CrossRef]
- Seitzer, M.; Klapper, S.; Mazigo, H.D.; Holzgrabe, U.; Mueller, A.; Garba, A. Quality and Composition of Albendazole, Mebendazole and Praziquantel Available in Burkina Faso, Côte d’Ivoire, Ghana and Tanzania. PLoS Negl. Trop. Dis. 2021, 15, e0009038. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, F.C.; Perissutti, B.; Keiser, J. Activity and Pharmacokinetics of a Praziquantel Crystalline Polymorph in the Schistosoma Mansoni Mouse Model. Eur. J. Pharm. Biopharm. 2019, 142, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.D.; Da Silva Dutra, L.; Paiva, T.F.; De Almeida Carvalho, L.L.; Rocha, H.V.A.; Pinto, J.C. In Vitro Release and In Vivo Pharmacokinetics of Praziquantel Loaded in Different Polymer Particles. Materials 2023, 16, 3382. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.N.; Fahmy, R.; Li, L.; Herath, K.; Hollenbeck, R.G.; Ibrahim, A.; Hoag, S.W.; Longstaff, D.; Gao, S.; Myers, M.J. The Use of Systemically Absorbed Drugs to Explore An In Vitro Bioequivalence Approach For Comparing Non-Systemically Absorbed Active Pharmaceutical Ingredients in Drug Products For Use in Dogs. Pharm. Res. 2024, 41, 1797–1809. [Google Scholar] [CrossRef]
- Orlandi, S.; Priotti, J.; Diogo, H.P.; Leonardi, D.; Salomon, C.J.; Nunes, T.G. Structural Elucidation of Poloxamer 237 and Poloxamer 237/Praziquantel Solid Dispersions: Impact of Poly (Vinylpyrrolidone) over Drug Recrystallization and Dissolution. AAPS PharmSciTech 2018, 19, 1274–1286. [Google Scholar] [CrossRef]
- Paulino, É.T.; Ribeiro De Lima, M.; Viçosa, A.L.; Silva, C.H.D.; Salomon, C.J.; Real, D.A.; Leonardi, D.; Mello Silva, C.C.; Moraes Neto, A.H.A.D. The Effect of Different Formulations of Praziquantel in Reducing Worms in the Prepatent Period of Schistosomiasis in Murine Models. Front. Public Health 2022, 10, 848633. [Google Scholar] [CrossRef]
- De Castro Carvalho Silva, L.; Cunha Dos Reis, L.F.; Malaquias, L.C.C.; Carvalho, F.C.; Novaes, R.D.; Marques, M.J. Impact of Nanostructured Formulations for Schistosomiasis Treatment: A Systematic Review of in Vivo Preclinical Evidence. J. Pharm. Pharmacol. 2025, 77, 341–351. [Google Scholar] [CrossRef]
- Correa, S.; Mendes, T.; Alves, T.; Souza, J.; Crescencio, K.; Allegretti, S.; Chaud, M. Lyotropic Liquid Crystal and Self-Emulsifying Drug Delivery Systems Nanoparticles as Artesunic Acid and Praziquantel Carriers: An Innovative Approach for Formulation of Anti-Malaria and Schistosomicidal Drugs. J. Drug Deliv. Sci. Technol. 2024, 101, 106296. [Google Scholar] [CrossRef]
- Adekiya, T.A.; Kumar, P.; Kondiah, P.P.D.; Ubanako, P.; Choonara, Y.E. In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. Mansoni Infection in Preclinical Murine Models. Int. J. Mol. Sci. 2022, 23, 9485. [Google Scholar] [CrossRef]
- Charpentier, M.D.; Devogelaer, J.-J.; Tijink, A.; Meekes, H.; Tinnemans, P.; Vlieg, E.; De Gelder, R.; Johnston, K.; Ter Horst, J.H. Comparing and Quantifying the Efficiency of Cocrystal Screening Methods for Praziquantel. Cryst. Growth Des. 2022, 22, 5511–5525. [Google Scholar] [CrossRef]
- Cugovčan, M.; Jablan, J.; Lovrić, J.; Cinčić, D.; Galić, N.; Jug, M. Biopharmaceutical Characterization of Praziquantel Cocrystals and Cyclodextrin Complexes Prepared by Grinding. J. Pharm. Biomed. Anal. 2017, 137, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Mandour, M.E.M.; El Turabi, H.; Homeida, M.M.A.; el Sadig, T.; Ali, H.M.; Bennett, J.L.; Leahey, W.J.; Hanon, D.W.G. Pharmacokinetics of Praziquantel in Healthy Volunteers and Patients with Schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Olliaro, P.; Delgado-Romero, P.; Keiser, J. The Little We Know about the Pharmacokinetics and Pharmacodynamics of Praziquantel (Racemate and R-Enantiomer). J. Antimicrob. Chemother. 2014, 69, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Dixit, R.P.; Puthli, S.P. Oral Strip Technology: Overview and Future Potential. J. Control. Release 2009, 139, 94–107. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Viseras, C.; Sainz-Díaz, C.I. Molecular Interactions of Praziquantel Drug with Nanosurfaces of Sepiolite and Montmorillonite. Appl. Clay Sci. 2020, 197, 105774. [Google Scholar] [CrossRef]
- Dey, S.; Ghosh, M.; Rangra, N.K.; Kant, K.; Shah, S.R.; Pradhan, P.K.; Singh, S. High-Performance Liquid Chromatography Determination of Praziquantel in Rat Plasma; Application to Pharmacokinetic Studies. Indian J. Pharm. Sci. 2017, 79, 885–892. [Google Scholar] [CrossRef]
- Kapungu, N.N.; Li, X.; Nhachi, C.; Masimirembwa, C.; Thelingwani, R.S. In Vitro and in Vivo Human Metabolism and Pharmacokinetics of S- and R-praziquantel. Pharmacol. Res. Perspect. 2020, 8, e00618. [Google Scholar] [CrossRef]
- Zdesenko, G.; Mutapi, F. Drug Metabolism and Pharmacokinetics of Praziquantel: A Review of Variable Drug Exposure during Schistosomiasis Treatment in Human Hosts and Experimental Models. PLoS Negl. Trop. Dis. 2020, 14, e0008649. [Google Scholar] [CrossRef]
- Bonate, P.L.; Wang, T.; Passier, P.; Bagchus, W.; Burt, H.; Lüpfert, C.; Abla, N.; Kovac, J.; Keiser, J. Extrapolation of Praziquantel Pharmacokinetics to a Pediatric Population: A Cautionary Tale. J. Pharmacokinet. Pharmacodyn. 2018, 45, 747–762. [Google Scholar] [CrossRef]
- Pütter, J. A Fluorometric Method for the Determination of Praziquantel in Blood-Plasma and Urine. Eur. J. Drug Metab. Pharmacokinet. 1979, 4, 143–148. [Google Scholar] [CrossRef]
- Pütter, J.; Held, F. Quantitative Studies on the Occurrence of Praziquantel in Milk and Plasma of Lactating Women. Eur. J. Drug Metab. Pharmacokinet. 1979, 4, 193–198. [Google Scholar] [CrossRef]
- Nome, R.V.; Flatebø, Ø.; Bøe, S.L.; Klaasen, R.A.; Aamdal, E.; Normann, M.; Bolstad, N.; Warren, D.J. A Simple Automated Assay Format for Measuring Multiple Immune Checkpoint Inhibitors. J. Pharm. Biomed. Anal. 2025, 255, 116657. [Google Scholar] [CrossRef] [PubMed]
- Klaasen, R.A.; Egeland, E.J.; Chan, J.; Midtvedt, K.; Svensson, M.; Bolstad, N.; Fellström, B.; Holdaas, H.; Åsberg, A.; Bergan, S.; et al. A Fully Automated Method for the Determination of Serum Belatacept and Its Application in a Pharmacokinetic Investigation in Renal Transplant Recipients. Ther. Drug Monit. 2019, 41, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chang, Y.; Guo, Y.; Yu, L.; Zhang, G.; Zhai, D.; Wang, X.; Sun, X. Fluorometric Microplate-Based Dimethoate Assay Using CdSe/ZnS Quantum Dots Coated with a Molecularly Imprinted Polymer. Microchim. Acta 2019, 186, 589. [Google Scholar] [CrossRef] [PubMed]
- Mainardes, R.M.; Cinto, P.O.; Gremião, M.P.D. High-Performance Liquid Chromatography Determination of Praziquantel in Tablets and Raw Materials. Acta Farm. Bonaer. 2006, 25, 567–570. [Google Scholar]
- Rathnasekara, R.P.; Rustum, A.M. Simultaneous Determination of Praziquantel, Fipronil, Eprinomectin, (S)-Methoprene, Their Key Related Substances and Butylated Hydroxytoluene (BHT) in a Topical Veterinary Drug Product by a Single Stability Indicating High Performance Liquid Chromatography Method. J. Pharm. Biomed. Anal. 2024, 238, 115805. [Google Scholar] [CrossRef]
- Klausz, G.; Keller, E.; Sára, Z.; Székely-Körmöczy, P.; Laczay, P.; Ary, K.; Sótonyi, P.; Róna, K. Simultaneous Determination of Praziquantel, Pyrantel Embonate, Febantel and Its Active Metabolites, Oxfendazole and Fenbendazole, in Dog Plasma by Liquid Chromatography/Mass Spectrometry. Biomed. Chromatogr. 2015, 29, 1859–1865. [Google Scholar] [CrossRef]
- Patzschke, K.; Pütter, J.; Wegner, L.A.; Horster, F.A.; Diekmann, H.W. Serum Concentrations and Renal Excretion in Humans after Oral Administration of Praziquantel—Results of Three Determination Methods. Eur. J. Drug Metab. Pharmacokinet. 1979, 4, 149–156. [Google Scholar] [CrossRef]
- Jackson, R.J.; Keightley, R.G. A Rapid Radiometric Assay for Adenosine Deaminase. Anal. Biochem. 1976, 70, 403–412. [Google Scholar] [CrossRef]
- Broschat, K.O.; Gorka, C.; Kasten, T.P.; Gulve, E.A.; Kilpatrick, B. A Radiometric Assay for Glutamine: Fructose-6-Phosphate Amidotransferase. Anal. Biochem. 2002, 305, 10–15. [Google Scholar] [CrossRef]
- Gandla, K.; Lalitha, R.; Bommakanti, S.; Suthakaran, R.; Pallavi, K. Development and Validation of RP-HPLC Method for Simultaneous Estimation of Albendazole and Praziquantel in Tablet Dosage Form. Asian J. Pharmac. Anal. 2015, 5, 115. [Google Scholar] [CrossRef]
- Malhado, M.; Pinto, D.P.; Silva, A.C.A.; Silveira, G.P.E.; Pereira, H.M.; Santos, J.G.F.; Guilarducci-Ferraz, C.V.V.; Viçosa, A.L.; Nele, M.; Fonseca, L.B.; et al. Preclinical Pharmacokinetic Evaluation of Praziquantel Loaded in Poly (Methyl Methacrylate) Nanoparticle Using a HPLC–MS/MS. J. Pharm. Biomed. Anal. 2016, 117, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Meister, I.; Leonidova, A.; Kovač, J.; Duthaler, U.; Keiser, J.; Huwyler, J. Development and Validation of an Enantioselective LC-MS/MS Method for the Analysis of the Anthelmintic Drug Praziquantel and Its Main Metabolite in Human Plasma, Blood and Dried Blood Spots. J. Pharm. Biomed. Anal. 2016, 118, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Chin, A.; Wong, A.; Cardinal, K.A.; McKinney, E.; Hengel, S.M.; Sun, H.; Lee, A.J. Use of Stable Isotope Labeled (SIL) Antibodies in Cassette Dosing to Improve Pharmacokinetics Screening Efficiency of ADCs with Novel Cytotoxic Payloads. Xenobiotica 2024, 54, 502–510. [Google Scholar] [CrossRef]
- Diekmann, H.W. Quantitative Determination of Praziquantel in Body Fluids by Gas Liquid Chromatography. Eur. J. Drug Metab. Pharmacokinet. 1979, 4, 139–141. [Google Scholar] [CrossRef]
- Westhoff, F.; Blaschke, G. High-Performance Liquid Chromatographic Determination of the Stereoselective Biotransformation of the Chiral Drug Praziquantel. J. Chromatogr. B Biomed. Sci. Appl. 1992, 578, 265–271. [Google Scholar] [CrossRef]
- Shah, S.R.; Dey, S.; Pradhan, P.; Jain, H.K.; Upadhyay, U.M. Method Development and Validation for Simultaneous Estimation of Albendazole and Praziquantel in Bulk and in a Synthetic Mixture. J. Taibah Univ. Sci. 2014, 8, 54–63. [Google Scholar] [CrossRef]
- Tonanon, P.; Jalando-On Agpoon, K.; Webster, R.D. A Comparison of the Detection and Quantification of Praziquantel via Electrochemical and Gas Chromatography Methods in Freshwater and Saltwater Samples. Anal. Methods 2024, 16, 1323–1329. [Google Scholar] [CrossRef]
- Stashenko, E.; Ren, J. Gas Chromatography-Mass Spectrometry. In Advances in Gas Chromatography; Guo, X., Ed.; InTech: Houston, TX, USA, 2014; ISBN 978-953-51-1227-3. [Google Scholar]
- Evans, R.S.; Scott, P.G.W. Precision and Accuracy in Gas Chromatographic Analysis. Nature 1961, 190, 710–711. [Google Scholar] [CrossRef]
- Atapattu, S.N.; Temerdashev, A. Recent Advances in Gas Chromatography Injection Port Derivatization in Analytical Method Development. TrAC Trends Anal. Chem. 2023, 168, 117334. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Nouri, N.; Khorram, P. Derivatization and Microextraction Methods for Determination of Organic Compounds by Gas Chromatography. TrAC Trends Anal. Chem. 2014, 55, 14–23. [Google Scholar] [CrossRef]
- Du, X.; Saleh, B.; Li, X.; Zheng, X.; Shu, X.; Liu, R.; He, L. LC-MS/MS Analyzing Praziquantel and 4-Hydroxypraziquantel Enantiomers in Black Goat Plasma and Mechanism of Stereoselective Pharmacokinetics. Biomed. Chromatogr. 2025, 39, e6082. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Erdem, A.F. Determination of Ibuprofen in Human Plasma and Urine by Gas Chromatography/Mass Spectrometry. J. AOAC Int. 2014, 97, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Ridtitid, W.; Wongnawa, M.; Mahatthanatrakul, W.; Punyo, J.; Sunbhanich, M. LC Determination of Praziquantel in Human Plasma. J. Pharm. Biomed. Anal. 2002, 28, 181–186. [Google Scholar] [CrossRef]
- Hanpitakpong, W.; Banmairuroi, V.; Kamanikom, B.; Choemung, A.; Na-Bangchang, K. A High-Performance Liquid Chromatographic Method for Determination of Praziquantel in Plasma. J. Pharm. Biomed. Anal. 2004, 36, 871–876. [Google Scholar] [CrossRef]
- Liu, J.; Stewart, J.T. High-Performance Liquid Chromatography Determination of Praziquantel Enantiomers in Human Serum Using a Reversed-Phase Cellulose-Based Chiral Stationary Phase and Disc Solid-Phase Extraction. J. Chromatogr. B Biomed. Appl. 1997, 692, 141–147. [Google Scholar] [CrossRef]
- Woelfle, M.; Seerden, J.-P.; de Gooijer, J.; Pouwer, K.; Olliaro, P.; Todd, M.H. Resolution of Praziquantel. PLoS Negl. Trop. Dis. 2011, 5, e1260. [Google Scholar] [CrossRef]
- Gentile, R.; Gonçalves, M.M.L.; da Costa Neto, S.F.; da Costa, M.M.; Peralta, R.H.S.; Peralta, J.M. Evaluation of Immunological, Parasitological and Molecular Methods for the Diagnosis of Schistosoma Mansoni Infection before and after Chemotherapy Treatment with Praziquantel in Experimentally Infected Nectomys Squamipes. Vet. Parasitol. 2011, 180, 243–249. [Google Scholar] [CrossRef]
- Sun, Y.; Bu, S.-J. Simple, Cheap and Effective High-Performance Liquid Chromatographic Method for Determination of Praziquantel in Bovine Muscle. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 899, 160–162. [Google Scholar] [CrossRef]
- Bustinduy, A.L.; Waterhouse, D.; De Sousa-Figueiredo, J.C.; Roberts, S.A.; Atuhaire, A.; Van Dam, G.J.; Corstjens, P.L.A.M.; Scott, J.T.; Stanton, M.C.; Kabatereine, N.B.; et al. Population Pharmacokinetics and Pharmacodynamics of Praziquantel in Ugandan Children with Intestinal Schistosomiasis: Higher Dosages Are Required for Maximal Efficacy. mBio 2016, 7, e00227-16. [Google Scholar] [CrossRef]
- Bustinduy, A.L.; Kolamunnage-Dona, R.; Mirochnick, M.H.; Capparelli, E.V.; Tallo, V.; Acosta, L.P.; Olveda, R.M.; Friedman, J.F.; Hope, W.W. Population Pharmacokinetics of Praziquantel in Pregnant and Lactating Filipino Women Infected with Schistosoma Japonicum. Antimicrob. Agents Chemother. 2020, 64, 9. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gao, F.; Li, E.; Tzuoh Lee, J.; Bian, L.; Armstrong, D.W. Chromatographic Separation of Racemic Praziquantel and Its Residual Determination in Perch by LC-MS/MS. Talanta 2017, 174, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Shah, S.; Ghosh, M.; Karki, N.; Basak, S.; Sahoo, N.G. A Novel, Quick Column Switching RP-HPLC Guided Metabolite Profiling of Albendazole-Praziquantel in Rat Plasma: Designing New Combination Dosage Regimen with Higher Therapeutic Window. Curr. Anal. Chem. 2018, 14, 604–614. [Google Scholar] [CrossRef]
- Yoo, K.-H.; Park, D.-H.; Abd El-Aty, A.M.; Kim, S.-K.; Jung, H.-N.; Jeong, D.-H.; Cho, H.-J.; Hacimüftüoğlu, A.; Shim, J.-H.; Jeong, J.H.; et al. Development of an Analytical Method for Multi-Residue Quantification of 18 Anthelmintics in Various Animal-Based Food Products Using Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Anal. 2021, 11, 68–76. [Google Scholar] [CrossRef]
- Probst, A.; Hofmann, D.; Fedorova, O.S.; Mazeina, S.V.; Sokolova, T.S.; Golovach, E.; Keiser, J. Pharmacokinetics of Ascending Doses of Praziquantel in Adults Infected with Opisthorchis Felineus in Western Siberia, Russian Federation. Antimicrob. Agents Chemother. 2022, 66, e00526-22. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, F.; Zhao, X.; Li, C.; Wang, J.; Wang, M.; Ma, R.; Chen, B.; Miao, Q.; Wang, Y.; et al. UPLC-MS/MS Method for Simultaneous Determination of Pyrantel, Praziquantel, Febantel, Fenbendazole and Oxfendazole in Dog Plasma and Its Application to a Bioequivalence Study. Front. Pharmacol. 2025, 16, 1544215. [Google Scholar] [CrossRef]
- International Council for Harmonisation (ICH) of Technical Requirements for Pharmaceuticals for Human Use. ICH M10 Bioanalytical Method Validation and Study Sample Analysis; European Medicines Agency: London, UK, 2022; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf (accessed on 2 September 2025).
- Mnkugwe, R.H.; Ngaimisi Kitabi, E.; Kinung’hi, S.; Kamuhabwa, A.A.R.; Minzi, O.M.; Aklillu, E. Optimal Single Sampling Time-Point for Monitoring of Praziquantel Exposure in Children. Sci. Rep. 2021, 11, 17955. [Google Scholar] [CrossRef]
- Kogiannou, D.; Nikoloudaki, C.; Valsamidi, V.; Kotsiri, M.; Golomazou, E.; Rigos, G. Pharmacokinetics of Praziquantel in Gilthead Seabream (Sparus aurata) Plasma and Gills. Aquaculture 2023, 577, 739975. [Google Scholar] [CrossRef]
- Mallik, S.K.; Pathak, R.; Kala, K.; Patil, P.K.; Shahi, N.; Tandel, R.S.; Chatterjee, N.S.; Nadella, R.K.; Kunal, K. Pharmacokinetics of Praziquantel in Rainbow Trout, Oncorhynchus Mykiss (Walbaum 1792) Following a Single Dose Oral Administration. Vet. Res. Commun. 2025, 49, 341. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, D.-B.; Nam, T.G.; Seo, D.; Yoo, M. Identification and Quantification of Multi-Class Veterinary Drugs and Their Metabolites in Beef Using LC–MS/MS. Food Chem. 2022, 382, 132313. [Google Scholar] [CrossRef]
- Baralla, E.; Varoni, M.V.; Nieddu, M.; Demontis, M.P.; Merella, P.; Burreddu, C.; Garippa, G.; Boatto, G. Determination of Praziquantel in Sparus aurata L. after Administration of Medicated Animal Feed. Animals 2020, 10, 528. [Google Scholar] [CrossRef] [PubMed]
- Mutiti, C.S.; Kapungu, N.N.; Kanji, C.R.; Stadler, N.; Stingl, J.; Nhachi, C.; Hakim, J.; Masimirembwa, C.; Thelingwani, R.S. Clinically Relevant Enantiomer Specific R- and S-Praziquantel Pharmacokinetic Drug-Drug Interactions with Efavirenz and Ritonavir. Pharmacol. Res. Perspect. 2021, 9, e00769. [Google Scholar] [CrossRef] [PubMed]
- Dasvani, B.K.; Khristi, A.P. UV Spectroscopic Method Development and Validation of First Derivative Method for Simultaneous Estimation of Praziquantel and Abamectin in Finished Dosage Form. Indian Drugs 2023, 60, 66–72. [Google Scholar] [CrossRef]
- Xiao, S.-H.; Catto, B.A.; Webster, L.T., Jr. Quantitative Determination of Praziquantel in Serum by High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1983, 275, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Periša, M.; Babić, S. Simultaneous Determination of Pharmaceuticals and Some of Their Metabolites in Wastewaters by High Performance Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2014, 37, 1289–1296. [Google Scholar] [CrossRef]
- Hashem, H.; Ibrahim, A.E.; Elhenawee, M. A Rapid Stability Indicating LC-Method for Determination of Praziquantel in Presence of Its Pharmacopoeial Impurities. Arab. J. Chem. 2017, 10, S35–S41. [Google Scholar] [CrossRef]
- Cunha, F.C.; De Holanda, R.C.; Secchi, A.R.; De Souza, M.B.; Barreto, A.G. Simultaneous Absorption of UV–Vis and Circular Dichroism to Measure Enantiomeric Concentrations of Praziquantel under Nonlinear Conditions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118645. [Google Scholar] [CrossRef]
- Soto, C.; Contreras, D.; Orellana, S.; Yañez, J.; Toral, M.I. Simultaneous Determination of Albendazole and Praziquantel by Second Derivative Spectrophotometry and Multivariated Calibration Methods in Veterinary Pharmaceutical Formulation. Anal. Sci. 2010, 26, 891–896. [Google Scholar] [CrossRef]
- Vazvaei-Smith, F.; Wickremsinhe, E.; Woolf, E.; Yu, C. ICH M10 Bioanalytical Method Validation Guideline-1 Year Later. AAPS J. 2024, 26, 103. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids: A Method for Determination of Finasteride in Human Plasma at Picogram Per Milliliter Concentrations. Anal. Chem. 1998, 70, 882–889. [Google Scholar] [CrossRef]
- Mnkugwe, R.H.; Minzi, O.; Kinung’hi, S.; Kamuhabwa, A.; Aklillu, E. Effect of Pharmacogenetics Variations on Praziquantel Plasma Concentrations and Schistosomiasis Treatment Outcomes Among Infected School-Aged Children in Tanzania. Front. Pharmacol. 2021, 12, 712084. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Ji, J.; Nie, L.; Sun, D. A Quantification Method for Determination of Racemate Praziquantel and R-Enantiomer in Rat Plasma for Comparison of Their Pharmacokinetics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1048, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lu, Y.; Wang, J.; Lin, C.; Ye, P.; Liu, X.; Xiong, W.; Zeng, Z.; Zeng, D. Development and Validation of an LC–MS/MS Method for the Simultaneous Quantification of Milbemycin Oxime and Praziquantel in Plasma: Application to a Pharmacokinetic Study in Cats. Front. Vet. Sci. 2023, 10, 1285932. [Google Scholar] [CrossRef] [PubMed]
- Kovač, J.; Meister, I.; Neodo, A.; Panic, G.; Coulibaly, J.T.; Falcoz, C.; Keiser, J. Pharmacokinetics of Praziquantel in Schistosoma Mansoni- and Schistosoma Haematobium-Infected School- and Preschool-Aged Children. Antimicrob. Agents Chemother. 2018, 62, e02253-17. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.D.; Mishra, A.; Chaudhary, A. RP-HPLC Method Development and Validation for Simultaneous Estimation of Pyrantel Pamoate, Praziquantel, Febantel in Tablet. Res. J. Pharm. Technol. 2022, 15, 3535–3539. [Google Scholar] [CrossRef]
- Tatar, E.; Ateş, G.; Küçükgüzel, İ. Development and Validation of a RP-HPLC Method for Quality Control of Oxantel Pamoate, Pyrantel Pamoat and Praziquantel in Tablets. Marmara Pharm. J. 2015, 19, 27–35. [Google Scholar] [CrossRef]
- Kulik, A.; Szczotkowska, A.; Białecka, W.; Podolska, M.; Kwiatkowska-Puchniarz, B.; Mazurek, A. Determination of Active Substances in Binary Mixture Antiparasitic Veterinary Formulations by HPLC. Acta Pol. Pharm.—Drug Res. 2011, 68, 467–472. [Google Scholar]
- Białecka, W.; Kulik, A. Determination of Active Substances in Multicomponent Veterinary Preparations of Antiparasitic Action by HPLC Method. Acta Pol. Pharm.—Drug Res. 2010, 67, 463–468. [Google Scholar]




| Generic Name | Praziquantel | |
|---|---|---|
| Chemical formula | C19H24N2O2 | |
| Elemental composition | C (73.05%); H (7.74%); N (8.97%); O (10.24%) | |
| Name (IUPAC) | 2-(cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino [2,1-a] isoquinolin-4-one | |
| CAS Registry number | 55268-74-1 | |
| Appearance, color, and taste | Praziquantel is a colorless, almost odorless, crystalline compound that has a bitter taste. It is stable under normal conditions. | |
| Canonical smiles | C1CCC(CC1)C(=O)N2CC3C4=CC=CC=C4CCN3C(=O)C2 | |
| Molecular weight | 312.41 g/mol | |
| Number of H-bond acceptors | 2 | |
| Heavy atom counting | 23 | |
| Solubility (25 °C) | Water | 0.40 mg/mL |
| Ethanol | 97 mg/mL | |
| Chloroform | 567 mg/mL | |
| Melting point | 136–142 °C | |
| Boiling point | 1377 °C | |
| Partition coefficient (LogP) | 2.7 | |
| Number of H-bond donors | 0 | |
| pKa | 9.38 | |
| Density | 1.2 ± 0.1 g/cm3 | |
| Vapor pressure | 1.5 mm Hg at 25 °C | |
| Enthalpy of vaporization | 82.3 ± 3.0 kJ/mol | |
| Molar refractivity | 96.93 | |
| Topological Polar Surface Area (TPSA) | 40.6 Å2 | |
| Rotatable Bond Count | 1 | |
| Covalently Bonded Unit Count | 1 | |
| Matrix Type | Analytical Method | Primary Sample Preparation Approach | Advantages | Limitations/ Requirements | Representative References |
|---|---|---|---|---|---|
| Human plasma/blood | LC–MS/MS | Protein precipitation (ACN or MeOH) | Simple, fast, high throughput; compatible with pediatric volumes | May not fully remove phospholipids; moderate ion suppression; requires clean chromatographic separation | [18,81] |
| Human plasma (enantioselective analysis) | LC–MS/MS (chiral) | PPT + post-extraction dilution; occasionally LLE | Improved retention on chiral column; enhances signal at low concentrations | More complex handling; greater sensitivity to matrix effects | [18,19,65] |
| Veterinary plasma (goat, sheep) | LC–MS/MS | Liquid–liquid extraction (MTBE, ethyl acetate) | Cleaner extracts; higher enrichment factors; reduced ion suppression | Requires pH optimization; risk of emulsions; longer extraction time | [65] |
| Fish tissues (muscle, liver, kidney, gill) | LC–MS/MS | SPE (C18 or mixed-mode) | Best cleanup for high-fat matrices; low matrix effects | Higher cost; multi-step conditioning/elution; requires vacuum manifold and stable electricity | [82,83] |
| High-lipid tissues (hepatopancreas, adipose tissue) | LC–MS/MS | Modified QuEChERS or EMR-Lipid® cleanup | Efficient removal of lipids; scalable to many samples; reduced ion suppression | Cleanup sorbents can be matrix-dependent; requires method re-optimization | [84,85] |
| Aquaculture water/environmental water | LC–MS/MS | Large-volume SPE (100–500 mL) | Necessary preconcentration; low ng/L detection | Long extraction times; requires reliable vacuum, ultrapure water, and electricity | [85] |
| Matrix Type | Analytical Method | Analyte(s) | LOD (Standardized) | LOQ (Standardized) | Reference |
|---|---|---|---|---|---|
| Human plasma | LC–MS/MS (enantioselective) | R-PZQ, S-PZQ, hydroxylated metabolites | 0.5–1.0 ng/mL | 1.0–2.5 ng/mL | [18] |
| Human plasma (pediatric PK) | LC–MS/MS | PZQ, trans-4-OH-PZQ | 0.2 ng/mL | 0.5 ng/mL | [81,95] |
| Goat plasma | LC–MS/MS (enantioselective) | PZQ enantiomers + metabolites | 0.5–2.0 ng/mL | 1.5–5.0 ng/mL | [65] |
| Rainbow trout tissues (muscle, liver, kidney, gill) | LC–MS/MS | PZQ | 0.3–0.8 ng/g | 1.0–2.5 ng/g | [83] |
| Fish tissues (multi-matrix) | LC–MS/MS | PZQ | 10.0 ng/g | 30 ng/g | [82] |
| Aquaculture water | LC–MS/MS | PZQ | 3.0 ng/g | 9.3 ng/g | [85] |
| Target Drugs | Technique | Application | Key Features | Reference |
|---|---|---|---|---|
| Praziquantel, Pyrantel Pamoate. Febantel | RP-HPLC-UV | Tablet formulation | High specificity and precision for routine QC | [99] |
| Praziquantel, Albendazol | HPLC-UV | Bulk and synthetic mixtures | Simple, cost-effective, minimal pre-treatment | [59] |
| Praziquantel, Fipronil, Eprinomectin, (S)-methoprene | Stability-indicating HPLC-UV | Veterinary topical formulations | Detects actives and degradants under stress | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Valladares Chávez, E.Y.; Moreno-Rocha, L.A.; Ortega Cabello, L.; García-Gutiérrez, P.; Miranda-Calderón, J.E. Evolution, Validation and Current Challenges in Bioanalytical Methods for Praziquantel: From Fluorometry to LC–MS/MS. Sci. Pharm. 2026, 94, 4. https://doi.org/10.3390/scipharm94010004
Valladares Chávez EY, Moreno-Rocha LA, Ortega Cabello L, García-Gutiérrez P, Miranda-Calderón JE. Evolution, Validation and Current Challenges in Bioanalytical Methods for Praziquantel: From Fluorometry to LC–MS/MS. Scientia Pharmaceutica. 2026; 94(1):4. https://doi.org/10.3390/scipharm94010004
Chicago/Turabian StyleValladares Chávez, Edwin Y., Luis A. Moreno-Rocha, Lucia Ortega Cabello, Ponciano García-Gutiérrez, and Jorge E. Miranda-Calderón. 2026. "Evolution, Validation and Current Challenges in Bioanalytical Methods for Praziquantel: From Fluorometry to LC–MS/MS" Scientia Pharmaceutica 94, no. 1: 4. https://doi.org/10.3390/scipharm94010004
APA StyleValladares Chávez, E. Y., Moreno-Rocha, L. A., Ortega Cabello, L., García-Gutiérrez, P., & Miranda-Calderón, J. E. (2026). Evolution, Validation and Current Challenges in Bioanalytical Methods for Praziquantel: From Fluorometry to LC–MS/MS. Scientia Pharmaceutica, 94(1), 4. https://doi.org/10.3390/scipharm94010004

