Pharmacological Potential of Cyperaceae Species in Experimental Models of Gastrointestinal Disorders: A Review
Abstract
1. Introduction
2. Methodology
2.1. Databases
2.2. Inclusion and Exclusion Criteria
2.3. Data Screening and Categorization of Information
3. Results and Discussion
3.1. Pharmacological Potential of Cyperaceae Species
Species | Part of the Plant | Extracts | Doses | Methods | Results | References |
---|---|---|---|---|---|---|
Cyperus alternifolius L. | Tuber, aerial part | Methanol extract, ethyl acetate extract | 50 and 100 mg/kg | Indomethacin-induced gastric ulcer | Extracts from the tubers decreased the severity of gastric ulcers, evidenced by the suppression of TNF-α levels | Farrag et al. [26] |
Cyperus conglomeratus Rottb. | Aerial part | Alcoholic extract | 25, 50, and 100 mg/kg | Ethanol-induced gastric ulcer | The alcoholic extract significantly reduced galactin-3 and TNF-α and protected gastric epithelial cells in the ethanol-induced ulcer model | Elshamy et al. [22] |
Cyperus esculentus L. | Tuber | Hydroalcoholic extract | 250, 500, and 1000 mg/kg | Castor oil-induced diarrhea, intestinal transit test with charcoal meal | The hydroethanolic extract appears to have an antisecretory effect, but not an antimotility effect | Shorinwa and Dambani [24] |
Cyperus niveus Retz. | Whole plant | Hydroethanolic extract | 100–700 mg/kg | Castor oil-induced diarrhea, intestinal transit test with charcoal meal | The hydroethanolic extract showed antidiarrheal effects mediated by the double blockade of muscarinic receptors and Ca2+ channels | Aleem and Janbaz [28] |
Cyperus rotundus L. | Rhizome | Decoction | 1.25, 2.5, and 4.0 g/kg | Ethanol-induced gastric ulcer | The decoction demonstrated a dose-dependent ulcer inhibitory effect | Zhu et al. [39] |
Rhizome | Methanol extract, petrol ether fraction, ethyl acetate fraction, residual methanol fraction | 250 and 500 mg/kg | Castor oil-induced diarrhea | The methanolic extract and the residual methanolic and petroleum ether fractions suppressed the frequency of diarrheal episodes in mice | Uddin et al. [41] | |
Rhizome | Methanol extract | 100 and 200 mg/kg | Gastric mucosal damage induced by ischemia and reperfusion | The methanolic extract affected malondialdehyde and glutathione peroxidase activities and exhibited gastroprotective effect in rats | Güldür et al. [45] | |
Rhizome | Ethanolic extract | 300 and 500 mg/kg | Aspirin-induced gastric ulcer | The ethanolic extract reduced lesions or hemorrhages in the gastric mucosa of rats, and the results were similar to the cimetidine control | Ahmad et al. [46] | |
Rhizome | Methanol extract | 250 and 500 mg/kg | Aspirin-induced gastric ulcer | At doses of 250 and 500 mg/kg, the methanolic extract inhibited aspirin-induced gastric ulceration in rats in a dose-dependent manner (49.32 and 53.15%, respectively) | Thomas et al. [43] | |
Tuber | Chloroform extract | 800 mg/kg | DNBS-induced colitis | The extract inhibited the gene expression of pro-inflammatory cytokines such as IL-4, IL-6, IL-12, and IFN-γ in the colon tissues of rats | Johari et al. [42] | |
Tuber | Hydroalcoholic extract | 200 and 400 mg/kg | Ulcerogenic and oxidative damage induced by pyloric ligation | The antiulcer potential of the hydroalcoholic extract was attributed to the prevention of the generation of free radical cascades | Rajakrishnan et al. [23] | |
Cyperus tegetum (Cyperus pangorei Rottb.) | Rhizomes | Methanol extract | 250, 500, and 750 mg/kg | Castor oil-induced diarrhea, intestinal transit test with charcoal meal | The methanolic extract suppressed the frequency of diarrheal episodes and delayed the intestinal transit of charcoal meal in mice | Chaulya et al. [47] |
Fimbristylis bisumbellata (Forssk.) Bubani | Leaves | Aqueous extract | 200 and 400 mg/kg | Castor oil-induced diarrhea | The aqueous extract showed a decrease in the number of feces in Wistar rats | Bawazir et al. [27] |
Fimbristylis miliacea (Fimbristylis littoralis Gaudich.) | Aerial part | Methanol extract | 100, 200, and 400 mg/kg | Castor oil-induced diarrhea | The methanolic extract showed a strong antidiarrheal effect at doses of 200 and 400 mg/kg | Mukta et al. [25] |
Lagenocarpus rigidus (Kunth) Nees | Leaves | Ethanolic extract | 6, 60, and 600 mg/kg | Indomethacin-induced gastric lesions | The ethanolic extract protects against indomethacin-induced acute gastric damage in a dose-independent manner | Martins et al. [48] |
Pycreus polystachyos (Cyperus polystachyos Rottb.) | Whole plant | Methanol extract | 100, 200, and 400 mg/kg | Castor oil-induced diarrhea | At a dose of 400 mg/kg, the methanolic extract inhibited diarrhea in male (64.77%) and female (38.04%) mice | Akter et al. [44] |
3.2. Phenolic Compounds and Flavonoids Identified in Cyperaceae Species
Compounds | Species | Biological Activities of Compounds |
---|---|---|
(1) Luteolin | Cyperus conglomeratus [22], Fimbristylis miliacea [30], Cyperus esculentus [32], Cyperus rotundus [34] | Anti-gastric cancer activity [49,50], anticonstipation activity in loperamide-induced functional constipation [51], antiulcer activity [52], anti-inflammatory activity on ulcerative colitis [53,54,55] |
(2) Kaempferol | Cyperus alternifolius [26], Cyperus rotundus [29], Cyperus esculentus [32], Fimbristylis miliacea [33] | Anti-gastric cancer activity [60], antiulcer activity [80], anti-inflammatory activity on ulcerative colitis [67,81,82,83] |
(3) Caffeic acid | Cyperus conglomeratus [22], Cyperus tegetum [31], Fimbristylis miliacea [33], Cyperus esculentus [35], Cyperus rotundus [84] | Anti-inflammatory activity on ulcerative colitis [72], antiulcer activity [77] |
(4) Quercetin | Cyperus tegetum [31], Cyperus alternifolius [85], Cyperus rotundus [86], Cyperus esculentus [87] | Anti-gastric cancer activity [58], antiulcer activity [88,89], anti-inflammatory activity on ulcerative colitis [68,90,91], anticonstipation activity in loperamide-induced constipation [92] |
(5) Ferulic acid | Cyperus conglomeratus [22], Cyperus rotundus [86], Cyperus esculentus [93] | Antiulcer activity [77,94], anti-inflammatory activity on ulcerative colitis [73,95] |
(6) Rutin | Cyperus tegetum [31], Cyperus esculentus [35], Cyperus rotundus [96] | Anti-gastric cancer activity [65], antidiarrheal activity [66], anti-inflammatory activity on ulcerative colitis [69], antiulcer activity [97,98] |
(7) Myricetin | Cyperus esculentus [87], Cyperus rotundus [99] | Anti-gastric cancer activity [61,62], anti-inflammatory activity on ulcerative colitis [100], antiulcer activity [101] |
(8) Gallic acid | Cyperus tegetum [31], Fimbristylis miliacea [33], Cyperus alternifolius [85], Cyperus esculentus [102] | Anti-gastric cancer activity [56,57], antiulcer activity [79,103], anti-inflammatory activity on ulcerative colitis [75,104] |
(9) Chlorogenic acid | Cyperus tegetum [31], Cyperus esculentus [32], Cyperus rotundus [105] | Anti-inflammatory activity on ulcerative colitis [74,106], antiulcer activity [76] |
(10) Apigenin | Cyperus tegetum [31], Cyperus esculentus [32], Cyperus rotundus [107] | Anti-gastric cancer activity [59], anti-inflammatory activity on ulcerative colitis [70], antiulcer activity [108] |
(11) Catechin | Fimbristylis miliacea [33], Cyperus rotundus [86], Cyperus esculentus [109] | Anti-gastric cancer activity [63,64], antiulcer activity [110] |
(12) Orientin | Cyperus rotundus [111], Cyperus esculentus [112] | Anti-inflammatory activity on ulcerative colitis [71] |
3.3. Acute Toxicity of Extracts from Cyperaceae Species
4. Gaps
5. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ananthakrishnan, A.N.; Xavier, R.J. Gastrointestinal diseases. In Hunter’s Tropical Medicine and Emerging Infectious Disease; Elsevier: Amsterdam, The Netherlands, 2020; pp. 16–26. [Google Scholar] [CrossRef]
- Jabłońska, B.; Mrowiec, S. Gastrointestinal disease: New Diagnostic and therapeutic approaches. Biomedicines 2023, 11, 1420. [Google Scholar] [CrossRef]
- Mazurek, M.; Szewc, M.; Sitarz, M.Z.; Dudzińska, E.; Sitarz, R. Gastric cancer: An up-to-date review with new insights into early-onset gastric cancer. Cancers 2024, 16, 3163. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Jin, X.; Li, J.; Li, R.; Gao, Y.; Zhang, J.; Wang, X.; Wang, G. The global burden of peptic ulcer disease in 204 countries and territories from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Int. J. Epidemiol. 2022, 51, 1666–1676. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: A systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Kapoor, B.; Gupta, R.; Singh, N. Plants and phytochemicals for treatment of peptic ulcer: An overview. S. Afr. J. Bot. 2021, 138, 105–114. [Google Scholar] [CrossRef]
- Fikree, A.; Byrne, P. Management of functional gastrointestinal disorders. Clin. Med. 2021, 21, 44–52. [Google Scholar] [CrossRef]
- Hamzeloo-Moghadam, M.; Tavirani, M.R.; Jahani-Sherafat, S.; Tavirani, S.R.; Esmaeili, S.; Ansari, M.; Ahmadzadeh, A. Side effects of omeprazole: A system biology study. Gastroenterol. Hepatol. Bed Bench 2021, 14, 334–341. [Google Scholar]
- Luo, H.; Cao, G.; Luo, C.; Tan, D.; Vong, C.T.; Xu, Y.; Wang, S.; Lu, H.; Wang, Y.; Jing, W. Emerging pharmacotherapy for inflammatory bowel diseases. Pharmacol. Res. 2022, 178, 106146. [Google Scholar] [CrossRef]
- Holtmann, G.; Schrenk, D.; Madisch, A.; Allescher, H.D.; Ulrich-Merzenich, G.; Mearin, F.; Larrey, D.; Malfertheiner, P. Use of evidence-based herbal medicines for patients with functional gastrointestinal disorders: A conceptional framework for risk-benefit assessment and regulatory approaches. Dig. Dis. 2020, 38, 269–279. [Google Scholar] [CrossRef]
- Tan, N.; Gwee, K.A.; Tack, J.; Zhang, M.; Li, Y.; Chen, M.; Xiao, Y. Herbal medicine in the treatment of functional gastrointestinal disorders: A systematic review with meta-analysis. J. Gastroenterol. Hepatol. 2020, 35, 544–556. [Google Scholar] [CrossRef]
- Czigle, S.; Fialova, S.B.; Tóth, J.; Mučaji, P.; Nagy, M.; On behalf of the Oemonom. Treatment of gastrointestinal disorders—Plants and potential mechanisms of action of their constituents. Molecules 2022, 27, 2881. [Google Scholar] [CrossRef]
- Larridon, I.; Zuntini, A.R.; Léveillé-Bourret, É.; Barrett, R.L.; Starr, J.R.; Muasya, A.M.; Villaverde, T.; Bauters, K.; Brewer, G.E.; Bruhl, J.J.; et al. A new classification of Cyperaceae (Poales) supported by phylogenomic data. J. Syst. Evol. 2021, 59, 852–895. [Google Scholar] [CrossRef]
- Larridon, I. A linear classification of Cyperaceae. Kew Bull. 2022, 77, 309–315. [Google Scholar] [CrossRef]
- Kipkore, W.; Wanjohi, B.; Rono, H.; Kigen, G. A study of the medicinal plants used by the Marakwet Community in Kenya. J. Ethnobiol. Ethnomed. 2014, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Heneidy, S.Z.; Halmy, M.W.A.; Bidak, L.M. The ethnobotanical importance and conservation value of native plants in eastern Arabian Peninsula. Feddes Repert. 2017, 128, 105–128. [Google Scholar] [CrossRef]
- Bhatt, M.D.; Adhikari, Y.P.; Kunwar, R. Ethnobotany of weeds in Kanchanpur district, far-western Nepal. Ethnobot. Res. Appl. 2021, 21, 19. [Google Scholar] [CrossRef]
- Ali, E.; Azhar, M.F.; Bussmann, R.W. Ethnobotanical inventory and medicinal applications of plants used by the local people of Cholistan desert, Pakistan. Ethnobot. Res. Appl. 2023, 25, 21. [Google Scholar] [CrossRef]
- Rehman, S.; Iqbal, Z.; Qureshi, R. Ethnomedicinal plants uses for the treatment of gastrointestinal disorders in Tribal District North Waziristan, Khyber Pakhtunkhawa, Pakistan. Ethnobot. Res. Appl. 2023, 26, 63. [Google Scholar]
- Ganesan, K.; Xu, B. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal district, Tamil Nadu, India. Trends Phytochem. Res. 2017, 1, 153–168. [Google Scholar]
- Kalita, M.; Alam, S.M.; Jelil, S.N. An ethnobotanical study of traditionally used medicinal plants: Case study from Assam, India. Ethnobot. Res. Appl. 2024, 27, 13. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Farrag, A.R.H.; Ayoub, I.M.; Mahdy, K.A.; Taher, R.F.; Gendy, A.E.N.G.E.; Mohamed, T.A.; Al-Rejaie, S.S.; Ei-Amier, Y.A.; Abd-Eigawad, A.M.; et al. UPLC-qTOF-MS phytochemical profile and antiulcer potential of Cyperus conglomeratus Rottb. alcoholic extract. Molecules 2020, 25, 4234. [Google Scholar] [CrossRef]
- Rajakrishnan, R.; Alfarhan, A.H.; Al-Ansari, A.M.; Lekshmi, R.; Sreelakshmi, R.; Benil, P.B.; Kim, Y.-O.; Tack, J.-C.; Na, S.; Kim, H.-J. Therapeutic efficacy of the root tubers of Aconitum heterophyllum and its substitute Cyperus rotundus in the amelioration of pylorus ligation induced ulcerogenic and oxidative damage in rats. Saudi J. Biol. Sci. 2020, 27, 1124–1129. [Google Scholar] [CrossRef]
- Shorinwa, O.A.; Dambani, D.T. Antidiarrheal activity of aqueous ethanol extract of Cyperus esculentus tuber in albino rats. J. Appl. Biol. Biotechnol. 2020, 8, 47–50. [Google Scholar] [CrossRef]
- Mukta, U.H.; Roy, R.; Daula, A.S.U.; Ferdous, M.; Chowdhury, A.; Mia, S.; Sohel, M.; Afroza, A.; Israt, J.L.; Mohammad, A.B. Phytochemical analysis, antioxidant and antidiarrhoeal activities of methanol extract of Fimbristylis miliacea (L.) Vahl. J. Pharmacogn. Phytochem. 2020, 12, 10–18. [Google Scholar] [CrossRef]
- Farrag, A.R.H.; Abdallah, H.M.; Khattab, A.R.; Elshamy, A.I.; El Gendy, A.E.N.G.; Mohamed, T.A.; Farag, M.A.; Efferth, T.; Hegazy, M.-E.F. Antiulcer activity of Cyperus alternifolius in relation to its UPLC-MS metabolite fingerprint: A mechanistic study. Phytomedicine 2019, 62, 152970. [Google Scholar] [CrossRef] [PubMed]
- Bawazir, A.S.; Naser, R.; Khalilullah, M. Antidiarrheal activity of aqueous extract of leaves of Fimbristylis bisumbellata. World J. Pharm. Res. 2018, 7, 1150–1155. [Google Scholar]
- Aleem, A.; Janbaz, K.H. Dual mechanisms of anti-muscarinic and Ca++ antagonistic activities to validate the folkloric uses of Cyperus niveus Retz. as antispasmodic and antidiarrheal. J. Ethnopharmacol. 2018, 213, 138–148. [Google Scholar] [CrossRef]
- Zhou, Z.; Fu, C. A new flavanone and other constituents from the rhizomes of Cyperus rotundus and their antioxidant activities. Chem. Nat. Compd. 2013, 48, 963–965. [Google Scholar] [CrossRef]
- Silva, A.C.M.; Bezerra, J.J.L.; Prata, A.P.D.N.; Souza, R.C.; Paulino, C.D.A.; Nascimento, T.G.; Silva, S.A.S.; Costa, V.C.O.; Duarte, M.C. Phytochemical profile and evaluation of the allelopathic effect of the aqueous extract of Fimbristylis miliacea (L.) Vahl (Cyperaceae). J. Agric. Stud. 2020, 8, 310–320. [Google Scholar] [CrossRef]
- Chatterjee, A.; Khanra, R.; Chattopadhyay, M.; Ghosh, S.; Sahu, R.; Nandi, G.; Maji, H.S.; Chakraborty, P. Pharmacological studies of rhizomes of extract of Cyperus tegetum, emphasized on anticancer, anti-inflammatory and analgesic activity. J. Ethnopharmacol. 2022, 289, 115035. [Google Scholar] [CrossRef]
- Saeed, M.M.; Fernández-Ochoa, Á.; Saber, F.R.; Sayed, R.H.; Cádiz-Gurrea, M.D.L.L.; Elmotayam, A.K.; Leyva-Jiménez, F.J.; Segura-Carretero, A.; Nadeem, R.I. The potential neuroprotective effect of Cyperus esculentus L. extract in scopolamine-induced cognitive impairment in rats: Extensive biological and metabolomics approaches. Molecules 2022, 27, 7118. [Google Scholar] [CrossRef]
- Roy, R.; Roy, J.; Liya, I.J.; Ahmed, J.; Akter, A.; Basher, M.A. Antioxidant and hepatoprotective activities of methanolic extract of Fimbristylis miliacea (L.) Vahl. Phytomed. Plus 2023, 3, 100449. [Google Scholar] [CrossRef]
- Abdella, F.I.; Toumi, A.; Boudriga, S.; Alanazi, T.Y.; Alshamari, A.K.; Alrashdi, A.A.; Hamden, K. Antiobesity and antidiabetes effects of Cyperus rotundus rhizomes presenting protein tyrosine phosphatase, dipeptidyl peptidase 4, metabolic enzymes, stress oxidant and inflammation inhibitory potential. Heliyon 2023, 10, e27598. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Yılmaz, H. Comparison of the bioactive properties, tocopherol and phenolic components of germinated, roasted, and boiled chufa (Cyperus esculentus) tubers. JSFA Rep. 2024, 4, 243–254. [Google Scholar] [CrossRef]
- Serafim, C.; Araruna, M.E.; Júnior, E.A.; Diniz, M.; Hiruma-Lima, C.; Batista, L. A review of the role of flavonoids in peptic ulcer (2010–2020). Molecules 2020, 25, 5431. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tang, Y.; Ye, Y.; Zuo, M.; Lu, Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front. Pharmacol. 2023, 14, 1120616. [Google Scholar] [CrossRef]
- Lu, Y.; Han, X. Therapeutic implications of phenolic acids for ameliorating inflammatory bowel disease. Nutrients 2024, 16, 1347. [Google Scholar] [CrossRef]
- Zhu, M.; Luk, H.H.; Fung, H.S.; Luk, C.T. Cytoprotective effects of Cyperus rotundus against ethanol induced gastric ulceration in rats. Phytother. Res. 1997, 11, 392–394. [Google Scholar] [CrossRef]
- Bezerra, J.J.L.; Pinheiro, A.A.V.; Oliveira, A.F.M. Chemical composition and anticancer activity of essential oils from Cyperaceae species: A comprehensive review. Sci. Pharm. 2025, 93, 9. [Google Scholar] [CrossRef]
- Uddin, S.J.; Mondal, K.; Shilpi, J.A.; Rahman, M.T. Antidiarrhoeal activity of Cyperus rotundus. Fitoterapia 2006, 77, 134–136. [Google Scholar] [CrossRef]
- Johari, S.; Joshi, C.; Gandhi, T. Effect of Cyperus rotundus on cytokine gene expression in experimental inflammatory bowel disease. Iran. J. Med. Sci. 2016, 41, 391. [Google Scholar] [PubMed]
- Thomas, D.; Govindhan, S.; Baiju, E.C.; Padmavathi, G.; Kunnumakkara, A.B.; Padikkala, J. Cyperus rotundus L. prevents non-steroidal anti-inflammatory drug-induced gastric mucosal damage by inhibiting oxidative stress. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 485–490. [Google Scholar] [CrossRef]
- Akter, S.; Roy, R.; Basher, D.M.A. Methanolic extract of Pycreus polystachyos possesses potent antidiarrheal activity that varies in male and female mice. J. Pharmacogn. Phytochem. 2022, 11, 151–154. [Google Scholar] [CrossRef]
- Güldür, M.E.; Ozgönül, A.; Kilic, I.H.; Sögüt, O.; Ozaslan, M.; Bitiren, M.; Yalcin, M.; Musa, D. Gastroprotective effect of Cyperus rotundus extract against gastric mucosal injury induced by ischemia and reperfusion in rats. Int. J. Pharmacol. 2010, 6, 104–110. [Google Scholar] [CrossRef]
- Ahmad, M.; Rookh, M.; Rehman, A.B.; Muhammad, N.; Younus, M.; Wazir, A. Assessment of anti-inflammatory, anti-ulcer and neuropharmacological activities of Cyperus rotundus Linn. Pak. J. Pharm. Sci. 2014, 27, 2241–2246. [Google Scholar]
- Chaulya, N.C.; Haldar, P.K.; Mukherjee, A. Antidiarrhoeal activity of methanol extract of the rhizomes of Cyperus tegetum Roxb. Int. J. Pharm. Pharm. Sci. 2011, 3, 133–135. [Google Scholar]
- Martins, M.L.L.; Pinto, F.E.; Andrade, T.U.; Lenz, D.; Pereira, T.D.M.C.; Endringer, D.C. Gastroprotective effect of Lagenocarpus rigidus (Kunth) Ness (tirica-do-nativo) leaf extract against indomethacin-induced gastric injury. Rev. Cuba. Plantas Med. 2014, 19, 121–127. [Google Scholar]
- Zang, M.D.; Hu, L.; Fan, Z.Y.; Wang, H.X.; Zhu, Z.L.; Cao, S.; Wu, X.-Y.; Li, J.-F.; Su, L.-P.; Li, C.; et al. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J. Transl. Med. 2017, 15, 52. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, T.; Wang, J.; Mao, Z.; Duan, B.; Long, Y.; Xue, F.; Liu, D.; Liu, S.; Gao, Z. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. J. Cancer 2018, 9, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H.; Wang, L.; Gan, H.; Xiao, X.; Huang, L.; Li, W.; Li, Z. Luteolin ameliorates loperamide-induced functional constipation in mice. Braz. J. Med. Biol. Res. 2023, 56, e12466. [Google Scholar] [CrossRef] [PubMed]
- Khodir, S.A.; Abd-Elhafiz, H.I.; Sweed, E.M.; Gaafar, A.M.; El-aziz, N.M.A.; Salman, N.A.A.; Derbaly, S.A.E.; Sheref, A.A. Luteolin ameliorates indomethacin-induced gastric ulcer in rats via activation of Nrf2/HO-1 pathway. Menoufia Med. J. 2024, 37, 121–132. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L.; Luo, H. Luteolin ameliorates dextran sulfate sodium-induced colitis in mice possibly through activation of the Nrf2 signaling pathway. Int. Immunopharmacol. 2016, 40, 24–31. [Google Scholar] [CrossRef]
- Li, B.; Du, P.; Du, Y.; Zhao, D.; Cai, Y.; Yang, Q.; Guo, Z. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci. 2021, 269, 119008. [Google Scholar] [CrossRef]
- Xue, L.; Jin, X.; Ji, T.; Li, R.; Zhuge, X.; Xu, F.; Quanb, Z.; Tong, H.; Yu, W. Luteolin ameliorates DSS-induced colitis in mice via suppressing macrophage activation and chemotaxis. Int. Immunopharmacol. 2023, 124, 110996. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Wu, C.H.; Wang, C.J. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem. Toxicol. 2010, 48, 2508–2516. [Google Scholar] [CrossRef]
- Ho, H.H.; Chang, C.S.; Ho, W.C.; Liao, S.Y.; Lin, W.L.; Wang, C.J. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol. Appl. Pharmacol. 2013, 266, 76–85. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, K.; Zhang, Q.; Mei, J.; Chen, C.J.; Feng, Z.Z.; Yu, D.H. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol. Vitr. 2012, 26, 221–228. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Li, Z.; Liu, C.; Yin, L. The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway. Tumor Biol. 2014, 35, 7719–7726. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Bao, J.; Wei, Y.; Chen, Y.; Mao, X.; Li, J.; Yang, Z.; Xue, Y. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncol. Rep. 2015, 33, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chen, X.; Wang, Y.; Du, Y.; Sun, Q.; Zang, W.; Zhao, G. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol. Cell. Biochem. 2015, 408, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Lee, J.H.; Woo, J.S.; Jung, G.H.; Jung, S.H.; Han, E.J.; Kim, B.; Cho, S.D.; Nam, J.S.; Che, J.H.; et al. Myricetin induces apoptosis and autophagy in human gastric cancer cells through inhibition of the PI3K/Akt/mTOR pathway. Heliyon 2022, 8, e09309. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, H.; Cao, S.; Yu, Y. Effects of catechin on the malignant biological behavior of gastric cancer cells through the PI3K/Akt signaling pathway. Toxicol. Appl. Pharmacol. 2024, 490, 117036. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, D.; Li, F.; Li, H.; Zhang, X.; Feng, L. Catechin promotes endoplasmic reticulum stress-mediated gastric cancer cell apoptosis via NOX4-induced reactive oxygen species. Mol. Cell. Biochem. 2024, 480, 3201–3215. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Shi, J.; Chen, W.; Liu, L. Rutin suppresses the malignant biological behavior of gastric cancer cells through the Wnt/β-catenin pathway. Discov. Oncol. 2024, 15, 407. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, B.; Liu, H.; Chen, S.; Zhang, J.; Wang, T.; Wang, C. Dietary rutin improves the antidiarrheal capacity of weaned piglets by improving intestinal barrier function, antioxidant capacity and cecal microbiota composition. J. Sci. Food Agric. 2024, 104, 6262–6275. [Google Scholar] [CrossRef]
- Qu, Y.; Li, X.; Xu, F.; Zhao, S.; Wu, X.; Wang, Y.; Xie, J. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis. Front. Immunol. 2021, 12, 679897. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, F.; Sun, F.; Xu, Z.; Liu, Y.; Tao, C.; Sun, F.; Jiang, M.; Yang, M.; Yao, J. Efficacy and mechanism of quercetin in the treatment of experimental colitis using network pharmacology analysis. Molecules 2022, 28, 146. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Yue, C. Rutin ameliorates inflammation and oxidative stress in ulcerative colitis by inhibiting NLRP3 inflammasome signaling pathway. Cell Biochem. Biophys. 2024, 82, 3715–3726. [Google Scholar] [CrossRef]
- Fu, R.; Wang, L.; Meng, Y.; Xue, W.; Liang, J.; Peng, Z.; Meng, J.; Zhang, M. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front. Nutr. 2022, 9, 1062961. [Google Scholar] [CrossRef]
- Sun, A.; Ren, G.; Deng, C.; Zhang, J.; Luo, X.; Wu, X.; Mani, S.; Dou, W.; Wang, Z. C-glycosyl flavonoid orientin improves chemically induced inflammatory bowel disease in mice. J. Funct. Foods 2016, 21, 418–430. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Cao, S.; Wang, L.; Wang, D.; Yang, H.; Feng, Y.; Wang, S.; Li, L. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice. Oncotarget 2016, 7, 31790. [Google Scholar] [CrossRef]
- Sadar, S.S.; Vyawahare, N.S.; Bodhankar, S.L. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats. EXCLI J. 2016, 15, 482. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Cao, S.; Cromie, M.; Shen, Y.; Feng, Y.; Yang, H.; Li, L. Chlorogenic acid ameliorates experimental colitis by promoting growth of Akkermansia in mice. Nutrients 2017, 9, 677. [Google Scholar] [CrossRef]
- Leng, Y.; Zhang, X.; Zhang, Q.; Xia, J.; Zhang, Y.; Ma, C.; Liu, K.; Li, H.; Hong, Y.; Xie, Z. Gallic acid attenuates murine ulcerative colitis by promoting group 3 innate lymphocytes, affecting gut microbiota, and bile acid metabolism. J. Nutr. Biochem. 2024, 131, 109677. [Google Scholar] [CrossRef]
- Shimoyama, A.T.; Santin, J.R.; Machado, I.D.; Silva, A.M.O.; Melo, I.L.P.; Mancini-Filho, J.; Farsky, S.H. Antiulcerogenic activity of chlorogenic acid in different models of gastric ulcer. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2013, 386, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Kolgazi, M.; Cilingir, S.; Yilmaz, O.; Gemici, M.; Yazar, H.; Ozer, S.; Acikel-Elmas, M.; Arbak, S.; Suyen, G.G. Caffeic acid attenuates gastric mucosal damage induced by ethanol in rats via nitric oxide modulation. Chem. Biol. Interact. 2021, 334, 109351. [Google Scholar] [CrossRef] [PubMed]
- Ermis, A.; Aritici Colak, G.; Acikel-Elmas, M.; Arbak, S.; Kolgazi, M. Ferulic acid treats gastric ulcer via suppressing oxidative stress and inflammation. Life 2023, 13, 388. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yang, Q.; Tian, T.; Chang, Y.; Li, Y.; Duan, L.R.; Li, H.; Wang, S.W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother. 2020, 126, 110075. [Google Scholar] [CrossRef]
- Li, Q.; Hu, X.; Xuan, Y.; Ying, J.; Fei, Y.; Rong, J.; Zhang, Y.; Zhang, J.; Liu, C.; Liu, Z. Kaempferol protects ethanol-induced gastric ulcers in mice via pro-inflammatory cytokines and NO. Acta Biochim. Biophys. Sin. 2018, 50, 246–253. [Google Scholar] [CrossRef]
- Park, M.Y.; Ji, G.E.; Sung, M.K. Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig. Dis. Sci. 2012, 57, 355–363. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Li, X.; Zhang, Z.; Sun, L.; Wang, Y.; He, Z.; Liu, Z.; Zhu, L.; Fu, L. Kaempferol suppression of acute colitis is regulated by the efflux transporters BCRP and MRP2. Eur. J. Pharm. Sci. 2022, 179, 106303. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, Q.; Liu, T.; Liu, P.; Li, H.; Bian, Y.; Liu, Z. Kaempferol relieves the DSS-induced chronic colitis in C57BL/6J mice, alleviates intestinal angiogenesis, and regulates colonic microflora structure. J. Funct. Foods 2023, 107, 105646. [Google Scholar] [CrossRef]
- Sayed, H.M.; Mohamed, M.H.; Farag, S.F.; Mohamed, G.A.; Proksch, P. A new steroid glycoside and furochromones from Cyperus rotundus L. Nat. Prod. Res. 2007, 21, 343–350. [Google Scholar] [CrossRef]
- Awaad, A.S.; Soliman, G.A.; El-Sayed, D.F.; El-Gindi, O.D.; Alqasoumi, S.I. Hepatoprotective activity of Cyperus alternifolius on carbon tetrachloride–induced hepatotoxicity in rats. Pharm. Biol. 2012, 50, 155–161. [Google Scholar] [CrossRef]
- Kilani-Jaziri, S.; Neffati, A.; Limem, I.; Boubaker, J.; Skandrani, I.; Sghair, M.B.; Bouhlel, I.; Bhouri, W.; Mariotte, A.M.; Ghedira, K.; et al. Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells. Chem. Biol. Interact. 2009, 181, 85–94. [Google Scholar] [CrossRef]
- Vega-Morales, T.; Mateos-Díaz, C.; Pérez-Machín, R.; Wiebe, J.; Gericke, N.P.; Alarcón, C.; López-Romero, J.M. Chemical composition of industrially and laboratory processed Cyperus esculentus rhizomes. Food Chem. 2019, 297, 124896. [Google Scholar] [CrossRef]
- Alkushi, A.G.R.; Elsawy, N.A.M. Quercetin attenuates, indomethacin-induced acute gastric ulcer in rats. Folia Morphol. 2017, 76, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawab, M.S.; Tork, O.M.; Mostafa-Hedeab, G.; Hassan, M.E.; Elberry, D.A. Protective effects of quercetin and melatonin on indomethacin induced gastric ulcers in rats. Rep. Biochem. Mol. Biol. 2020, 9, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Dodda, D.; Chhajed, R.; Mishra, J. Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: Possible morphological and biochemical alterations. Pharmacol. Rep. 2014, 66, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, X.; Li, Y.; Xie, X.; Huang, S.; Pan, S.; Zou, Y.; Pan, Z.; Wang, Q.; Chen, J.; et al. Quercetin ameliorates ulcerative colitis by activating aryl hydrocarbon receptor to improve intestinal barrier integrity. Phytother. Res. 2024, 38, 253–264. [Google Scholar] [CrossRef]
- Liu, W.; Zhi, A. The potential of Quercetin to protect against loperamide-induced constipation in rats. Food Sci. Nutr. 2021, 9, 3297–3307. [Google Scholar] [CrossRef] [PubMed]
- Razola-Díaz, M.D.C.; Gómez-Caravaca, A.M.; Guerra-Hernández, E.J.; Garcia-Villanova, B.; Verardo, V. New advances in the phenolic composition of tiger nut (Cyperus esculentus L.) by-products. Foods 2022, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- Umre, R.; Ganeshpurkar, A.; Ganeshpurkar, A.; Pandey, S.; Pandey, V.; Shrivastava, A.; Dubey, N. In vitro, in vivo and in silico antiulcer activity of ferulic acid. Futur. J. Pharm. Sci. 2018, 4, 248–253. [Google Scholar] [CrossRef]
- Yu, S.; Qian, H.; Zhang, D.; Jiang, Z. Ferulic acid relieved ulcerative colitis by inhibiting the TXNIP/NLRP3 pathway in rats. Cell Biol. Int. 2023, 47, 417–427. [Google Scholar] [CrossRef]
- Mohamed, G.A. Iridoids and other constituents from Cyperus rotundus L. rhizomes. Bull. Fac. Pharm. 2015, 53, 5–9. [Google Scholar] [CrossRef]
- La Casa, C.; Villegas, I.; De La Lastra, C.A.; Motilva, V.; Calero, M.M. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J. Ethnopharmacol. 2000, 71, 45–53. [Google Scholar] [CrossRef]
- Olaleye, M.T.; Akinmoladun, A.C. Comparative gastroprotective effect of post-treatment with low doses of rutin and cimetidine in rats. Fundam. Clin. Pharmacol. 2013, 27, 138–145. [Google Scholar] [CrossRef]
- Jahan, N.; Khalil-Ur-Rahman, A.S.; Asi, M.R. Phenolic acid and flavonol contents of gemmo-modified and native extracts of some indigenous medicinal plants. Pak. J. Bot. 2013, 45, 1515–1519. [Google Scholar]
- Qu, X.; Li, Q.; Song, Y.; Xue, A.; Liu, Y.; Qi, D.; Dong, H. Potential of myricetin to restore the immune balance in dextran sulfate sodium-induced acute murine ulcerative colitis. J. Pharm. Pharmacol. 2020, 72, 92–100. [Google Scholar] [CrossRef]
- Park, H.S.; Seo, C.S.; Baek, E.B.; Rho, J.H.; Won, Y.S.; Kwun, H.J. Gastroprotective effect of myricetin on ethanol-induced acute gastric injury in rats. Evid. Based Complement. Alternat. Med. 2021, 2021, 9968112. [Google Scholar] [CrossRef] [PubMed]
- Badejo, A.A.; Olawoyin, B.; Salawu, S.O.; Fasuhanmi, O.S.; Boligon, A.A.; Enujiugha, V.N. Antioxidative potentials and chromatographic analysis of beverages from blends of gluten-free acha (Digitaria exilis) and tigernut (Cyperus esculentus) extracts. J. Food Meas. Charact. 2017, 11, 2094–2101. [Google Scholar] [CrossRef]
- Sen, S.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A.T.; Subhadradevi, V. Antiulcerogenic effect of gallic acid in rats and its effect on oxidant and antioxidant parameters in stomach tissue. Indian J. Pharm. Sci. 2013, 75, 149–155. [Google Scholar]
- Pandurangan, A.K.; Mohebali, N.; Esa, N.M.; Looi, C.Y.; Ismail, S.; Saadatdoust, Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. Int. Immunopharmacol. 2015, 28, 1034–1043. [Google Scholar] [CrossRef]
- Rocha, F.G.; Brandenburg, M.M.; Pawloski, P.L.; Soley, B.S.; Costa, S.C.A.; Meinerz, C.C.; Baretta, I.P.; Otuki, M.F.; Cabrini, D.A. Preclinical study of the topical anti-inflammatory activity of Cyperus rotundus L. extract (Cyperaceae) in models of skin inflammation. J. Ethnopharmacol. 2020, 254, 112709. [Google Scholar] [CrossRef] [PubMed]
- Zatorski, H.; Sałaga, M.; Zielińska, M.; Piechota-Polańczyk, A.; Owczarek, K.; Kordek, R.; Lewandowska, U.; Chen, C.; Fichna, J. Experimental colitis in mice is attenuated by topical administration of chlorogenic acid. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.E.; Elmasry, I.H.; Lebda, M.A.; El-Karim, D.R.G.; Hagar, M.; Ebied, S.K.M.; Alotaibi, B.S.; Rizk, N.I.; Ghamry, H.I.; Shukry, M.; et al. Characterization and antioxidant activity of nano-formulated berberine and Cyperus rotundus extracts with anti-inflammatory effects in mastitis-induced rats. Sci. Rep. 2024, 14, 18462. [Google Scholar] [CrossRef]
- Alamri, Z.Z. Apigenin attenuates indomethacin-induced gastric ulcer in rats: Emphasis on antioxidant, anti-inflammatory, anti-apoptotic, and TGF-β1 enhancing activities. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 8803–8814. [Google Scholar] [CrossRef]
- Özcan, M.M.; Ghafoor, K.; Al Juhaimi, F.; Uslu, N.; Babiker, E.E.; Ahmed, I.A.M. Influence of germination on bioactive properties, phytochemicals and mineral contents of Tigernut (Cyperus esculentus L.) tuber and oils. J. Food Meas. Charact. 2021, 15, 3580–3589. [Google Scholar] [CrossRef]
- Hamaishi, K.; Kojima, R.; Ito, M. Anti-ulcer effect of tea catechin in rats. Biol. Pharm. Bull. 2006, 29, 2206–2213. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; Mohamed, G.A.; Alshali, K.Z.; Al Haidari, R.A.; El-Kholy, A.A.; Zayed, M.F. Lipoxygenase inhibitors flavonoids from Cyperus rotundus aerial parts. Rev. Bras. Farmacogn. 2018, 28, 320–324. [Google Scholar] [CrossRef]
- Jing, S.Q.; Wang, S.S.; Zhong, R.M.; Zhang, J.Y.; Wu, J.Z.; Tu, Y.X.; Pu, Y. Neuroprotection of Cyperus esculentus L. orientin against cerebral ischemia/reperfusion induced brain injury. Neural Regen. Res. 2020, 15, 548–556. [Google Scholar] [CrossRef]
- Al-Hazmi, G.H.; Awaad, A.S.; Alothman, M.R.; Alqasoumi, S.I. Anticandidal activity of the extract and compounds isolated from Cyperus conglomertus Rottb. Saudi Pharm. J. 2018, 26, 891–895. [Google Scholar] [CrossRef]
- Roy, R.; Liya, I.J.; Roy, J.; Basher, M.A. Acute and subchronic toxicity profile of methanol extract of leaves of Fimbristylis miliacea (L.) Vahl. Toxicol. Rep. 2023, 10, 301–307. [Google Scholar] [CrossRef]
- Kimura, E.T.; Ebert, D.M.; Dodge, P.W. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol. Appl. Pharmacol. 1971, 19, 699–704. [Google Scholar] [CrossRef]
- Mohammed, G.F. Topical Cyperus rotundus essential oil for treatment of axillary hyperpigmentation: A randomized, double-blind, active-and placebo-controlled study. Clin. Exp. Dermatol. 2022, 47, 534–541. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Bhat, B.; Ansari, M.; Pandey, A.; Bani, S.; Mundkur, L. The anti-obesity potential of Cyperus rotundus extract containing piceatannol, scirpusin A and scirpusin B from rhizomes: Preclinical and clinical evaluations. Diabetes Metab. Syndr. Obes. 2022, 15, 369–382. [Google Scholar] [CrossRef]
- Chaudhary, S.; Yadava, R.K.; Kajaria, D. Evaluating the efficacy of Nagarmotha (Cyperus rotundus Linn.) Churna in the management of obesity in comparison with Garcinia cambogia Extract: A randomized controlled open-label clinical trial. AYUHOM 2022, 9, 27–33. [Google Scholar] [CrossRef]
- Li, D.L.; Zheng, X.L.; Duan, L.; Deng, S.W.; Ye, W.; Wang, A.H.; Xing, F.W. Ethnobotanical survey of herbal tea plants from the traditional markets in Chaoshan, China. J. Ethnopharmacol. 2017, 205, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Ramya, E.K.; Mownika, S.; Sharmila, S. An ethnobotanical exploration of medicinal plants in Manar beat, Karamadai range, Western ghats, Tamilnadu. Asian J. Pharm. Clin. Res. 2019, 12, 145–153. [Google Scholar] [CrossRef]
- Penjor, D.; Tshering, T.; Bhattaria, G.; Namgay, T. The study of ethnobotanical uses by local healers in Taktse chiwog from central Bhutan. Asian Plant Res. J. 2020, 6, 19–39. [Google Scholar] [CrossRef]
- Sarkar, K.; Roy, P.; Panda, S.; Choudhuri, C.; Chowdhury, M. Ethnomedicinal study on plant resources from sacred groves of Dakshin Dinajpur district, West Bengal, India. Ethnobot. Res. Appl. 2023, 25, 1–35. [Google Scholar] [CrossRef]
- Oliveira, A.K.M.D.; Matias, R.; Dourado, D.M.; Fernandes, R.M.; Abreu, C.A.D.A.; Silva, B.C.F.D.L. Ethnobotanical survey of medicine species used in Taboco Village, Maracaju mountains, Brazil, and healing activity of the specie with higher value of use (Maytenus ilicifolia). Bol. Latinoam. Caribe Plantas Med. Aromat. 2023, 22, 537–559. [Google Scholar]
- Simpson, D.A.; Inglis, C.A. Cyperaceae of economic, ethnobotanical and horticultural importance: A checklist. Kew Bull. 2001, 56, 257–360. [Google Scholar] [CrossRef]
- Ju, S.K.; Mj, K.C.; Semotiuk, A.J.; Krishna, V. Indigenous knowledge on medicinal plants used by ethnic communities of South India. Ethnobot. Res. Appl. 2019, 18, 1–112. [Google Scholar] [CrossRef]
- Teves, R.I.M.; Tantengco, O.A.G.; Sumatra, R.J.U.; Carag, H.M.; Isidro-Lapeñ, J.S. Ethnomedicinal survey of valuable plants used by eskaya traditional healers in Bohol Island, Philippines. Acta Med. Philipp. 2022, 57, 17–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, J.J.L. Pharmacological Potential of Cyperaceae Species in Experimental Models of Gastrointestinal Disorders: A Review. Sci. Pharm. 2025, 93, 41. https://doi.org/10.3390/scipharm93030041
Bezerra JJL. Pharmacological Potential of Cyperaceae Species in Experimental Models of Gastrointestinal Disorders: A Review. Scientia Pharmaceutica. 2025; 93(3):41. https://doi.org/10.3390/scipharm93030041
Chicago/Turabian StyleBezerra, José Jailson Lima. 2025. "Pharmacological Potential of Cyperaceae Species in Experimental Models of Gastrointestinal Disorders: A Review" Scientia Pharmaceutica 93, no. 3: 41. https://doi.org/10.3390/scipharm93030041
APA StyleBezerra, J. J. L. (2025). Pharmacological Potential of Cyperaceae Species in Experimental Models of Gastrointestinal Disorders: A Review. Scientia Pharmaceutica, 93(3), 41. https://doi.org/10.3390/scipharm93030041