Formulation and Physicochemical Characterization of Terpenocannabinoid-Functionalized Hemp Oil Emulsifier: Assessment of Topical Anti-Inflammatory, Antinociceptive, Wound Healing Activity and Cutaneous Toxicity Effects
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Animal Material
2.3. Preparation of Terpenocannabinoid-Functionalized Hemp Oil Emulsifier
2.4. Physicochemical Characterization
2.4.1. Density
2.4.2. Acid Value
2.4.3. Peroxide Indicator
2.4.4. Potassium Value (K Value)
2.5. Phytochemical Characterization
2.6. Pharmacological Properties
2.6.1. Antioxidant Activity
2,2-diphenylpicrylhydrazyl (DPPH) Method
Reducing Power Test (FRAP)
Total Antioxidant Capacity (TAC) Test
Beta-Carotene Bleaching Assay
2.6.2. Anti-Inflammatory Activity
2.6.3. Antinociceptive Activity
2.6.4. Wound Healing Activity
2.6.5. Subacute Toxicity
2.6.6. Molecular Docking Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Active Compound Composition and Fatty Acid Characterization
3.3. Pharmacological Properties Determination
3.3.1. Antioxidant Activity
3.3.2. Wound Healing Activity
3.3.3. Toxicity Subacute
3.3.4. Anti-Inflammatory Activity
3.3.5. Antinociceptive Activity
3.3.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anwar, F.; Latif, S.; Ashraf, M. Analytical Characterization of Hemp (Cannabis sativa) Seed Oil from Different Agro-Ecological Zones of Pakistan. J. Am. Oil Chem. Soc. 2006, 83, 323–329. [Google Scholar] [CrossRef]
- Kocis, P.T.; Vrana, K.E. Delta-9-Tetrahydrocannabinol and Cannabidiol Drug-Drug Interactions. Med. Cannabis Cannabinoids 2020, 3, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Aghazadeh Tabrizi, M.; Baraldi, P.G.; Borea, P.A.; Varani, K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem. Rev. 2016, 116, 519–560. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.M.; Petrilli, K.; Lees, R.; Hindocha, C.; Mokrysz, C.; Curran, H.V.; Saunders, R.; Freeman, T.P. How Does Cannabidiol (CBD) Influence the Acute Effects of Delta-9-Tetrahydrocannabinol (THC) in Humans? A Systematic Review. Neurosci. Biobehav. Rev. 2019, 107, 696–712. [Google Scholar] [CrossRef] [PubMed]
- Kildaci, I.; Budama-Kilinc, Y.; Kecel-Gunduz, S.; Altuntaş, E. Linseed Oil Nanoemulsions for Treatment of Atopic Dermatitis Disease: Formulation, Characterization, In Vitro and In Silico Evaluations. J. Drug Deliv. Sci. Technol. 2021, 64, 102652. [Google Scholar] [CrossRef]
- Venkataramani, D.; Tsulaia, A.; Amin, S. Fundamentals and Applications of Particle Stabilized Emulsions in Cosmetic Formulations. Adv. Colloid Interface Sci. 2020, 283, 102234. [Google Scholar] [CrossRef] [PubMed]
- Baral, P.; Bagul, V.; Gajbhiye, S. Hemp Seed Oil For Skin Care (Non-Drug Cannabis sativa L.): A Review. World J. Pharm. Res. 2020, 9, 203–210. [Google Scholar]
- Sarkar, A.K.; Sadhukhan, S. Role of Cannabis sativa L. in the Cosmetic Industry: Opportunities and Challenges. In Cannabis sativa Cultivation, Production, and Applications in Pharmaceuticals and Cosmetics. IGI Glob. 2023, 1, 81–100. [Google Scholar]
- Heinrich, K.; Heinrich, U.; Tronnier, H. Influence of Different Cosmetic Formulations on the Human Skin Barrier. Skin Pharmacol. Physiol. 2014, 27, 141–147. [Google Scholar] [CrossRef]
- Vaughn, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. Natural Oils for Skin-Barrier Repair: Ancient Compounds Now Backed by Modern Science. Am. J. Clin. Dermatol. 2018, 19, 103–117. [Google Scholar] [CrossRef]
- Petersen, P.E. World Health Organization, ALINORM 68/11, (1967). Community Dent. Orl Epidemiol. 2003, 31, 471. [Google Scholar] [CrossRef]
- AOCS Official Method Cd 3-25. Available online: https://myaccount.aocs.org/PersonifyEbusiness/Store/Product-Details?productId=111542 (accessed on 7 August 2023).
- Kuselman, I.; Shenhar, A. Uncertainty in Chemical Analysis and Validation of the Analytical Method: Acid Value Determination in Oils. Accredit. Qual. Assur. 1997, 2, 180–185. [Google Scholar] [CrossRef]
- NF T 60 220 Afnor EDITIONS. Available online: https://www.boutique.afnor.org/fr-fr/resultats?Keywords=huile+v%C3%A9g%C3%A9tale+indice+peroxyde&StandardStateIds=1 (accessed on 9 August 2023).
- AOCS CD 8b—90 Peroxido. Available online: https://toaz.info/doc-view-2 (accessed on 7 August 2023).
- Amending Regilation (EEC), N° 2568/91. Available online: https://eur-lex.europa.eu/eli/reg/1991/3682/oj/eng (accessed on 7 August 2023).
- Calvi, L.; Pentimalli, D.; Panseri, S.; Giupponi, L.; Gelmini, F.; Beretta, G.; Vitali, D.; Bruno, M.; Zilio, E.; Pavlovic, R.; et al. Comprehensive Quality Evaluation of Medical Cannabis sativa L. Inflorescence and Macerated Oils Based on HS-SPME Coupled to GC–MS and LC-HRMS (q-Exactive Orbitrap®) Approach. J. Pharm. Biomed. Anal. 2018, 150, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Ali, V.; Khajuria, M.; Faiz, S.; Gairola, S.; Vyas, D. GC–MS Based Metabolomic Approach to Understand Nutraceutical Potential of Cannabis Seeds from Two Different Environments. Food. Chem. 2021, 339, 128076. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. In Vitro Antioxidant Activities of the Methanol Extracts of Five Allium Species from Turkey. Food. Chem. 2005, 92, 89–92. [Google Scholar] [CrossRef]
- Cando, D.; Morcuende, D.; Utrera, M.; Estévez, M. Phenolic-Rich Extracts from Willowherb (Epilobium hirsutum L.) Inhibit Lipid Oxidation but Accelerate Protein Carbonylation and Discoloration of Beef Patties. J. Eur. Food Res. Technol. 2014, 238, 741–751. [Google Scholar] [CrossRef]
- Mašković, P.Z.; Manojlović, N.T.; Mandić, A.I.; Mišan, A.Č.; Milovanović, I.L.; Radojković, M.M.; Cvijović, M.S.; Solujić, S.R. Phytochemical Screening and Biological Activity of Extracts of Plant Species Halacsya Sendtneri (Boiss.) Dörfl. Hem. Ind. 2012, 66, 43–51. [Google Scholar] [CrossRef]
- Ozsoy, N.; Can, A.; Yanardag, R.; Akev, N. Antioxidant Activity of Smilax excelsa L. Leaf Extracts. Food Chem. 2008, 110, 571–583. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A Review of Ethnopharmacology, Phytochemistry and Biological Activities. J. Tradit. Chin. Med. 2013, 33, 815–826. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Ghannadi, A.; Sharif, B. Anti-Inflammatory and Analgesic Properties of the Leaf Extracts and Essential Oil of Lavandula Angustifolia Mill. J. Ethnopharmacol. 2003, 89, 67–71. [Google Scholar] [CrossRef]
- Morton, J.J.; Malone, M.H. Evaluation of Vulneray Activity by an Open Wound Procedure in Rats. Arch. Int. Pharmacodyn. Ther. 1972, 196, 117–126. [Google Scholar] [PubMed]
- OECD. Test No. 410: Repeated Dose Dermal Toxicity: 21/28-Day Study; Organisation for Economic Co-Operation and Development: Paris, France, 1981. [Google Scholar]
- Vanhulle, V.P.; Martiat, G.A.; Verbeeck, R.K.; Horsmans, Y.; Calderon, P.B.; Eeckhoudt, S.L.; Taper, H.S.; Delzenne, N. Cryopreservation of Rat Precision-Cut Liver Slices by Ultrarapid Freezing: Influence on Phase I and II Metabolism and on Cell Viability upon Incubation for 24 Hours. Life Sci. 2001, 68, 2391–2403. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Soud, M.A.M.; Ennaji, H.; Kumar, A.; Alfhili, M.A.; Bari, A.; Ahamed, M.; Chebaibi, M.; Bourhia, M.; Khallouki, F.; Alghamdi, K.M.; et al. Antioxidant, Anti-Proliferative Activity and Chemical Fingerprinting of Centaurea Calcitrapa against Breast Cancer Cells and Molecular Docking of Caspase-3. Antioxidants 2022, 11, 1514. [Google Scholar] [CrossRef] [PubMed]
- Amrati, F.E.-Z.; Slighoua, M.; Mssillou, I.; Chebaibi, M.; Galvão de Azevedo, R.; Boukhira, S.; Moslova, K.; Al Kamaly, O.; Saleh, A.; Correa de Oliveira, A.; et al. Lipids Fraction from Caralluma Europaea (Guss.): MicroTOF and HPLC Analyses and Exploration of Its Antioxidant, Cytotoxic, Anti-Inflammatory, and Wound Healing Effects. Separations 2023, 10, 172. [Google Scholar] [CrossRef]
- Slighoua, M.; Chebaibi, M.; Mahdi, I.; Amrati, F.E.; Conte, R.; Cordero, M.A.W.; Alotaibi, A.; Saghrouchni, H.; Agour, A.; Zair, T.; et al. The LC-MS/MS Identification and Analgesic and Wound Healing Activities of Lavandula Officinalis Chaix: In Vivo and In Silico Approaches. Plants 2022, 11, 3222. [Google Scholar] [CrossRef] [PubMed]
- Amrati, F.E.-Z.; Chebaibi, M.; Galvão de Azevedo, R.; Conte, R.; Slighoua, M.; Mssillou, I.; Kiokias, S.; de Freitas Gomes, A.; Soares Pontes, G.; Bousta, D. Phenolic Composition, Wound Healing, Antinociceptive, and Anticancer Effects of Caralluma Europaea Extracts. Molecules 2023, 28, 1780. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Tripathi, P.; Talukdar, P.; Talapatra, S.N. In Silico Study by Using ProTox-II Webserver for Oral Acute Toxicity, Organ Toxicity, Immunotoxicity, Genetic Toxicity Endpoints, Nuclear Receptor Signalling and Stress Response Pathways of Synthetic Pyrethroids. World Sci. News 2019, 132, 35–51. [Google Scholar]
- Mahnashi, M.H.; Alshahrani, M.A.; Nahari, M.H.; Hassan, S.S.U.; Jan, M.S.; Ayaz, M.; Ullah, F.; Alshehri, O.M.; Alshehri, M.A.; Rashid, U.; et al. In-Vitro, In-Vivo, Molecular Docking and ADMET Studies of 2-Substituted 3,7-Dihydroxy-4H-Chromen-4-One for Oxidative Stress, Inflammation and Alzheimer’s Disease. Metabolites 2022, 12, 1055. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations, Codex Stan 210e. 2015. Available online: https://www.fao.org/input/download/standards/336/CXS_210e_2015.pdf (accessed on 10 June 2024).
- Mitrea, L.; Teleky, B.-E.; Leopold, L.-F.; Nemes, S.-A.; Plamada, D.; Dulf, F.V.; Pop, I.-D.; Vodnar, D.C. The Physicochemical Properties of Five Vegetable Oils Exposed at High Temperature for a Short-Time-Interval. J. Food Compos. Anal. 2022, 106, 104305. [Google Scholar] [CrossRef]
- Hemp Seed Oil: A Source of Valuable Essential Fatty Acids. Available online: http://www.internationalhempassociation.org/jiha/iha03101.html (accessed on 5 December 2020).
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The Composition of Hemp Seed Oil and Its Potential as an Important Source of Nutrition. J. Nutraceutic Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef]
- Vieira, J.E.; Abreu, L.C.; Valle, J.R. On the Pharmacology of the Hemp Seed Oil. Pharmacology 1967, 16, 219–224. [Google Scholar] [CrossRef] [PubMed]
- André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants 2020, 9, 1740. [Google Scholar] [CrossRef] [PubMed]
- Ghacham, S.E.; Bakali, I.E.; Zarouki, M.A.; Ali, Y.A.E.H.; Ismaili, R.; Ayadi, A.E.; Souhail, B.; Tamegart, L.; Azzouz, A. Wound Healing Efficacy of Cannabis sativa L. Essential Oil in a Mouse Incisional Wound Model: A Possible Link with Stress and Anxiety. S. Afr. J. Bot 2023, 163, 488–496. [Google Scholar] [CrossRef]
- Klein, M.; De Quadros De Bortolli, J.; Guimarães, F.S.; Salum, F.G.; Cherubini, K.; De Figueiredo, M.A.Z. Effects of Cannabidiol, a Cannabis sativa Constituent, on Oral Wound Healing Process in Rats: Clinical and Histological Evaluation. Phytother. Res. 2018, 32, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.U.; Baum, C.R. Acute Cannabis Toxicity. Pediatr. Emerg. Care 2019, 35, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Yassa, H.A.; Dawood, A.E.W.A.; Shehata, M.M.; Abdel-Hady, R.H.; Abdel Aal, K.M. Subchronic Toxicity of Cannabis Leaves on Male Albino Rats. Hum. Exp. Toxicol. 2010, 29, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Jastrząb, A.; Jarocka-Karpowicz, I.; Markowska, A.; Wroński, A.; Gęgotek, A.; Skrzydlewska, E. Antioxidant and Anti-Inflammatory Effect of Cannabidiol Contributes to the Decreased Lipid Peroxidation of Keratinocytes of Rat Skin Exposed to UV Radiation. Oxid. Med. Cell. Longev. 2021, 2021, 6647222. [Google Scholar] [CrossRef]
- Bhamra, S.K.; Desai, A.; Imani-Berendjestanki, P.; Horgan, M. The Emerging Role of Cannabidiol (CBD) Products; a Survey Exploring the Public’s Use and Perceptions of CBD. Phytother. Res. 2021, 35, 5734–5740. [Google Scholar] [CrossRef] [PubMed]
- Sangiovanni, E.; Fumagalli, M.; Pacchetti, B.; Piazza, S.; Magnavacca, A.; Khalilpour, S.; Melzi, G.; Martinelli, G.; Dell’Agli, M. Cannabis sativa L. Extract and Cannabidiol Inhibit in Vitro Mediators of Skin Inflammation and Wound Injury. Phytother. Res. 2019, 33, 2083–2093. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Marzo, V.D. Cannabinoids and the Expanded Endocannabinoid System in Neurological Disorders. Nat. Rev. Neurol. 2020, 16, 9–29. [Google Scholar] [CrossRef]
- Haeggström, J.Z. Leukotriene biosynthetic enzymes as therapeutic targets. J. Clin. Investig. 2018, 128, 2680–2690. [Google Scholar] [CrossRef]
- Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA 1994, 91, 12013–12017. [Google Scholar] [CrossRef]
- Banerjee, P.; Ulker, O.C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Methods 2022, 32, 542–548. [Google Scholar] [CrossRef]
- Ogata, K.; Hatakeyama, M.; Nakamura, S. Effect of atomic charges on octanol—Water partition coefficient using alchemical free energy calculation. Molecules 2018, 23, 425. [Google Scholar] [CrossRef]
- Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular targets of the phytocannabinoids: A complex picture. Prog. Chem. Org. Nat. Prod. 2017, 103, 103–131. [Google Scholar]
- Pecoraro, B.; Marco, T.; Ewelina, H.; Victoria, H.; Anna, M.A.; Matthew, T. Predicting skin permeability by means of computational approaches: Reliability and caveats in pharmaceutical studies. J. Chem. Inf. Model 2019, 59, 1759–1771. [Google Scholar] [CrossRef]
- Akanji, T. An in vitro Investigation of the Stability and Permeability of Phytocannabinoids for Skin Care Formulations. Master’s Thesis, University of Rhode Island, Kingston, RI, USA, 2021. [Google Scholar]
- Abchir, O.; Daoui, O.; Nour, H.; Yamari, I.; Elkhattabi, S.; Errougui, A.; Chtita, S. Exploration of Cannabis constituents as potential candidates against diabetes mellitus disease using molecular docking, dynamics simulations and ADMET investigations. Sci. Afr. 2023, 21, 1745. [Google Scholar] [CrossRef]
Number | RT | Chemical Name | Cas Numbers | Chemical Classification | MS (m/z) | Ms Fragments (m/z) |
---|---|---|---|---|---|---|
Fatty acid (AMCana-Oil) | ||||||
1 | 14.915 | Palmitic Acid | 57-10-3 | Saturated fatty acid | 241 | 55, 73, 117, 132, 145, 185, 201, 215, 241 |
2 | 16.116 | Stearic acid | 18748-91-9 | Saturated fatty acid | 269 | 55, 73, 117, 132, 145, 185, 201, 269 |
Bioactive Compounds (AMCana-Oil) | ||||||
1 | 14.234 | Benzenepropanoic acid Or Methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate | 6386-38-5 | Alkylbenzene (class of phenolic esters) | 292 | 57, 91, 117, 147, 203, 219, 277, 292 |
2 | 14.320 | 7,9-Di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione | 82304-66-3 | Oxaspiro compound | 276 | 57, 91, 109, 135, 161, 175, 205, 217, 233, 261, 276 |
3 | 15.202 | Oleionitril | 112-91-4 | Fatty nitrile | 263 | 55, 83, 97, 122, 150, 164, 206, 220, 234, 263 |
4 | 16.860 | Oleamide | 301-02-0 | Fatty amide | 281 | 59, 72, 112, 126, 154, 198, 222, 238, 264, 281 |
5 | 17.406 | Monopalmitin | 542-44-9 | Saturated fatty acid ester: a triglyceride | 300 | 57, 73, 103, 129, 147, 157, 203, 239, 257, 279, 300 |
6 | 17.716 | Tris(2,4-di-tert-butylphenyl) phosphite | 31570-04-4 | Alkylbenzene (class of phosphites) | 441 | 57, 91, 147, 191, 237, 308, 426, 441 |
7 | 37.233 | 4,5,7-Tris(1,1-dimethylethyl)-3,4-dihydro-1,4-epoxynaphthalene-1(2H)-methanol | 56771-86-9 | Organic compound | 344 | 57, 85, 115, 129, 145, 185, 197, 229, 241, 260, 301, 316, 329, 344 |
Bioactive compounds (Terpenocannabinoid fraction: TC) | ||||||
1 | 64.716 | Caryophylene oxide | 1139-30-6 | Sesquiterpène | 220 | |
2 | 84.295 | Cannabidivarin (CBDV) | 24274-48-4 | Cannabinoid | 286 | |
3 | 85.986 | Delta9-Tetrahydrocannabivarin (THCV) | 31262-37-0 | Cannabinoid | 286 | |
4 | 87.077 | Cannabipinol | 21366-63-2 | Cannabinoid | 314 | |
5 | 88.085 | Cannabidiol (CBD) | 13956-29-1 | Cannabinoid | 314 | |
6 | 88.256 | Cannabichromene | 20675-51-8 | Cannabinoid | 314 | |
8 | 88.876 | Cannabicoumaronone | 70474-97-4 | Cannabinoid | 328 | |
10 | 89.667 | Cannabielsoin Acid (CBDA) | 16849-50-6 | Cannabinoid | 330 | |
11 | 90.454 | Delta9-Tetrahydrocannabinol (THC) | 16849-50-6 | Cannabinoid | 314 | |
12 | 91.75 | Cannabigerol (CBG) | 25654-31-3 | Cannabinoid | 316 | |
13 | 91.954 | Cannabinol | 521-35-7 | Cannabinoid | 310 |
Antioxidant Activity (TAC: (µg EAA/mg). DPPH: IC50 µg/mL; FRAP: EC50: µg/mL) | ||||
---|---|---|---|---|
TAC | DPPH | FRAP | BETA-CAROTENE % | |
AMCana-Oil | 243.430 ± 3.60 a | 50 ± 12.73 c | 520.5 ± 13.44 c | 57.32 ± 0.47 b |
AMCana-Oil (TC10%) | 376.5 ± 4.7 a | 22.99 ± 0.8 b | 345.6 ± 5.61 a | 57.40 ± 0.01 b |
AMCana-Oil (TC20%) | 416.87 ± 10.1 c | 22.53 ± 3.5 a | 289.15 ± 7.25 a | 57.67 ± 0.4 b |
Positive controls: Ascorbic acid | 943.83 ± 10.41 c | 29.16 ± 0.96 b | 258.45 ± 11.94 c |
Treatment | Doses (mg/kg) | Urea (g/L) | Creatinine (mg/L) | ASAT (U/I) | ALAT (U/I) | Proteins (g/L) |
---|---|---|---|---|---|---|
Control (NaCl 0.9%) | - | 0.4 ± 0.01 a | 5.6 ± 2.3 b | 152.3 ± 17.1 c | 77.34 ± 5.11 b | 50.1 ± 3.7 b |
Cannabis seed oils formulation | 0% | 0.4 ± 0.01 a | 6.2 ± 0.4 a | 208.0 ± 14.0 c | 63.2 ± 4.7 b | 50.7 ± 1.3 b |
10% | 0.44 ± 0.01 a | 5.9± 0.9 a | 164.7 ± 23.6 c | 71.0 ± 6 b | 50.1 ± 1.5 b | |
20% | 0.4 ± 0.1 a | 6.5 ± 0.9 a | 217.3 ± 35.8 c | 69.7 ± 9.1 c | 52.4 ± 3.0 b |
% Inhibition of Inflammation ± SD, Average Inflammation Diameter ± SD (mm) | ||||
---|---|---|---|---|
Time (H) | AMCana-Oil | AMCana-Oil (10% TC) | AMCana-Oil (20% TC) | Positive Control: Flammazine 1% |
0 h: t0: after carrageenan injection | 0.00 | 0.00 | 0.00 | 0.00 |
1 h: before injection without treatment | 0.93 ± 0.15 a | 0.90 ± 0.17 a | 1.33 ± 0.68 a | 1.40 ± 0.26 a |
2 h: 1 h application of the treatment | 10 ± 13.47 c, 0.60 ± 0.17 a | 15 ± 12.10 c, 0.57 ± 0.06 a | 20 ± 30.31 c, 0.53 ± 0.68 a | 0 ± 15.57 c, 0.67 ± 0.29 a |
3 h: 2 h application of the treatment | 23.529 ± 15.02 c, 0.43 ± 0.25 a | 35.294 ± 11.98 c, 0.37 ± 0.06 a | 41.176 ± 25.15 c, 0.33 ± 0.42 a | 5.882 ± 2.08 b, 0.53 ± 0.06 a |
4 h: 3 h application of the treatment | 35.294 ± 21.41 c, 0.37 ± 0.25 a | 41.176 ± 13.75 c, 0.33 ± 0.06 a | 47.059 ± 15.22 c, 0.30 ± 0.44 a | 17.647 ± 2.75 b, 0.47 ± 0.06 a |
5 h: 4 h application of the treatment | 76.471 ± 48.58 c, 0.13 ± 0.31 a | 76.471 ± 19.97 c, 0.13 ± 0.06 a | 82.353 ± 28.87 c, 0.10 ± 0.17 a | 35.294 ± 8.94 b, 0.37 ± 0.06 a |
6 h: 5 h application of the treatment | 94.118 ± 23.90 c, 0.03 ± 0.15 a | 94.706 ± 14.86 c, 0.03 ± 0.06 a | 97.059 ± 4.81 b, 0.02 ± 0.03 a | 88.235 ± 9.01 b, 0.07 ± 0.06 a |
AMCana-Oil | AMCana-Oil (10% TC) | AMCana-Oil (20% TC) | Positive Control: Flammazine 1% | |
---|---|---|---|---|
Average number of spasms ± SD | 31.400 ± 2.70 b | 23.600 ± 2.97 b | 23 ± 7.42 b | 36.600 ± 4.67 b |
% Inhibition | 58.684 ± 3.05 b | 68.947 ± 4.99 b | 69.737 ± 8.80 c | 51.842 ± 5.83 c |
AMCana-Oil | AMCana-Oil (10% TC) | AMCana-Oil (20% TC) | Positive Control: Paracetamol (100 mg) | |
---|---|---|---|---|
Average number of spasms ± SD | 21.29 ± 1.92 a | 17.37 ± 0.88 a | 10.37 ± 2.64 a | 17.34 ± 1.28 a |
% Inhibition | 19.01 ± 6.4 c | 30.76 ± 7.2 c | 69.737 ± 8.80 c | 53.72 ± 12.5 c |
Glide Gscore (kcal/mol) | ||||
---|---|---|---|---|
3V99 | 6COX | 1Q5K | 6GZD | |
4,5,7-Tris(1,1-dimethylethyl)-3,4-dihydro-1,4-epoxynaphthalene-1(2H)-methanol | −4.65 | - | −4.755 | −4.048 |
7,9-Di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione | −4.269 | - | −4.002 | −3.844 |
Benzenepropanoic acid | −5.715 | −6.194 | −4.57 | −5.54 |
Cannabichromene | −4.906 | −6.504 | −4.968 | −4.08 |
Cannabicoumaronone | −4.082 | −6.793 | −6.227 | −2.833 |
Cannabidiol | −3.169 | −6.779 | −4.499 | −2.964 |
Cannabidivarin | −3.693 | −7.227 | −5.609 | −3.358 |
Cannabielsoin Acid | −4.059 | - | −7.019 | −3.115 |
Cannabigerol | −3.767 | - | −7.339 | −4 |
Cannabinol | −3.864 | - | −6.028 | −2.982 |
Cannabipinol | −4.431 | −8.243 | −6.094 | −3.572 |
Caryophylene oxide | −4.719 | −7.816 | −5.91 | −4.036 |
Delta9-Tetrahydrocannabinol | −3.907 | −7.687 | −5.735 | −4.544 |
Monopalmitin | −3.574 | −3.95 | −4.766 | −2.283 |
Oleamide | 0.083 | −3.053 | −1.41 | 1.003 |
Oleonitrile | 0.876 | −1.461 | −0.695 | 2.346 |
Palmitic Acid | −1.346 | −0.077 | −0.46 | 0.79 |
Stearic acid | −0.637 | −0.36 | −0.269 | 1.227 |
Tris(2,4-di-tert-butylphenyl) phosphite | −3.16 | −3.593 | −2.377 |
LD50 mg/kg | Toxicity Class | QPlog Po/w | QPlog Kp | Prediction DPRA | Prediction KeratinoSens | Prediction h-CLAT | Prediction LLNA | Prediction HRIPT/HMT | Bayesian Outcome | |
---|---|---|---|---|---|---|---|---|---|---|
Palmitic Acid | 900 | 4 | 5.55 | −2.157 | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
Stearic acid | 900 | 4 | 6.33 | −1.79 | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
Benzenepropanoic acid | 2300 | 5 | 1.7 | −2.519 | Non-Sensitizer | Non-Sensitizer | Sensitizer (+) | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
Oleonitrile | 5000 | 5 | 5.95 | −1.205 | Non-Sensitizer | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) | Non-Sensitizer | Non-Sensitizer |
Oleamide | 750 | 4 | 6.21 | −1.973 | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
Monopalmitin | 5000 | 5 | 4.36 | −2.355 | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
Tris(2,4-di-tert-butylphenyl) phosphite | 6000 | 6 | 13.24 | −0.06 | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
4,5,7-Tris(1,1-dimethylethyl)-3,4-dihydro-1,4-epoxynaphthalene-1(2H)-methanol | 440 | 4 | 5.53 | −1.849 | Sensitizer (+) | Sensitizer (+) | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
7,9-Di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione | 900 | 4 | 3.59 | −2.658 | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) |
Caryophylene oxide | 5000 | 5 | 3.94 | −1.436 | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Cannabidivarin | 500 | 4 | 5.07 | −1.825 | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Delta9-Tetrahydrocannabivarin | 482 | 4 | 4.96 | −1.628 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Cannabipinol | 860 | 4 | 5.43 | −1.479 | Sensitizer (+) | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Non-Sensitizer | Non-Sensitizer |
Cannabidiol | 500 | 4 | 5.85 | −1.718 | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Cannabichromene | 750 | 4 | 6.04 | −1.193 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Cannabicoumaronone | 2000 | 4 | 5.79 | −1.332 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Non-Sensitizer | Sensitizer (+) | Sensitizer (+) |
Cannabielsoin Acid | 500 | 4 | 4.71 | −1.703 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Delta9-Tetrahydrocannabinol | 482 | 4 | 5.74 | −1.436 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Cannabigerol | 500 | 4 | 6.07 | −1.459 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Cannabinol | 13,500 | 6 | 5.73 | −1.225 | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) | Sensitizer (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metouekel, A.; Zejli, H.; Chebaibi, M.; Lefrioui, Y.; Bousta, D.; El Amri, H.; El Fahime, E.; El Kazzouli, S.; El Brahmi, N. Formulation and Physicochemical Characterization of Terpenocannabinoid-Functionalized Hemp Oil Emulsifier: Assessment of Topical Anti-Inflammatory, Antinociceptive, Wound Healing Activity and Cutaneous Toxicity Effects. Sci. Pharm. 2024, 92, 36. https://doi.org/10.3390/scipharm92030036
Metouekel A, Zejli H, Chebaibi M, Lefrioui Y, Bousta D, El Amri H, El Fahime E, El Kazzouli S, El Brahmi N. Formulation and Physicochemical Characterization of Terpenocannabinoid-Functionalized Hemp Oil Emulsifier: Assessment of Topical Anti-Inflammatory, Antinociceptive, Wound Healing Activity and Cutaneous Toxicity Effects. Scientia Pharmaceutica. 2024; 92(3):36. https://doi.org/10.3390/scipharm92030036
Chicago/Turabian StyleMetouekel, Amira, Hind Zejli, Mohamed Chebaibi, Youssra Lefrioui, Dalila Bousta, Hamid El Amri, Elmostafa El Fahime, Saïd El Kazzouli, and Nabil El Brahmi. 2024. "Formulation and Physicochemical Characterization of Terpenocannabinoid-Functionalized Hemp Oil Emulsifier: Assessment of Topical Anti-Inflammatory, Antinociceptive, Wound Healing Activity and Cutaneous Toxicity Effects" Scientia Pharmaceutica 92, no. 3: 36. https://doi.org/10.3390/scipharm92030036
APA StyleMetouekel, A., Zejli, H., Chebaibi, M., Lefrioui, Y., Bousta, D., El Amri, H., El Fahime, E., El Kazzouli, S., & El Brahmi, N. (2024). Formulation and Physicochemical Characterization of Terpenocannabinoid-Functionalized Hemp Oil Emulsifier: Assessment of Topical Anti-Inflammatory, Antinociceptive, Wound Healing Activity and Cutaneous Toxicity Effects. Scientia Pharmaceutica, 92(3), 36. https://doi.org/10.3390/scipharm92030036