Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.2. Data Analysis
3. Results
Description of Included Studies
4. Discussion
4.1. Compounds with IC50 < 1 μM In Vitro
4.2. Compounds with EC50 < 1 μM In Vitro
4.3. In Vivo Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaitonde, D.Y.; Moore, F.C.; Morgan, M.K. Influenza: Diagnosis and Treatment. Am. Fam. Physician 2019, 100, 751–758. [Google Scholar]
- Keilman, L.J. Seasonal Influenza (Flu). Nurs. Clin. N. Am. 2019, 54, 227–243. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef]
- Katzen, J.; Kohn, R.; Houk, J.L.; Ison, M.G. Early Oseltamivir After Hospital Admission Is Associated With Shortened Hospitalization: A 5-Year Analysis of Oseltamivir Timing and Clinical Outcomes. Clin. Infect. Dis. 2019, 69, 52–58. [Google Scholar] [CrossRef]
- Campbell, A.P.; Tokars, J.I.; Reynolds, S.; Garg, S.; Kirley, P.D.; Miller, L.; Yousey-Hindes, K.; Anderson, E.J.; Oni, O.; Monroe, M.; et al. Influenza Antiviral Treatment and Length of Stay. Pediatrics 2021, 148, e2021050417. [Google Scholar] [CrossRef]
- Takashita, E. Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2021, 11, a038687. [Google Scholar] [CrossRef]
- Holmes, E.C.; Hurt, A.C.; Dobbie, Z.; Clinch, B.; Oxford, J.S.; Piedra, P.A. Understanding the Impact of Resistance to Influenza Antivirals. Clin. Microbiol. Rev. 2021, 34, 10–1128. [Google Scholar] [CrossRef]
- Grienke, U.; Schmidtke, M.; von Grafenstein, S.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep. 2012, 29, 11–36. [Google Scholar] [CrossRef]
- Yu, G.; Fang, D. Evaluation of Neuraminidase Inhibitory Activity of Compounds and Extracts from Traditional Medicines by HPLC-FLD. Int. J. Anal. Chem. 2021, 2021, 6694771. [Google Scholar] [CrossRef]
- Marquez-Dominguez, L.; Reyes-Leyva, J.; Herrera-Camacho, I.; Santos-Lopez, G.; Scior, T. Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus. Molecules 2020, 25, 4248. [Google Scholar] [CrossRef]
- Potier, M.; Mameli, L.; Belisle, M.; Dallaire, L.; Melancon, S.B. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal. Biochem. 1979, 94, 287–296. [Google Scholar] [CrossRef]
- Buxton, R.C.; Edwards, B.; Juo, R.R.; Voyta, J.C.; Tisdale, M.; Bethell, R.C. Development of a sensitive chemiluminescent neuraminidase assay for the determination of influenza virus susceptibility to zanamivir. Anal. Biochem. 2000, 280, 291–300. [Google Scholar] [CrossRef]
- Zambon, M.; Hayden, F.G.; Global Neuraminidase Inhibitor Susceptibility, N. Position statement: Global neuraminidase inhibitor susceptibility network. Antivir. Res. 2001, 49, 147–156. [Google Scholar] [CrossRef]
- Lackenby, A.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Leang, S.K.; Lee, R.T.C.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antivir. Res. 2018, 157, 38–46. [Google Scholar] [CrossRef]
- Marathe, B.M.; Leveque, V.; Klumpp, K.; Webster, R.G.; Govorkova, E.A. Determination of neuraminidase kinetic constants using whole influenza virus preparations and correction for spectroscopic interference by a fluorogenic substrate. PLoS ONE 2013, 8, e71401. [Google Scholar] [CrossRef]
- Russell, R.J.; Haire, L.F.; Stevens, D.J.; Collins, P.J.; Lin, Y.P.; Blackburn, G.M.; Hay, A.J.; Gamblin, S.J.; Skehel, J.J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006, 443, 45–49. [Google Scholar] [CrossRef]
- von Itzstein, M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967–974. [Google Scholar] [CrossRef]
- Tao, J.; Wang, H.; Wang, W.; Mi, N.; Zhang, W.; Wen, Q.; Ouyang, J.; Liang, X.; Chen, M.; Guo, W.; et al. Binding mechanism of oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-influenza drugs. PLoS Comput. Biol. 2022, 18, e1010343. [Google Scholar] [CrossRef]
- Evteev, S.; Nilov, D.; Polenova, A.; Svedas, V. Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int. J. Mol. Sci. 2021, 22, 13112. [Google Scholar] [CrossRef]
- Hoffmann, A.; Richter, M.; von Grafenstein, S.; Walther, E.; Xu, Z.; Schumann, L.; Grienke, U.; Mair, C.E.; Kramer, C.; Rollinger, J.M.; et al. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Front. Microbiol. 2017, 8, 205. [Google Scholar] [CrossRef]
- Chintakrindi, A.S.; Gohil, D.J.; Chowdhary, A.S.; Kanyalkar, M.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents. Bioorg. Med. Chem. 2020, 28, 115191. [Google Scholar] [CrossRef]
- Boechat Fda, C.; Sacramento, C.Q.; Cunha, A.C.; Sagrillo, F.S.; Nogueira, C.M.; Fintelman-Rodrigues, N.; Santos-Filho, O.; Riscado, C.S.; Forezi Lda, S.; Faro, L.V.; et al. 1,2,3-Triazolyl-4-oxoquinolines: A feasible beginning for promising chemical structures to inhibit oseltamivir-resistant influenza A and B viruses. Bioorg. Med. Chem. 2015, 23, 7777–7784. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.P.; Yu, Q.; Yang, M.B.; Wang, D.M.; Jia, T.W.; He, H.J.; He, Y.; Xiao, H.X.; Iyer, S.S.; et al. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr. Res. 2016, 435, 68–75. [Google Scholar] [CrossRef]
- Sacramento, C.Q.; Marttorelli, A.; Fintelman-Rodrigues, N.; de Freitas, C.S.; de Melo, G.R.; Rocha, M.E.; Kaiser, C.R.; Rodrigues, K.F.; da Costa, G.L.; Alves, C.M.; et al. Aureonitol, a Fungi-Derived Tetrahydrofuran, Inhibits Influenza Replication by Targeting Its Surface Glycoprotein Hemagglutinin. PLoS ONE 2015, 10, e0139236. [Google Scholar] [CrossRef]
- da Silva-Junior, E.F.; Silva, L.R. Multi-target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives against Influenza Viruses. Curr. Top. Med. Chem. 2022, 22, 1485–1500. [Google Scholar] [CrossRef]
- Jeong, H.J.; Ryu, Y.B.; Park, S.J.; Kim, J.H.; Kwon, H.J.; Kim, J.H.; Park, K.H.; Rho, M.C.; Lee, W.S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem. 2009, 17, 6816–6823. [Google Scholar] [CrossRef]
- Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses 2015, 8, 6. [Google Scholar] [CrossRef]
- Mehrbod, P.; Abdalla, M.A.; Fotouhi, F.; Heidarzadeh, M.; Aro, A.O.; Eloff, J.N.; McGaw, L.J.; Fasina, F.O. Immunomodulatory properties of quercetin-3-O-alpha-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement. Altern. Med. 2018, 18, 184. [Google Scholar] [CrossRef]
- Mehrbod, P.; Hudy, D.; Shyntum, D.; Markowski, J.; Los, M.J.; Ghavami, S. Quercetin as a Natural Therapeutic Candidate for the Treatment of Influenza Virus. Biomolecules 2020, 11, 10. [Google Scholar] [CrossRef]
- Kumar, P.; Khanna, M.; Srivastava, V.; Tyagi, Y.K.; Raj, H.G.; Ravi, K. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. Exp. Lung Res. 2005, 31, 449–459. [Google Scholar] [CrossRef]
- Heinz, S.A.; Henson, D.A.; Austin, M.D.; Jin, F.; Nieman, D.C. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol. Res. 2010, 62, 237–242. [Google Scholar] [CrossRef]
- Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved Oral Absorption of Quercetin from Quercetin Phytosome(R), a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 169–177. [Google Scholar] [CrossRef]
- Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem. 2008, 16, 7141–7147. [Google Scholar] [CrossRef]
- Wang, H.X.; Zeng, M.S.; Ye, Y.; Liu, J.Y.; Xu, P.P. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother. Res. 2021, 35, 324–336. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 2017, 7, 45723. [Google Scholar] [CrossRef]
- Chen, J.; Feng, S.; Xu, Y.; Huang, X.; Zhang, J.; Chen, J.; An, X.; Zhang, Y.; Ning, X. Discovery and characterization of a novel peptide inhibitor against influenza neuraminidase. RSC Med. Chem. 2020, 11, 148–154. [Google Scholar] [CrossRef]
Neuraminidase Inhibition | Infection Inhibition | ||||||
---|---|---|---|---|---|---|---|
ID | IC50 (μM) | Virus Strain | CC50 (μM) | Selectivity Index | EC50 (μM) | Virus Strain | |
IC50 < 1 μM in vitro | 1 | 0.15 | NS | --- | --- | --- | --- |
2 | 0.02 | NS | --- | --- | --- | --- | |
3 | 0.03 | NS | --- | --- | --- | --- | |
6 | 0.04 | NS | --- | --- | --- | --- | |
114 | 0.44 | A/WSN/33 (H1N1) | --- | --- | 7.17 | A/WSN/33 (H1N1) | |
0.62 | A/WSN/193 (H1N1) NA N294S | --- | --- | --- | --- | ||
0.33 | A/WSN/1933 (H1N1) NA Y155YH | --- | --- | --- | --- | ||
0.74 | A/WSN/1933 (H1N1) NA Q136L | --- | --- | --- | --- | ||
0.51 | A/WSN/1933 (H1N1) NA I427Q | --- | --- | --- | --- | ||
0.77 | A/WSN/1933 (H1N1) NA I427M | --- | --- | --- | --- | ||
136 | 1.00 | NS | --- | --- | --- | --- | |
137 | 0.70 | NS | --- | --- | --- | --- | |
EC50 < 1 μM In Vitro | 86 | 32.60 | A/Pune/2009 (H1N1) | 174.3 | 3654 | 0.0477 | A/Pune/2009 (H1N1) |
87 | 27.65 | A/Pune/2009 (H1N1) | 115.4 | 3214 | 0.0359 | A/Pune/2009 (H1N1) | |
88 | 10.76 | A/Pune/2009 (H1N1) | 263.4 | 20955 | 0.01257 | A/Pune/2009 (H1N1) | |
89 | 8.74 | A/Pune/2009 (H1N1) | 191.8 | 20491 | 0.00936 | A/Pune/2009 (H1N1) | |
90 | 15.36 | A/Pune/2009 (H1N1) | 269.1 | 19058 | 0.01412 | A/Pune/2009 (H1N1) | |
91 | 13.20 | A/Pune/2009 (H1N1) | 162.5 | 13621 | 0.01193 | A/Pune/2009 (H1N1) | |
92 | 45.36 | A/Pune/2009 (H1N1) | 272.4 | 5301 | 0.05139 | A/Pune/2009 (H1N1) | |
93 | 37.50 | A/Pune/2009 (H1N1) | 169.4 | 4802 | 0.03528 | A/Pune/2009 (H1N1) | |
94 | 41.00 | A/Pune/2009 (H1N1) | 253.8 | 4598 | 0.04632 | A/Pune/2009 (H1N1) | |
95 | 7.75 | A/Pune/2009 (H1N1) | 253.8 | 3007 | 0.08446 | A/Pune/2009 (H1N1) | |
186 | 19.90 | A/WA/01/2007 (H3N2) | 566 | 2830 | 0.2 | NS | |
Studies in Animal Models | 71 | 15.70 | A/FM/1/47(H1N1) | 1086.9 | 20.87 | 52.06 | A/FM/1/47(H1N1) |
73 | 22.13 | A/PuertoRico/8/1934 (H1N1) | 364.3 | 8.12 | 44.87 | A/PuertoRico/8/1934(H1N1) | |
9.24 | 39.42 | A/FM1/1/47 (H1N1) | |||||
5.84 | 62.33 | A/Beijing/32/92 (H3N2) | |||||
7.11 | 51.23 | A/Human/Hubei/3/2005(H3N2) | |||||
59.08 | A/Beijing/32/92 (H3N2) | 312.67 | 6.24 | 58.34 | A/Jinnan/15/2009(H1N1) | ||
5.06 | 71.93 | A/Zhuhui/1222/2010(H3N2) | |||||
8.20 | 38.14 | A/PuertoRico/8/1934(H1N1) | |||||
4.67 | 66.89 | A/Beijing/32/92 (H3N2) | |||||
79 | 4.25 | H1N1 (A/Puerto Rico/8/1934) | --- | --- | 2.26 | A/PuertoRico/8/1934 (H1N1) | |
--- | --- | 1.46 | A/Vietnam/1203/2004 (H5N1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Domínguez, L.; Jasso-Miranda, C.; Sedeño-Monge, V.; Santos-López, G. Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review. Sci. Pharm. 2024, 92, 33. https://doi.org/10.3390/scipharm92020033
Márquez-Domínguez L, Jasso-Miranda C, Sedeño-Monge V, Santos-López G. Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review. Scientia Pharmaceutica. 2024; 92(2):33. https://doi.org/10.3390/scipharm92020033
Chicago/Turabian StyleMárquez-Domínguez, Luis, Carolina Jasso-Miranda, Virginia Sedeño-Monge, and Gerardo Santos-López. 2024. "Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review" Scientia Pharmaceutica 92, no. 2: 33. https://doi.org/10.3390/scipharm92020033
APA StyleMárquez-Domínguez, L., Jasso-Miranda, C., Sedeño-Monge, V., & Santos-López, G. (2024). Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review. Scientia Pharmaceutica, 92(2), 33. https://doi.org/10.3390/scipharm92020033