Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.2. Data Analysis
3. Results
Description of Included Studies
4. Discussion
4.1. Compounds with IC50 < 1 μM In Vitro
4.2. Compounds with EC50 < 1 μM In Vitro
4.3. In Vivo Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaitonde, D.Y.; Moore, F.C.; Morgan, M.K. Influenza: Diagnosis and Treatment. Am. Fam. Physician 2019, 100, 751–758. [Google Scholar]
- Keilman, L.J. Seasonal Influenza (Flu). Nurs. Clin. N. Am. 2019, 54, 227–243. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef]
- Katzen, J.; Kohn, R.; Houk, J.L.; Ison, M.G. Early Oseltamivir After Hospital Admission Is Associated With Shortened Hospitalization: A 5-Year Analysis of Oseltamivir Timing and Clinical Outcomes. Clin. Infect. Dis. 2019, 69, 52–58. [Google Scholar] [CrossRef]
- Campbell, A.P.; Tokars, J.I.; Reynolds, S.; Garg, S.; Kirley, P.D.; Miller, L.; Yousey-Hindes, K.; Anderson, E.J.; Oni, O.; Monroe, M.; et al. Influenza Antiviral Treatment and Length of Stay. Pediatrics 2021, 148, e2021050417. [Google Scholar] [CrossRef]
- Takashita, E. Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2021, 11, a038687. [Google Scholar] [CrossRef]
- Holmes, E.C.; Hurt, A.C.; Dobbie, Z.; Clinch, B.; Oxford, J.S.; Piedra, P.A. Understanding the Impact of Resistance to Influenza Antivirals. Clin. Microbiol. Rev. 2021, 34, 10–1128. [Google Scholar] [CrossRef]
- Grienke, U.; Schmidtke, M.; von Grafenstein, S.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep. 2012, 29, 11–36. [Google Scholar] [CrossRef]
- Yu, G.; Fang, D. Evaluation of Neuraminidase Inhibitory Activity of Compounds and Extracts from Traditional Medicines by HPLC-FLD. Int. J. Anal. Chem. 2021, 2021, 6694771. [Google Scholar] [CrossRef]
- Marquez-Dominguez, L.; Reyes-Leyva, J.; Herrera-Camacho, I.; Santos-Lopez, G.; Scior, T. Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus. Molecules 2020, 25, 4248. [Google Scholar] [CrossRef]
- Potier, M.; Mameli, L.; Belisle, M.; Dallaire, L.; Melancon, S.B. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal. Biochem. 1979, 94, 287–296. [Google Scholar] [CrossRef]
- Buxton, R.C.; Edwards, B.; Juo, R.R.; Voyta, J.C.; Tisdale, M.; Bethell, R.C. Development of a sensitive chemiluminescent neuraminidase assay for the determination of influenza virus susceptibility to zanamivir. Anal. Biochem. 2000, 280, 291–300. [Google Scholar] [CrossRef]
- Zambon, M.; Hayden, F.G.; Global Neuraminidase Inhibitor Susceptibility, N. Position statement: Global neuraminidase inhibitor susceptibility network. Antivir. Res. 2001, 49, 147–156. [Google Scholar] [CrossRef]
- Lackenby, A.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Leang, S.K.; Lee, R.T.C.; et al. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antivir. Res. 2018, 157, 38–46. [Google Scholar] [CrossRef]
- Marathe, B.M.; Leveque, V.; Klumpp, K.; Webster, R.G.; Govorkova, E.A. Determination of neuraminidase kinetic constants using whole influenza virus preparations and correction for spectroscopic interference by a fluorogenic substrate. PLoS ONE 2013, 8, e71401. [Google Scholar] [CrossRef]
- Russell, R.J.; Haire, L.F.; Stevens, D.J.; Collins, P.J.; Lin, Y.P.; Blackburn, G.M.; Hay, A.J.; Gamblin, S.J.; Skehel, J.J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006, 443, 45–49. [Google Scholar] [CrossRef]
- von Itzstein, M. The war against influenza: Discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov. 2007, 6, 967–974. [Google Scholar] [CrossRef]
- Tao, J.; Wang, H.; Wang, W.; Mi, N.; Zhang, W.; Wen, Q.; Ouyang, J.; Liang, X.; Chen, M.; Guo, W.; et al. Binding mechanism of oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-influenza drugs. PLoS Comput. Biol. 2022, 18, e1010343. [Google Scholar] [CrossRef]
- Evteev, S.; Nilov, D.; Polenova, A.; Svedas, V. Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int. J. Mol. Sci. 2021, 22, 13112. [Google Scholar] [CrossRef]
- Hoffmann, A.; Richter, M.; von Grafenstein, S.; Walther, E.; Xu, Z.; Schumann, L.; Grienke, U.; Mair, C.E.; Kramer, C.; Rollinger, J.M.; et al. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Front. Microbiol. 2017, 8, 205. [Google Scholar] [CrossRef]
- Chintakrindi, A.S.; Gohil, D.J.; Chowdhary, A.S.; Kanyalkar, M.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents. Bioorg. Med. Chem. 2020, 28, 115191. [Google Scholar] [CrossRef]
- Boechat Fda, C.; Sacramento, C.Q.; Cunha, A.C.; Sagrillo, F.S.; Nogueira, C.M.; Fintelman-Rodrigues, N.; Santos-Filho, O.; Riscado, C.S.; Forezi Lda, S.; Faro, L.V.; et al. 1,2,3-Triazolyl-4-oxoquinolines: A feasible beginning for promising chemical structures to inhibit oseltamivir-resistant influenza A and B viruses. Bioorg. Med. Chem. 2015, 23, 7777–7784. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.P.; Yu, Q.; Yang, M.B.; Wang, D.M.; Jia, T.W.; He, H.J.; He, Y.; Xiao, H.X.; Iyer, S.S.; et al. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr. Res. 2016, 435, 68–75. [Google Scholar] [CrossRef]
- Sacramento, C.Q.; Marttorelli, A.; Fintelman-Rodrigues, N.; de Freitas, C.S.; de Melo, G.R.; Rocha, M.E.; Kaiser, C.R.; Rodrigues, K.F.; da Costa, G.L.; Alves, C.M.; et al. Aureonitol, a Fungi-Derived Tetrahydrofuran, Inhibits Influenza Replication by Targeting Its Surface Glycoprotein Hemagglutinin. PLoS ONE 2015, 10, e0139236. [Google Scholar] [CrossRef]
- da Silva-Junior, E.F.; Silva, L.R. Multi-target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives against Influenza Viruses. Curr. Top. Med. Chem. 2022, 22, 1485–1500. [Google Scholar] [CrossRef]
- Jeong, H.J.; Ryu, Y.B.; Park, S.J.; Kim, J.H.; Kwon, H.J.; Kim, J.H.; Park, K.H.; Rho, M.C.; Lee, W.S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem. 2009, 17, 6816–6823. [Google Scholar] [CrossRef]
- Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses 2015, 8, 6. [Google Scholar] [CrossRef]
- Mehrbod, P.; Abdalla, M.A.; Fotouhi, F.; Heidarzadeh, M.; Aro, A.O.; Eloff, J.N.; McGaw, L.J.; Fasina, F.O. Immunomodulatory properties of quercetin-3-O-alpha-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement. Altern. Med. 2018, 18, 184. [Google Scholar] [CrossRef]
- Mehrbod, P.; Hudy, D.; Shyntum, D.; Markowski, J.; Los, M.J.; Ghavami, S. Quercetin as a Natural Therapeutic Candidate for the Treatment of Influenza Virus. Biomolecules 2020, 11, 10. [Google Scholar] [CrossRef]
- Kumar, P.; Khanna, M.; Srivastava, V.; Tyagi, Y.K.; Raj, H.G.; Ravi, K. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. Exp. Lung Res. 2005, 31, 449–459. [Google Scholar] [CrossRef]
- Heinz, S.A.; Henson, D.A.; Austin, M.D.; Jin, F.; Nieman, D.C. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol. Res. 2010, 62, 237–242. [Google Scholar] [CrossRef]
- Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved Oral Absorption of Quercetin from Quercetin Phytosome(R), a New Delivery System Based on Food Grade Lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 169–177. [Google Scholar] [CrossRef]
- Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem. 2008, 16, 7141–7147. [Google Scholar] [CrossRef]
- Wang, H.X.; Zeng, M.S.; Ye, Y.; Liu, J.Y.; Xu, P.P. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother. Res. 2021, 35, 324–336. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 2017, 7, 45723. [Google Scholar] [CrossRef]
- Chen, J.; Feng, S.; Xu, Y.; Huang, X.; Zhang, J.; Chen, J.; An, X.; Zhang, Y.; Ning, X. Discovery and characterization of a novel peptide inhibitor against influenza neuraminidase. RSC Med. Chem. 2020, 11, 148–154. [Google Scholar] [CrossRef]
Neuraminidase Inhibition | Infection Inhibition | ||||||
---|---|---|---|---|---|---|---|
ID | IC50 (μM) | Virus Strain | CC50 (μM) | Selectivity Index | EC50 (μM) | Virus Strain | |
IC50 < 1 μM in vitro | 1 | 0.15 | NS | --- | --- | --- | --- |
2 | 0.02 | NS | --- | --- | --- | --- | |
3 | 0.03 | NS | --- | --- | --- | --- | |
6 | 0.04 | NS | --- | --- | --- | --- | |
114 | 0.44 | A/WSN/33 (H1N1) | --- | --- | 7.17 | A/WSN/33 (H1N1) | |
0.62 | A/WSN/193 (H1N1) NA N294S | --- | --- | --- | --- | ||
0.33 | A/WSN/1933 (H1N1) NA Y155YH | --- | --- | --- | --- | ||
0.74 | A/WSN/1933 (H1N1) NA Q136L | --- | --- | --- | --- | ||
0.51 | A/WSN/1933 (H1N1) NA I427Q | --- | --- | --- | --- | ||
0.77 | A/WSN/1933 (H1N1) NA I427M | --- | --- | --- | --- | ||
136 | 1.00 | NS | --- | --- | --- | --- | |
137 | 0.70 | NS | --- | --- | --- | --- | |
EC50 < 1 μM In Vitro | 86 | 32.60 | A/Pune/2009 (H1N1) | 174.3 | 3654 | 0.0477 | A/Pune/2009 (H1N1) |
87 | 27.65 | A/Pune/2009 (H1N1) | 115.4 | 3214 | 0.0359 | A/Pune/2009 (H1N1) | |
88 | 10.76 | A/Pune/2009 (H1N1) | 263.4 | 20955 | 0.01257 | A/Pune/2009 (H1N1) | |
89 | 8.74 | A/Pune/2009 (H1N1) | 191.8 | 20491 | 0.00936 | A/Pune/2009 (H1N1) | |
90 | 15.36 | A/Pune/2009 (H1N1) | 269.1 | 19058 | 0.01412 | A/Pune/2009 (H1N1) | |
91 | 13.20 | A/Pune/2009 (H1N1) | 162.5 | 13621 | 0.01193 | A/Pune/2009 (H1N1) | |
92 | 45.36 | A/Pune/2009 (H1N1) | 272.4 | 5301 | 0.05139 | A/Pune/2009 (H1N1) | |
93 | 37.50 | A/Pune/2009 (H1N1) | 169.4 | 4802 | 0.03528 | A/Pune/2009 (H1N1) | |
94 | 41.00 | A/Pune/2009 (H1N1) | 253.8 | 4598 | 0.04632 | A/Pune/2009 (H1N1) | |
95 | 7.75 | A/Pune/2009 (H1N1) | 253.8 | 3007 | 0.08446 | A/Pune/2009 (H1N1) | |
186 | 19.90 | A/WA/01/2007 (H3N2) | 566 | 2830 | 0.2 | NS | |
Studies in Animal Models | 71 | 15.70 | A/FM/1/47(H1N1) | 1086.9 | 20.87 | 52.06 | A/FM/1/47(H1N1) |
73 | 22.13 | A/PuertoRico/8/1934 (H1N1) | 364.3 | 8.12 | 44.87 | A/PuertoRico/8/1934(H1N1) | |
9.24 | 39.42 | A/FM1/1/47 (H1N1) | |||||
5.84 | 62.33 | A/Beijing/32/92 (H3N2) | |||||
7.11 | 51.23 | A/Human/Hubei/3/2005(H3N2) | |||||
59.08 | A/Beijing/32/92 (H3N2) | 312.67 | 6.24 | 58.34 | A/Jinnan/15/2009(H1N1) | ||
5.06 | 71.93 | A/Zhuhui/1222/2010(H3N2) | |||||
8.20 | 38.14 | A/PuertoRico/8/1934(H1N1) | |||||
4.67 | 66.89 | A/Beijing/32/92 (H3N2) | |||||
79 | 4.25 | H1N1 (A/Puerto Rico/8/1934) | --- | --- | 2.26 | A/PuertoRico/8/1934 (H1N1) | |
--- | --- | 1.46 | A/Vietnam/1203/2004 (H5N1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Domínguez, L.; Jasso-Miranda, C.; Sedeño-Monge, V.; Santos-López, G. Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review. Sci. Pharm. 2024, 92, 33. https://doi.org/10.3390/scipharm92020033
Márquez-Domínguez L, Jasso-Miranda C, Sedeño-Monge V, Santos-López G. Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review. Scientia Pharmaceutica. 2024; 92(2):33. https://doi.org/10.3390/scipharm92020033
Chicago/Turabian StyleMárquez-Domínguez, Luis, Carolina Jasso-Miranda, Virginia Sedeño-Monge, and Gerardo Santos-López. 2024. "Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review" Scientia Pharmaceutica 92, no. 2: 33. https://doi.org/10.3390/scipharm92020033
APA StyleMárquez-Domínguez, L., Jasso-Miranda, C., Sedeño-Monge, V., & Santos-López, G. (2024). Non-Analog Compounds to Sialic Acid as Inhibitors of Influenza Virus Neuraminidase: An Underexplored Approach for Novel Antivirals―Systematic Review. Scientia Pharmaceutica, 92(2), 33. https://doi.org/10.3390/scipharm92020033