Evidence of Hyperglycemic Levels Improving the Binding Capacity between Human Serum Albumin and the Antihypertensive Drug Hydrochlorothiazide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Time-Resolved Fluorescence Measurements
2.3. STD-NMR Measurements
2.4. Surface Plasmon Resonance (SPR) Measurements
3. Results and Discussion
3.1. Identification of the Main Fluorescence Quenching Mechanism
3.2. STD-NMR Analysis
3.3. SPR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansur, A.P.; Favarato, D. Mortality due to cardiovascular diseases in Brazil and in the metropolitan region of São Paulo: A 2011 update. Arq. Bras. Cardiol. 2012, 99, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.Y.; Duval, S.; Badesch, D.B.; Bull, T.M.; Chakinala, M.M.; de Marco, T.; Frantz, R.P.; Hemnes, A.; Mathai, S.C.; Rosenzweig, E.B.; et al. Mortality in pulmonary arterial hypertension in the modern era: Early insights from the pulmonary hypertension association registry. J. Am. Heart Assoc. 2022, 11, e024969. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, B.R.; Brant, L.C.C.; Oliveira, G.M.M.; Malachias, M.V.B.; Reis, G.M.A.; Teixeira, R.A.; Malta, D.C.; França, E.; Souza, M.F.M.; Roth, G.A.; et al. Cardiovascular disease epidemiology in Portuguese-speaking countries: Data from the global burden of disease, 1990 to 2016. Arq. Bras. Cardiol. 2018, 110, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Boateng, E.B.; Ampofo, A.G. A glimpse into the future: Modelling global prevalence of hypertension. BMC Public Health 2023, 23, 1906. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Zayeri, F.; Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 2021, 21, 401. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Lira, A.; Cláudia, M.; de Souza, M.; Mayara, N.; Burgos, P.A.; Goretti, M. Prevalência de fatores de risco para doenças cardiovasculares em diabéticas. Nutr. Clín. Diet. Hosp. 2017, 37, 75–81. [Google Scholar]
- Siqueira, A.F.A.; Almeida-Pititto, B.; Ferreira, S.R.G. Cardiovascular disease in diabetes mellitus: Classical and non-classical risk factors. Arq. Bras. Endocrinol. Metab. 2017, 51, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef]
- Chanda, R.; Fenves, A.Z. Hypertension in patients with chronic kidney disease. Curr. Hypertens. Rep. 2009, 11, 329–336. [Google Scholar] [CrossRef]
- Yeates, K.; Lohfeld, L.; Sleeth, J.; Morales, F.; Rajkotia, Y.; Ogedegbe, O. A global perspective on cardiovascular disease in vulnerable populations. Can. J. Cardiol. 2015, 31, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Krum, H.; Skiba, M.; Gilbert, R.E. Comparative metabolic effects of hydrochlorothiazide and indapamide in hypertensive diabetic patients. Diabet. Med. 2003, 20, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Bertoluci, M.C.; Pimazoni-Netto, A.; Pires, A.C.; Pesaro, A.E.; Schaan, B.D.; Caramelli, B.; Polanczyk, C.A.; Júnior, C.V.S.; Gualandro, D.M.; Malerbi, D.A.; et al. Diabetes and cardiovascular disease: From evidence to clinical practice–position statement 2014 of Brazilian Diabetes Society. Diabetol. Metab. Syndr. 2014, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Kreutz, R.; Brunstrom, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Europ. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.L.S.; Chaves, O.A.; de Lucas, N.C.; Goulart, J.S.; Garden, S.J.; Serpa, C.; Netto-Ferreira, J.C. Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin. J. Mol. Liq. 2024, 403, 124829. [Google Scholar] [CrossRef]
- Mukai, R.; Okuyama, H.; Uchimura, M.; Sakao, K.; Matsuhiro, M.; Ikeda-Imafuku, M.; Ishima, Y.; Nishikawa, M.; Ikushiro, S.; Tai, A. The binding selectivity of quercetin and its structure-related polyphenols to human serum albumin using a fluorescent dye cocktail for multiplex drug-site mapping. Bioorg. Chem. 2024, 145, 107184. [Google Scholar] [CrossRef] [PubMed]
- Sargolzaei, J.; Jalali, E.; Rajabi, P. Insights into the binding of buspirone to human serum albumin using multi-spectroscopic and molecular docking techniques. Heliyon 2024, 8, e29430. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, J.; Wang, H.; Qiao, L.; Wang, Y.; Tong, W.; Zhao, L. Deciphering the binding mechanisms of eugenol and 2-methylpyrazine with human serum albumin using technical approach. J. Mol. Liq. 2024, 405, 124981. [Google Scholar] [CrossRef]
- Chaves, O.A.; Soares, M.A.G.; Oliveira, M.C.C. Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin. Carbohydr. Res. 2021, 501, 1082742. [Google Scholar] [CrossRef]
- Costa-Tuna, A.; Chaves, O.A.; Loureiro, R.J.S.; Pinto, S.; Pina, J.; Serpa, C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int. J. Biol. Macromol. 2024, 225, 128210. [Google Scholar] [CrossRef] [PubMed]
- Jalali, E.; Sargolzaei, J.; Rajabi, P. Investigating the interaction between sertraline hydrochloride and human serum albumin using equilibrium dialysis and spectroscopic methods. Inorg. Chem. Commun. 2024, 166, 112586. [Google Scholar] [CrossRef]
- Sliwinska-Hill, U.; Krzyzak, E.; Czyznikowska, Z. The effect of simultaneous binding of doxorubicin and cyclophosphamide on the human serum albumin structure. J. Mol. Liq. 2024, 404, 125003. [Google Scholar] [CrossRef]
- Akbari, V.; Ghobadi, S. Evaluation of the effect of phenylpropanoids on the binding of heparin to human serum albumin and glycosylated human serum albumin concerning anticoagulant activity: A comparison study. Int. J. Biol. Macromol. 2024, 257, 128732. [Google Scholar] [CrossRef]
- Rodrigues, B.M.; Victória, H.F.V.; Leite, G.; Krambrock, K.; Chaves, O.A.; de Oliveira, R.Q.; de Boni, L.; Costa, L.A.S.; Iglesias, B.A. Photophysical, photobiological, and biomolecule-binding properties of new tri-cationic meso-tri(2-thienyl)corroles with Pt(II) and Pd(II) polypyridyl derivatives. J. Inorg. Biochem. 2023, 242, 112149. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Loureiro, R.J.S.; Costa-Tuna, A.; Almeida, Z.L.; Pina, J.; Brito, R.M.M.; Serpa, C. Interaction of two comercial azobenzene food dyes, amaranth and new coccine, with human serum albumin: Biophysical characterization. ACS Food Sci. Technol. 2023, 3, 955–968. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.-Z.; Liu, Q.-H.; Ding, X.; Yin, M.-M.; Hu, Y.-J. Bisphenol a modification and how its structure influences human serum albumin binding force. J. Mol. Liq. 2024, 401, 124655. [Google Scholar] [CrossRef]
- Raghav, A.; Ahmad, J.; Alam, K. Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLoS ONE 2017, 12, e0176970. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.A.G.; de Aquino, P.A.; Costa, T.; Serpa, C.; Chaves, O.A. Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide. Int. J. Biol. Macromol. 2024, 265, 131148. [Google Scholar] [CrossRef]
- Soares, M.A.G.; Chaves, O.A.; Cesarin-Sobrinho, D.; Silva, D.; Cortez, C.M. Effect of blood glucose levels on the HSA-hydrochlorothiazide interaction—A spectrofluorimetric study. Int. J. Health Sc. 2021, 1, 1–17. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Walpole, S.; Monaco, S.; Nepravishta, R.; Ângulo, J. STD NMR as a technique for ligand screening and structural studies. Methods Enzymol. 2019, 615, 423–451. [Google Scholar] [PubMed]
- Viegas, A.; Manso, J.; Nobrega, F.L.; Cabrita, E.J. Saturation-transfer difference (STD) NMR: A simple and fast method for ligand screening and characterization of protein binding. J. Chem. Ed. 2011, 88, 990–994. [Google Scholar] [CrossRef]
- Santos-de-Souza, R.; Souza-Silva, F.; de Albuquerque-Melo, B.C.; Ribeiro-Guimarães, M.L.; Côrtes, L.M.C.; Pereira, B.A.S.; Silva-Almeida, M.; Cysne-Finkelstein, L.; Junior, F.O.R.O.; Pereira, M.C.S.; et al. Insights into the tracking of the cysteine proteinase B COOH-terminal polypeptide of Leishmania (Leishmania) amazonensis by surface plasmon resonance. Parasitol. Res. 2019, 118, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Vachali, P.; Li, B.; Nelson, K.; Bernstein, P.S. Surface plasmon resonance (SPR) studies on the interactions of carotenoids and their binding proteins. Ach. Biochem. Biophys. 2012, 519, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Jarmoskaite, I.; AlSadhan, I.; Vaidyanathan, P.P.; Herschlag, D. How to measure and evaluate binding affinities. eLife 2020, 9, e57264. [Google Scholar] [CrossRef] [PubMed]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bai, G.; Cui, Y.; Yang, Y.; Ye, C.; Liu, M. A competitive low-affinity binding model for determining the mutual and specific sites of two ligands on protein. J. Pharm. Biomed. Anal. 2005, 38, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, Z.; Zhao, P.; Li, C.; Qin, L.; Zhao, T.; Zhu, X.; Feng, S. Studies on the binding of wedelolactone to human serum albumin with multi-spectroscopic analysis, molecular docking and molecular dynamic simulation. Biophys. Chem. 2024, 307, 107198. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.J.; Loura, L.M.S.; Martins, J.; Salvador, A.; Velazquez-Campoy, A. Analysis of the equilibrium distribution of ligands in heterogeneous media–Approaches and pitfalls. Int. J. Mol. Sci. 2022, 23, 9757. [Google Scholar] [CrossRef] [PubMed]
- Costa-Tuna, A.; Chaves, O.A.; Almeida, Z.L.; Cunha, R.S.; Pina, J.; Serpa, C. Profiling the interaction between human serum albumin and clinically relevant HIV reverse transcriptase inhibitors. Viruses 2024, 16, 491. [Google Scholar] [CrossRef]
- Rondeau, P.; Bourdon, E. The glycation of albumin: Structural and functional impacts. Biochimie 2011, 93, 645–658. [Google Scholar] [CrossRef]
- Arasteh, A.; Farahi, S.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.A. Glycated albumin: An overview of the In Vitro models of an In Vivo potential disease marker. J. Diabetes Metab. Disord. 2014, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules 2014, 19, 18828–18849. [Google Scholar] [CrossRef]
- Wybranowski, T.; Ziomkowska, B.; Cyrankiewicz, M.; Bosek, M.; Pyskir, J.; Napiórkoska, M.; Kruszewski, S. A study of the oxidative processes in human plasma by time-resolved fluorescence spectroscopy. Sci. Rep. 2022, 12, 9012. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, H.; Shi, X.; Luo, Z.; Lin, D.; Huang, M. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J. Biol. Chem. 2013, 288, 15980–15987. [Google Scholar] [CrossRef] [PubMed]
- Balaei, F.; Ghobadi, S. Hydrochlorothiazide binding to human serum albumin induces some compactness in the molecular structure of the protein: A multi-spectroscopic and computational study. J. Pharm. Biomed. Anal. 2019, 162, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hage, D.S.; Sengupta, A. Characterisation of the binding of digitoxin and acetyldigitoxin to human serum albumin by high-performance affinity chromatography. J. Chromatogr. B Biomed. Appl. 1999, 724, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Iglesias, B.A.; Serpa, C. Biophysical characterization of the interaction between a transport human plasma protein and the 5,10,15,20-tetra(pyridine-4-yl)porphyrin. Molecules 2022, 27, 5341. [Google Scholar] [CrossRef] [PubMed]
- Eskew, M.W.; Benight, A.S. Ligand binding constants for human serum albumin evaluated by ratiometric analysis of DSC thermograms. Anal. Biochem. 2021, 628, 114293. [Google Scholar] [CrossRef]
- Rich, R.L.; Day, Y.S.; Morton, T.A.; Myszka, D.G. High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal. Biochem. 2001, 296, 197–207. [Google Scholar] [CrossRef]
System | τ1 (ns) | %Relative | τ2 (ns) | % Relative | τaverage (ns) | χ2 |
---|---|---|---|---|---|---|
HSA | 1.76 ± 0.09 | 24.8 | 5.75 ± 0.09 | 75.2 | 4.76 | 1.158 |
HSA/HCTZ | 1.69 ± 0.09 | 25.1 | 5.66 ± 0.09 | 74.9 | 4.66 | 1.125 |
HSA/glucose (80 mg/dL) | 1.73 ± 0.10 | 23.2 | 5.65 ± 0.09 | 76.8 | 4.74 | 1.115 |
HSA/glucose (320 mg/dL) | 1.71 ± 0.09 | 23.9 | 5.73 ± 0.09 | 76.1 | 4.77 | 1.191 |
HSA/glucose/HCTZ (80 mg/dL) | 1.75 ± 0.09 | 25.5 | 5.74 ± 0.09 | 74.5 | 4.72 | 1.154 |
HSA/glucose/HCTZ (320 mg/dL) | 1.71 ± 0.10 | 22.1 | 5.59 ± 0.09 | 77.9 | 4.73 | 1.193 |
Binding Sites Biodisponibility | Inhibition of HCTZ Binding in Presence of: | Competition with HCTZ Binding | ||||
---|---|---|---|---|---|---|
HCTZ | Digitoxin | Warfarin | Digitoxin | Warfarin | Normoglycemic | Hyperglycemic |
180.0 ± 40 | 78.0 ± 4.0 | 37.0 ± 1.0 | 22.9 ± 0.6 | 62.0 ± 4.0 | 218.0 ± 6.0 | 114.0 ± 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, M.A.G.; Souza-Silva, F.; Alves, C.R.; Vazquez, L.; de Araujo, T.S.; Serpa, C.; Chaves, O.A. Evidence of Hyperglycemic Levels Improving the Binding Capacity between Human Serum Albumin and the Antihypertensive Drug Hydrochlorothiazide. Sci. Pharm. 2024, 92, 32. https://doi.org/10.3390/scipharm92020032
Soares MAG, Souza-Silva F, Alves CR, Vazquez L, de Araujo TS, Serpa C, Chaves OA. Evidence of Hyperglycemic Levels Improving the Binding Capacity between Human Serum Albumin and the Antihypertensive Drug Hydrochlorothiazide. Scientia Pharmaceutica. 2024; 92(2):32. https://doi.org/10.3390/scipharm92020032
Chicago/Turabian StyleSoares, Marilia Amável Gomes, Franklin Souza-Silva, Carlos Roberto Alves, Leonardo Vazquez, Talita Stelling de Araujo, Carlos Serpa, and Otávio Augusto Chaves. 2024. "Evidence of Hyperglycemic Levels Improving the Binding Capacity between Human Serum Albumin and the Antihypertensive Drug Hydrochlorothiazide" Scientia Pharmaceutica 92, no. 2: 32. https://doi.org/10.3390/scipharm92020032
APA StyleSoares, M. A. G., Souza-Silva, F., Alves, C. R., Vazquez, L., de Araujo, T. S., Serpa, C., & Chaves, O. A. (2024). Evidence of Hyperglycemic Levels Improving the Binding Capacity between Human Serum Albumin and the Antihypertensive Drug Hydrochlorothiazide. Scientia Pharmaceutica, 92(2), 32. https://doi.org/10.3390/scipharm92020032