The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties
Abstract
:1. Introduction
2. Ethnobotany and Ethnomedicinal Uses
3. Major Bioactive Compounds of C. inophyllum and Their Therapeutic Effects
4. Factors Affecting the Extraction Efficiency of Bioactive Compounds
5. Extraction Technique for Bioactive Compounds
5.1. Conventional Extraction Technique
5.2. Non-Conventional Extraction Technique
6. Future Prospects for Effective Extractions
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Raulerson, L.; Rinehart, A.F. Trees and Shrubs of the Mariana Islands, 2nd ed.; University of Guam Press: Mangilao, GU, USA, 2018. [Google Scholar]
- Raharivelomanana, P.; Ansel, J.L.; Lupo, E.; Mijouin, L.; Guillot, S.; Butaud, J.F.; Ho, R.; Lecellier, G.; Pichon, C. Tamanu oil and skin active properties: From traditional to modern cosmetic uses. OCL Oilseeds Fats Crops Lipids 2018, 25, D504. [Google Scholar] [CrossRef]
- Bernhoft, A. A brief review on bioactive compounds in plants. In Bioactive Compounds in Plants—Benefits and Risks for Man and Animals; The Norwegian Academy of Science and Letters: Oslo, Norway, 2010; pp. 11–17. [Google Scholar]
- Gupta, S.; Gupta, P. The Genus Calophyllum: Review of ethnomedicinal uses, phytochemistry and pharmacology. In Bioactive Natural products in Drug Discovery; Singh, J., Meshram, V., Gupta, M., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Léguillier, T.; Lecsö-Bornet, M.; Lémus, C.; Rousseau-Ralliard, D.; Lebouvier, N.; Hnawia, E.; Nour, M.; Aalbersberg, W.; Ghazi, K.; Raharivelomanana, P.; et al. The wound healing and antibacterial activity of five ethnomedical Calophyllum inophyllum oils: An alternative therapeutic strategy to treat infected wounds. PLoS ONE 2015, 10, e0138602. [Google Scholar] [CrossRef]
- Vittaya, L.; Chalad, C.; Ratsameepakai, W.; Leesakul, N. Phytochemical characterization of bioactive compounds extracted with different solvents from Calophyllum inophyllum flowers and activity against pathogenic bacteria. S. Afr. J. Bot. 2023, 154, 346–355. [Google Scholar] [CrossRef]
- Nalimanana, N.R.; Tombozara, N.; Razafindrakoto, Z.R.; Andrianjara, C.; Ramanitrahasimbola, D. Anti-inflammatory and analgesic properties, and toxicity of the seed’s ethanol extract of Calophyllum inophyllum L. from the eastern region of Madagascar. S. Afr. J. Bot. 2022, 150, 466–472. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Truong, C.T.; Nguyen, B.C.Q.; Vo, T.N.V.; Dao, T.T.; Nguyen, V.D.; Bui, C.-B. Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn. PLoS ONE 2017, 12, e0185674. [Google Scholar] [CrossRef]
- Friday, J.B.; Ogoshi, R. Farm and forestry production and marketing profile for tamanu (Calophyllum inophyllum). In Specialty Crops for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Hōlualoa, HI, USA, 2011; Available online: https://www.doc-developpement-durable.org/file/Culture/Arbres-Bois-de-Rapport-Reforestation/FICHES_ARBRES/calophyllum%20inophyllum/Tamanu_specialty_crop.pdf (accessed on 15 November 2023).
- Dweck, A.C.; Meadows, T. Tamanu (Calophyllum inophyllum)-The African, Asian, Polynesian and Pacific Panacea. Int. J. Cosmet. Sci. 2002, 24, 341–348. [Google Scholar] [CrossRef]
- Anjukam, E.; Ramesh, M.; Rajalakshmi, A.; Kavitha, K.; Prakash, M.; Suresh, G.; Puvanakrishnan, R.; Ramesh, B. Molecular characterization of potent antibacterial compound 4-(3-methylazetidin-1-yl) pentan-2-ol from Calophyllum inophyllum seed oil. Biocatal. Agric. Biotechnol. 2023, 47, 102617. [Google Scholar] [CrossRef]
- Ansel, J.L.; Lupo, E.; Mijouin, L.; Guillot, S.; Butaud, J.-F.; Ho, R.; Lecellier, G.; Raharivelomanana, P.; Pichon, C. Biological activity of Polynesian Calophyllum inophyllum oil extract on human skin cells. Planta Med. 2016, 82, 961–966. [Google Scholar] [CrossRef]
- Ku, W.J.; Lin, C.J.; Lin, P.H. UV-Protection performance of Calophyllum inophyllum seed extracts: A natural ultraviolet screening agent. Nat. Prod. Commun. 2021, 16, 1–9. [Google Scholar] [CrossRef]
- Hien, H.M.; Viet Hung, T.; Heng, P.W. A new chromanone acid derivative from the nut oil resin of Calophyllum inophyllum. J. Asian Nat. Prod. Res. 2023, 25, 1021–1028. [Google Scholar] [CrossRef]
- Mah, S.H.; Ee, G.C.; The, S.S.; Sukari, M.A. Calophyllum inophyllum and Calophyllum soulattri source of anti-proliferative xanthones and their structure-activity relationships. Nat. Prod. Res. 2015, 29, 98–101. [Google Scholar] [CrossRef]
- Perumal, S.S.; Ekambaram, S.P.; Dhanam, T. In vivo antiarthritic activity of the ethanol extracts of stem bark and seeds of Calophyllum inophyllum in Freund’s complete adjuvant induced arthritis. Pharma. Biol. 2017, 55, 1330–1336. [Google Scholar] [CrossRef]
- Ruangsuriya, J.; Sichaem, J.; Tantraworasin, A.; Saeteng, S.; Wongmaneerung, P.; Inta, A.; Davies, N.M.; Inthanon, K. Phytochemical profiles and anticancer effects of Calophyllum inophyllum L. extract relating to reactive oxygen species modulation on patient-derived cells from breast and lung cancers. Scientifica 2023, 20, 6613670. [Google Scholar] [CrossRef]
- Haerani, S.N.; Raksat, A.; Pudhom, K. Two new xanthones from the root of Thai Calophyllum inophyllum and their toxicity against colon and liver cancer cells. J. Nat. Med. 2021, 75, 670–674. [Google Scholar] [CrossRef]
- Yimdjo, M.C.; Azebaze, A.G.; Nkengfack, A.E.; Meyer, A.M.; Bodo, B.; Fomum, Z.T. Antimicrobial and cytotoxic agents from Calophyllum inophyllum. Phytochem. 2004, 65, 2789–2795. [Google Scholar] [CrossRef]
- Jaikumar, K.; Sheik, N.M.M.; Anand, D.; Saravanan, P. Anticancer activity of Calophyllum inophyllum L., ethanolic leaf extract in mcf human breast cell lines. IJPSR Int. J. Pharm. Sci. Res. 2016, 7, 3330–3335. [Google Scholar]
- Navyasri, S.; Kalyan, B.P.; Kadari, S.; Keerthana, N. Anti-inflammatory and anti-arthritis activity of active constituents present in Calophyllum inophyllum leaves extract. JIDPTS J. Innov. Dev. Pharm. Tech. Sci. 2021, 4, 5–17. [Google Scholar]
- Laure, F.; Raharivelomanana, P.; Butaud, J.F.; Bianchini, J.P.; Gaydou, E.M. Screening of anti-HIV-1 inophyllums by HPLC–DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands. Anal. Chim. Acta 2008, 624, 147–153. [Google Scholar] [CrossRef]
- Hapsari, S.; Yohed, I.; Kristianita, R.A.; Jadid, N.; Aparamarta, H.W.; Gunawan, S. Phenolic and flavonoid compounds extraction from Calophyllum inophyllum leaves. Arab. J. Chem. 2022, 15, 103666. [Google Scholar] [CrossRef]
- Susanto, D.F.; Aparamarta, H.W.; Widjaja, A.; Jadid, N.; Gunawan, S. Isolation and identification of cholestane and dihydropyrene from Calophyllum inophyllum. Heliyon 2019, 5, e02893. [Google Scholar] [CrossRef]
- Kavilasha, V.; Sasidharan, S. Antiaging activity of polyphenol rich Calophyllum inophyllum L. fruit extract in Saccharomyces cerevisiae BY611 yeast cells. Food Biosci. 2021, 42, 101208. [Google Scholar] [CrossRef]
- Ardhyni, D.H.; Aparamarta, H.W.; Widjaja, A.; Ibrahim, R.; Gunawan, S. The extraction and purification of squalene from Nyamplung (Calophyllum Inophyllum L.) leaves. IOP Conf. Ser. Earth Environ. Sci. 2022, 963, 012042. [Google Scholar] [CrossRef]
- Zakaria, M.B.; Ilham, Z.; Muhamad, N.A. Anti-inflammatory activity of Calophyllum inophyllum fruits extracts. Procedia Chem. 2014, 13, 218–220. [Google Scholar] [CrossRef]
- Shen, Y.C.; Hung, M.C.; Wang, L.T.; Chen, C.Y. Inocalophyllins A, B and their methyl esters from the seeds of Calophyllum inophyllum. Chem. Pharm. Bull. 2003, 51, 802–806. [Google Scholar] [CrossRef]
- Ha, M.H.; Nguyen, V.T.; Nguyen, K.Q.C.; Cheah, E.L.C.; Heng, P.W.S. Antimicrobial activity of Calophyllum inophyllum crude extracts obtained by pressurized liquid extraction. Asian J. Trad. Med. 2009, 4, 141–146. [Google Scholar]
- Ee, G.C.L.; Mah, S.H.; Rahmani, M.; Taufiq-Yap, Y.H.; Teh, S.S.; Lim, Y.M. A new furanoxanthone from the stem bark of Calophyllum inophyllum. J. Asian Nat. Prod. Res. 2001, 13, 956–960. [Google Scholar] [CrossRef]
- Cuesta-Rubio, O.; Oubada, A.; Bello, A.; Maes, L.; Cos, P.; Monzote, L. Antimicrobial assessment of resins from Calophyllum antillanum and Calophyllum inophyllum. Phytother. Res. 2015, 29, 1991–1994. [Google Scholar] [CrossRef]
- Van Thanh, N.; Jang, H.J.; Vinh, L.B.; Linh, K.T.P.; Huong, P.T.T.; Cuong, N.X.; Nam, N.H.; Van Minh, C.; Kim, Y.H.; Yang, S.Y. Chemical constituents from Vietnamese mangrove Calophyllum inophyllum and their anti-inflammatory effects. Bioorg. Chem. 2019, 88, 102921. [Google Scholar] [CrossRef] [PubMed]
- Kadir, R.; Awang, K.; Khamaruddin, Z.; Soit, Z. Chemical compositions and termiticidal activities of the heartwood from Calophyllum inophyllum L. An. Acad. Bras. Cienc. 2015, 87, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Ee, G.C.L.; Daud, S.; Karunakaran, T. Xanthones from Calophyllum inophyllum. Pertanika J. Trop. Agric. Sci. 2017, 40. [Google Scholar]
- Ojah, E.O.; Moronkola, D.O.; Akintunde, A.A.M. α-amylase and α-glucosidase antidiabetic potential of ten essential oils from Calophyllum inophyllum Linn. Iberoam. J. Med. 2020, 2, 253–260. [Google Scholar] [CrossRef]
- Shanmugapriya; Chen, Y.; Kanwar, J.R.; Sasidharan, S. Anticancer activity and molecular mechanism of polyphenol rich Calophyllum inophyllum fruit extract in MCF-7 breast cancer cells. Nutr Cancer. 2017, 69, 1308–1324. [Google Scholar] [CrossRef] [PubMed]
- Zailan, A.A.D.; Thiruventhan, K.; Mohamad Hafizi, A.B.; Vivien, J.; Mian, Y. The Malaysian genus Calophyllum (Calophyllaceae): A review on its phytochemistry and pharmacological activities. Nat. Prod. Res. 2022, 36, 4569–4579. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, N.; Gurunathan, B. Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Ind. Crops Prod. 2021, 162, 113273. [Google Scholar] [CrossRef]
- Susanto, D.F.; Hapsari, S.; Trilutfiani, Z.; Borhet, A.; Aparamarta, H.W.; Widjaja, A.; Gunawan, S. Effect of solvent polarity levels on separation of xanthone and coumarin from Calophyllum inophyllum leaves extract. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012071. [Google Scholar] [CrossRef]
- Georgieva, P.I.; Vasileva, I.N.; Parzhanova, A.B.; Chalova, V.I.; Ivanova, S.D.; Slavov, A.M. Factors affecting the amount of biologically active substances in extracts of Bulgarian medical plants typical of Western Rhodopes. Bulg. Chem. Commun. 2022, 54, 74–80. [Google Scholar]
- Basilio-Cortes, U.A.; Tzintzun-Camacho, O.; Grimaldo-Juárez, O.; Durán-Hernández, D.; Suarez-Vargas, A.; Durán, C.C.; Salazar-Navarro, A.; González-Anguiano, L.A.; González-Mendoza, D. Impact of temperature on the bioactive compound content of aqueous extracts of Humulus lupulus L. with different alpha and beta acid content: A new potential antifungal alternative. Microbiol. Res. 2023, 14, 205–217. [Google Scholar] [CrossRef]
- Nour, A.H.; Oluwaseun, A.R.; Nour, A.H.; Omer, M.S.; Ahmad, N. Microwave-assisted extraction of bioactive compounds. In Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–31. [Google Scholar]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Yolci Omeroglu, P.; Acoglu, B.; Özdal, T.; Tamer, C.E.; Çopur, Ö.U. Extraction techniques for plant-based bio-active compounds. In Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices; Springer: Singapore, 2019; pp. 465–492. [Google Scholar]
- Al Ubeed, H.M.S.; Bhuyan, D.J.; Alsherbiny, M.A.; Basu, A.; Vuong, Q.V. A comprehensive review on the techniques for extraction of bioactive compounds from medicinal cannabis. Molecules 2022, 27, 604. [Google Scholar] [CrossRef]
- Mai, H.C.; Le, T.T.T.; Bui, T.Y.N. Maceration extraction of oil from tamanu (Calophyllum inophyllum L.) seeds: Effect of process parameters and oil characterisations. Addiction 2020, 10, 31–39. [Google Scholar]
- Abbas, J.; Minarti, M.; Artanti, N. Antioxidant and antidiabetes activity from the fruit shell of Calophyllum inophyllum. J. Kim. Ter. Indones. 2021, 23, 73–78. [Google Scholar] [CrossRef]
- Prasad, J.; Shrivastava, A.; Khanna, A.K.; Bhatia, G.; Awasthi, S.K.; Narender, T. Antidyslipidemic and antioxidant activity of the constituents isolated from the leaves of Calophyllum inophyllum. Phytomedicine 2012, 19, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.H.; Tran, T.T.M. Chemical composition analysis and antibacterial-antiinflammatoryactivity tests of tamanu seed oil extracted by supercritcial fluid technology. VNUHCM J. Sci. Technol. Dev. 2016, 19, 146–154. [Google Scholar] [CrossRef]
- Thy, L.T.M.; Le Khoi, T.; Do Dat, T.; My, P.L.T.; Thanh, V.H.; Viet, N.D.; Duy, H.K.; Nam, H.M.; Phong, M.T.; Hieu, N.H. Extraction of tamanu oil from Calophyllum inophyllum L. seeds by ultrasound-assisted method and testing wound care treatment. J. Sci. Technol. Food 2020, 20, 54–66. [Google Scholar]
- Bhuiya, M.M.K.; Rasul, M.; Khan, M.; Ashwath, N.; Mofijur, M. Comparison of oil extraction between screw press and solvent (n-hexane) extraction technique from beauty leaf (Calophyllum inophyllum L.) feedstock. Ind. Crops Prod. 2020, 144, 112024. [Google Scholar] [CrossRef]
- Jain, M.; Chandrakant, U.; Orsat, V.; Raghavan, V. A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Ind. Crops Prod. 2018, 114, 28–44. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Brown, J.R.; Senadeera, W.; Ashwath, N.; Laing, C.; Leski-Taylor, J.; Rasul, M.G. Optimisation of bio-oil extraction process from beauty leaf (Calophyllum inophyllum) oil seed as a second-generation biodiesel source. Procedia Eng. 2013, 56, 619–624. [Google Scholar] [CrossRef]
- Manto, A.A.; Ramirez, I.F.T.; Arnado, L.M.; Damiotan, C.T.; Sumalpong, E.T.; Ido, A.L.; Arazo, R.O. Oil extraction from Calophyllum inophyllum L. seeds through ultrasonication with n-hexane and petroleum ether as solvents. Biomass Convers. 2022, 1–12. [Google Scholar] [CrossRef]
- Muchammad, R.S.C.; Mahfud, M.; Qadariyah, L. Study of extraction Calophyllum inophyllum L using microwave hydro diffusion gravity and chemical extraction method. IPTEK J. Technol. Sci. 2020, 31, 33–43. [Google Scholar] [CrossRef]
- Fuad, F.M.; Don, M.M. Ultrasonic-assisted extraction of oil from Calophyllum inophyllum seeds: Optimization of process parameters. J. Teknol. 2016, 78, 103. [Google Scholar]
- Mia, M.A.R.; Ahmed, Q.U.; Ferdosh, S.; Helaluddin, A.B.M.; Azmi, S.N.H.; Al-Otaibi, F.A.; Parveen, H.; Mukhtar, S.; Ahmed, M.Z.; Sarker, M.Z.I. Anti-obesity and antihyperlipidemic effects of Phaleria macrocarpa fruit liquid CO2 extract: IC, in silico and in vivo approaches. J. King Saud Univ. Sci. 2023, 35, 102865. [Google Scholar]
- Ferdosh, S.; Yunus, K.; Rashid, M.A.; Sarker, Z.I. Extraction and characterization of fatty acids from the leaves and stems of Clinacanthus nutans using supercritical carbon dioxide and Soxhlet method. Nat. Prod. J. 2022, 12, 49–55. [Google Scholar] [CrossRef]
- Fadhlina, A.; Islam Sarker, M.Z.; Ahmed, Q.U.; Jaffri, J.M.; Sheikh, H.I.; Ferdosh, S. Enrichment of antibacterial compound from the stem bark of Stereospermum fimbriatum using supercritical carbon dioxide extraction. Sep. Sci. Technol. 2020, 55, 1656–1666. [Google Scholar] [CrossRef]
- Pereira, G.S.L.; da Silva Magalhães, R.; Fraga, S.; de Souza, P.T.; de Lima, J.P.; de Almeida Meirelles, A.J.; Sampaio, K.A. Extraction of bioactive compounds from Butia capitata fruits using supercritical carbon dioxide and pressurized fluids. J. Supercrit. Fluids 2023, 199, 105959. [Google Scholar] [CrossRef]
Name of Compound | Pharmacological Property | Plant Part Used | Reference |
---|---|---|---|
Palmitic acid, stearic acid, oleic acid and linoleic acid | Wound healing, antimicrobial, and cytotoxic | Seed oil | [6] |
Phytol, eugenol, caryophyllene oxide, α-copaene, α-murolene, β-caryophyllene, β-amysin, farnesol, palmitic acid, and cadinene derivatives. | Anti-bacterial | Flowers | [7] |
Flavonoids, leucoantocyanins, anthocyanins, phenolic compounds, and tannins | Anti-inflammatory and analgesic | Seed | [8] |
Calophyllolide | Anti-inflammatory and wound healing | Seeds | [9] |
4- (3-methylazetidin-1-yl) pentan-2-ol | Anti-bacterial | Seeds | [12] |
Neoflavonoid | Cell proliferation, glycosaminoglycan and collagen production, and wound healing | Seeds | [13] |
Palmitic acid, stearic acid, oleic acid, eicosanoic acid, squalene and linoleic acid. | UV protection | Seeds | [14] |
Chromanone acid derivative (inocalophylline C), and calophyllolide | - | Seed (resin) | [15] |
Xanthones (inophinnin, inophinone, pyranojacareubin, rheediaxanthone A, macluraxanthone and 4-hydroxyxanthone). | Anti-proliferative | Stem bark | [16] |
Tannins, saponins, glycosides, flavonoids, steroids, and terpenoids | Antiarthritic | Stem bark and seeds | [17] |
Antiarol, syringol, 5-hydroxymethylfurfural, pyrocatechol, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, and 2-methoxyhydroquinone | Anticancer | Branches | [18] |
1,3,6,7-tetrahydroxy-5-methoxy-4-(1′,1′-dimethyl-2′-propenyl)-8-(3″,3″-dimethyl-2″-propenyl)-xanthone, (2′S)-7-hydroxy caloxanthone B, caloxanthone B, 7-O-demethyl-mangostanin, caloxanthone A, 7-prenyljacaerubin, pyranojacareubin, daphnifolin, tovopyrifolin C, 1,3,5-trihydroxyxanthone, 2-hydroxyxanthone, 4-hydroxy-xanthone, caloxanthone C, and macluraxanthone | Cytotoxic | Roots | [19] |
Inoxanthone, caloxanthones A, and B, macluraxanthone, 1,5-dihydroxyxanthone, calophynic acid, brasiliensic acid, inophylloidic acid, friedelan-3-one, calaustralin, calophyllolide, inophyllums C, and E | Antimicrobial and cytotoxic | Root bark and nut | [20] |
n-Heptane, 1,1-bi(4,4-dimethylhexan-2,6-dione-1-yl), phytol, 2H-Benzo(cd)pyrene-2,6(1, H)-dione, 3,5,7,10-tetrahydroxy-1, caryophyllene, hexadecanoic acid | Anticancer | Leaves | [21] |
Flavonoids, tannins, and phenolic compounds, | Anti-inflammatory and anti-arthritis | Leaves | [22] |
Pyranocoumarins, calophyllolide, inophyllums B, C, G1, G2 and P | anti-HIV-1 | Leaves | [23] |
Total phenolic, total flavonoids, bis (2-ethylhexyl) phthalate. | Anti-oxidant | Leaves | [24] |
cholestane, and dihydropyrene | - | Leaves | [25] |
Polyphenol | Antiaging | Young fruits | [26] |
Squalene, coumarin, friedelin, xanthone | - | Leaves | [27] |
Inophyllum A, inophyllum C, inophyllum E, calophylloide, calophynic acid, 11,12-anhydroinophyllum A, 1,7-dihydroxy-6-methoxyxanthone, potocatechuic acid, gallic acid, n-nonacosane, β-sitosterol and sitosterol-3-O-β-D-glucopyranoside | Anti-inflammatory | Fruits | [28] |
Inocalophyllins A, B, and their methyl esters, calophyllolide | - | Seeds | [29] |
Phenolic compounds | Antimicrobial | Fruit peel | [30] |
Inophinnin, inophyllin A, macluraxanthone, pyranojacareubin, 4-hydroxyxanthone, friedelin, stigmasterol, and betulinic acid | Anti-inflammatory | Stem bark | [31] |
Apetalic acid, isoapetalic acid, calolongic acid, pinetoric acid I, pinetoric acid II, 2,3-cis calolongic acid, pinetoric acid III, and isopinetoric acid | Antimicrobial and cytotoxic | Resins | [32] |
Methyl shikimate, (3S,5R,6R,7E,9R)-3,5,6-trihydroxy-β-ionyl-3-O-β-D-glucopyranoside, benzyl-O-α-L-rhanmopyranosyl (1 → 6)-β-D-glucopyranoside, hexyl rutinoside, canophyllol, kaempferol-3-O-α-L-rhamnoside, 27-[(Z)-p-coumaroyloxy] friedelin-28-carboxylic acid, (22E,24R)-24-methyl-5α-cholesta-7,22-diene-3β,5,6β-triol, amentoflavone, and 3-oxo-friedelan-28-oic acid | Anti-inflammatory | Leaves | [33] |
Isobornyl isobutanoate, indipone, carvacrol, larixol, rosifoliol and thujaplicinol | Termiticidal | Heartwood | [34] |
Caloxanthone A, caloxanthone B, caloxanthone C, macluraxanthone, and pyranojacareubin | Anti-inflammatory, antimicrobial and cytotoxic | Stem bark | [35] |
Essential oils | Antidiabetic | All parts | [36] |
Phenolic compounds | Anticancer | Fruits | [37] |
Extraction Technique | Extraction Conditions | Solvent Used | Target Compound | Reference |
---|---|---|---|---|
Conventional | ||||
Maceration | Sample-to-solvent ratio 1:1; Maceration for five days | Hexane, ethyl acetate, and methanol | Bioactive compounds of flower | [7] |
Maceration and percolation | Time = 48 h; Temperature = 30 °C; Solid: solvent = 1: 10 (w/v); Solvent = 80% methanol | Acetone, methanol, ethanol, and n-hexane | Phenolic and flavonoid compounds from leaves | [24] |
Maceration | Sample-to-solvent ratio 1:3; Soaked for 72 h | Methanol | Cholestane and dihydropyrene from leaves | [25] |
Hydro-distillation | Samples air-dried, pulverized and hydro-distilled for 3 h in a Clevenger-type apparatus | Water | Essential oils from different parts of plants | [36] |
Maceration | Moisture 4%, material size 2 mm, submerged in solvent with temperature 50 °C for 4 h under either no stirring or stirring | Hexane, acetone and mixture of hexane, and acetone (3:2, v/v). | Seed oil | [47] |
Maceration | Sample-to-solvent ratio; 0.5 kg:3 L; extracted for 72 h | n-Hexane, ethyl acetate, and methanol | Bioactive compounds of fresh fruit shells | [48] |
Soxhlet | 500 g of sample packed separately in Soxhlet extractor and extracted | Petroleum ether, ethanol, and aqueous | Bioactive compounds of leaves | [22] |
Percolation | Sample-to-solvent ratio 1:2.5; Placed in glass percolator at room temperature for 24 h | Ethanol (95%) | Bioactive compounds of leaves | [49] |
Non-conventional | ||||
Supercritical fluid extraction | Particle size 1–2 mm, pressure 280 bar, temperature 40 °C, flow rate 18 g/min and extraction time 180 min | Carbon dioxide | Seed oil | [50] |
Pressurized liquid extraction | Pressure 1500 psi, temperature 120 °C, and time 15 min | Methanol and n-hexane | Phenolic compounds of fruit peel | [30] |
Ultrasound-assistedmethod | Time, temperature, and solvent-to-material ratio ranges of 15–25 min, 35–45 °C, and 14:1–26:1 mL/g, respectively | n-hexane, ethanol, petroleum ether, and ethyl acetate | Seed oil | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdosh, S. The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties. Sci. Pharm. 2024, 92, 6. https://doi.org/10.3390/scipharm92010006
Ferdosh S. The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties. Scientia Pharmaceutica. 2024; 92(1):6. https://doi.org/10.3390/scipharm92010006
Chicago/Turabian StyleFerdosh, Sahena. 2024. "The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties" Scientia Pharmaceutica 92, no. 1: 6. https://doi.org/10.3390/scipharm92010006
APA StyleFerdosh, S. (2024). The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties. Scientia Pharmaceutica, 92(1), 6. https://doi.org/10.3390/scipharm92010006