siRNA Targeting PDE5A Partially Restores Vascular Damage Due to Type 1 Diabetes in a Streptozotocin-Induced Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Model of Type 1 Diabetes Mellitus
2.3. Measurement of Glucose, Heart Rate, Systolic and Diastolic Blood Pressure
2.4. Dose–Response Curves to Acetylcholine
2.5. Evaluation of the PDE5A Expression
2.6. PDE5A siRNA Design and Synthesis
2.7. Functional Evaluation of the Effect of siRNA Directed to PDE5A
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2004, 27, s5–s10. [Google Scholar] [CrossRef]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and Incidence of Type 1 Diabetes in the World: A Systematic Review and Meta-Analysis. Health Promote Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Gregory, G.A.; Robinson, T.I.G.; Linklater, S.E.; Wang, F.; Colagiuri, S.; de Beaufort, C.; Donaghue, K.C.; Magliano, D.J.; Maniam, J.; Orchard, T.J.; et al. Global Incidence, Prevalence, and Mortality of Type 1 Diabetes in 2021 with Projection to 2040: A Modelling Study. Lancet Diabetes Endocrinol. 2022, 10, 741–760. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Z.; Zhou, J. Comprehensive Elaboration of Glycemic Variability in Diabetic Macrovascular and Microvascular Complications. Cardiovasc. Diabetol. 2021, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hadi, H.A.R.; Suwaidi, J.A. Endothelial Dysfunction in Diabetes Mellitus. Vasc. Health Risk Manag. 2007, 3, 853–876. [Google Scholar]
- Ding, H.; Triggle, C.R. Endothelial Dysfunction in Diabetes: Multiple Targets for Treatment. Pflugers Arch. 2010, 459, 977–994. [Google Scholar] [CrossRef]
- Takeda, Y.; Matoba, K.; Sekiguchi, K.; Nagai, Y.; Yokota, T.; Utsunomiya, K.; Nishimura, R. Endothelial Dysfunction in Diabetes. Biomedicines 2020, 8, 182. [Google Scholar] [CrossRef]
- Lespagnol, E.; Dauchet, L.; Pawlak-Chaouch, M.; Balestra, C.; Berthoin, S.; Feelisch, M.; Roustit, M.; Boissière, J.; Fontaine, P.; Heyman, E. Early Endothelial Dysfunction in Type 1 Diabetes Is Accompanied by an Impairment of Vascular Smooth Muscle Function: A Meta-Analysis. Front. Endocrinol. 2020, 11, 203. [Google Scholar] [CrossRef]
- Sales-Peres, S.H.D.C.; Guedes, M.D.F.S.; Sá, L.M.; Negrato, C.A.; Lauris, J.R.P. Estilo de Vida Em Pacientes Portadores de Diabetes Mellitus Tipo 1: Uma Revisão Sistemática. Cien. Saude Colet. 2016, 21, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Bjelakovic, G.; Nikolova, D.; Gluud, C. Antioxidant Supplements and Mortality. Curr. Opin. Clin. Nutr. Metab. Care 2013, 17, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention. JAMA 2007, 297, 842. [Google Scholar] [CrossRef]
- Balbi, M.E.; Tonin, F.S.; Mendes, A.M.; Borba, H.H.; Wiens, A.; Fernandez-Llimos, F.; Pontarolo, R. Antioxidant Effects of Vitamins in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetol. Metab. Syndr. 2018, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Vendrame, S.; Kristo, A.S.; Schuschke, D.A.; Klimis-Zacas, D. Wild Blueberry Consumption Affects Aortic Vascular Function in the Obese Zucker Rat. Appl. Physiol. Nutr. Metab. 2014, 39, 255–261. [Google Scholar] [CrossRef]
- Vendrame, S.; Daugherty, A.; Kristo, A.S.; Riso, P.; Klimis-Zacas, D. Wild Blueberry (Vaccinium Angustifolium) Consumption Improves Inflammatory Status in the Obese Zucker Rat Model of the Metabolic Syndrome. J. Nutr. Biochem. 2013, 24, 1508–1512. [Google Scholar] [CrossRef]
- Wang, L.; Chopp, M.; Szalad, A.; Liu, Z.; Bolz, M.; Alvarez, F.M.; Lu, M.; Zhang, L.; Cui, Y.; Zhang, R.L.; et al. Phosphodiesterase-5 Is a Therapeutic Target for Peripheral Neuropathy in Diabetic Mice. Neuroscience 2011, 193, 399–410. [Google Scholar] [CrossRef]
- Desouza, C.; Parulkar, A.; Lumpkin, D.; Akers, D.; Fonseca, V.A. Acute and Prolonged Effects of Sildenafil on Brachial Artery Flow-Mediated Dilatation in Type 2 Diabetes. Diabetes Care 2002, 25, 1336–1339. [Google Scholar] [CrossRef]
- Schäfer, A.; Fraccarollo, D.; Pförtsch, S.; Flierl, U.; Vogt, C.; Pfrang, J.; Kobsar, A.; Renné, T.; Eigenthaler, M.; Ertl, G.; et al. Improvement of Vascular Function by Acute and Chronic Treatment with the PDE-5 Inhibitor Sildenafil in Experimental Diabetes Mellitus. Br. J. Pharmacol. 2008, 153, 886–893. [Google Scholar] [CrossRef]
- Andersson, K.-E. PDE5 Inhibitors—Pharmacology and Clinical Applications 20 Years after Sildenafil Discovery. Br. J. Pharmacol. 2018, 175, 2554–2565. [Google Scholar] [CrossRef]
- Kass, D.; Takimoto, E.; Nagayama, T.; Champion, H. Phosphodiesterase Regulation of Nitric Oxide Signaling. Cardiovasc. Res. 2007, 75, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Kass, D.A.; Champion, H.C.; Beavo, J.A. Phosphodiesterase Type 5. Circ. Res. 2007, 101, 1084–1095. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-S.; Lin, G.; Xin, Z.-C.; Lue, T. Expression, Distribution and Regulation of Phosphodiesterase 5. Curr. Pharm. Des. 2006, 12, 3439–3457. [Google Scholar] [CrossRef] [PubMed]
- Kotera, J.; Fujishige, K.; Imai, Y.; Kawai, E.; Michibata, H.; Akatsuka, H.; Yanaka, N.; Omori, K. Genomic Origin and Transcriptional Regulation of Two Variants of CGMP-Binding CGMP-Specific Phosphodiesterases. Eur. J. Biochem. 1999, 262, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-S. Tissue Expression, Distribution, and Regulation of PDE5. Int. J. Impot. Res. 2004, 16, S8–S10. [Google Scholar] [CrossRef]
- Ahmed, W.S.; Geethakumari, A.M.; Biswas, K.H. Phosphodiesterase 5 (PDE5): Structure-Function Regulation and Therapeutic Applications of Inhibitors. Biomed. Pharmacother. 2021, 134, 111128. [Google Scholar] [CrossRef]
- Bobin, P.; Belacel-Ouari, M.; Bedioune, I.; Zhang, L.; Leroy, J.; Leblais, V.; Fischmeister, R.; Vandecasteele, G. Cyclic Nucleotide Phosphodiesterases in Heart and Vessels: A Therapeutic Perspective. Arch. Cardiovasc. Dis. 2016, 109, 431–443. [Google Scholar] [CrossRef]
- Wang, L.; Chopp, M.; Zhang, Z. PDE5 Inhibitors Promote Recovery of Peripheral Neuropathy in Diabetic Mice. Neural Regen. Res. 2017, 12, 218. [Google Scholar] [CrossRef]
- Smith, B.P.; Babos, M. Sildenafil; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ballard, S.A.; Gingell, C.J.; Tang, K.; Turner, L.A.; Price, M.E.; Naylor, A.M. Effects of Sildenafil on the Relaxation of Human Corpus Cavernosum Tissue in Vitro and on the Activities of Cyclic Nucleotide Phosphodiesterase Isozymes. J. Urol. 1998, 159, 2164–2171. [Google Scholar] [CrossRef]
- Bischoff, E. Potency, Selectivity, and Consequences of Nonselectivity of PDE Inhibition. Int. J. Impot. Res. 2004, 16, S11–S14. [Google Scholar] [CrossRef]
- Saw, P.E.; Song, E.-W. SiRNA Therapeutics: A Clinical Reality. Sci. China Life Sci. 2020, 63, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Siegwart, D.J.; Anderson, D.G. Strategies, Design, and Chemistry in SiRNA Delivery Systems. Adv. Drug Deliv. Rev. 2019, 144, 133–147. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Fire, A. RNA-Triggered Gene Silencing. Trends Genet. 1999, 15, 358–363. [Google Scholar] [CrossRef]
- Chow, S.-C.; Shao, J.; Wang, H.; Lokhnygina, Y. Sample Size Calculations in Clinical Research, 3rd ed.; Chow, S.-C., Shao, J., Wang, H., Lokhnygina, Y., Eds.; Series: Chapman & Hall/CRC Biostatistics, Series; “A CRC Title, Part of the Taylor & Francis Imprint, a Member of the Taylor & Francis Group, the Academic Division of T&F Informa plc.”; Chapman and Hall/CRC: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781315183084. [Google Scholar]
- Soliman, A.M. Potential Impact of Paracentrotus Lividus Extract on Diabetic Rat Models Induced by High Fat Diet/Streptozotocin. J. Basic Appl. Zool. 2016, 77, 8–20. [Google Scholar] [CrossRef]
- Buñag, R.D. Validation in Awake Rats of a Tail-Cuff Method for Measuring Systolic Pressure. J. Appl. Physiol. 1973, 34, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Bustin, S. Quantification of MRNA Using Real-Time Reverse Transcription PCR (RT-PCR): Trends and Problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wu, W. A Novel Approach for Evaluating the Efficiency of SiRNAs on Protein Levels in Cultured Cells. Nucleic Acids Res. 2004, 32, e17. [Google Scholar] [CrossRef]
- SiRNA WizardTM Online Tool. Available online: https://www.invivogen.com/sirna-wizard (accessed on 14 October 2019).
- Multiple Sequence Alignment. Clustal Omega. Available online: https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 5 November 2019).
- Wang-Fischer, Y.; Garyantes, T. Improving the Reliability and Utility of Streptozotocin-Induced Rat Diabetic Model. J. Diabetes Res. 2018, 2018, 8054073. [Google Scholar] [CrossRef]
- Arison, R.N.; Ciaccio, E.I.; Glitzer, M.S.; Cassaro, J.A.; Pruss, M.P. Light and Electron Microscopy of Lesions in Rats Rendered Diabetic with Streptozotocin. Diabetes 1967, 16, 51–56. [Google Scholar] [CrossRef]
- Goyal, S.N.; Reddy, N.M.; Patil, K.R.; Nakhate, K.T.; Ojha, S.; Patil, C.R.; Agrawal, Y.O. Challenges and Issues with Streptozotocin-Induced Diabetes—A Clinically Relevant Animal Model to Understand the Diabetes Pathogenesis and Evaluate Therapeutics. Chem. Biol. Interact. 2016, 244, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, J.W.; Margison, G.P.; Mynett, K.J.; Yates, A.P.; Cameron, D.P.; Elder, R.H. Increased Susceptibility to Streptozotocin-Induced β-Cell Apoptosis and Delayed Autoimmune Diabetes in Alkylpurine- DNA-N-Glycosylase-Deficient Mice. Mol. Cell. Biol. 2001, 21, 5605–5613. [Google Scholar] [CrossRef]
- Kelleher, A.R.; Fairchild, T.J.; Keslacy, S. STZ-Induced Skeletal Muscle Atrophy Is Associated with Increased P65 Content and Downregulation of Insulin Pathway without NF-ΚB Canonical Cascade Activation. Acta Diabetol. 2010, 47, 315–323. [Google Scholar] [CrossRef]
- Smith, O.L.K.; Wong, C.Y.; Gelfand, R.A. Skeletal Muscle Proteolysis in Rats with Acute Streptozocin-Induced Diabetes. Diabetes 1989, 38, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernández, A.; Sánchez-Muñoz, F.; Rodriguez, J.; Calderón-Zamora, L.; Romero-Nava, R.; Huang, F.; Hong, E.; Villafaña, S. Expression of Orphan Receptors GPR22 and GPR162 in Streptozotocin-Induced Diabetic Rats. J. Recept. Signal Transduct. 2015, 35, 46–53. [Google Scholar] [CrossRef]
- Cabrera-Becerra, S.E.; Vera-Juárez, G.; García-Rubio, V.G.; Ocampo-Ortega, S.A.; Blancas-Napoles, C.M.; Aguilera-Méndez, A.; Romero-Nava, R.; Huang, F.; Hong, E.; Villafaña, S. SiRNA Knockdown of Angiopoietin 2 Significantly Reduces Neovascularization in Diabetic Rats. J. Drug Target. 2022, 30, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, M.N.; Brady, S.T.; Chowdhury, S.A.; Piano, M.R. The Co-Occurrence of Myocardial Dysfunction and Peripheral Insensate Neuropathy in a Streptozotocin-Induced Rat Model of Diabetes. Cardiovasc. Diabetol. 2014, 13, 11. [Google Scholar] [CrossRef]
- Shah, A.S.; El ghormli, L.; Vajravelu, M.E.; Bacha, F.; Farrell, R.M.; Gidding, S.S.; Levitt Katz, L.E.; Tryggestad, J.B.; White, N.H.; Urbina, E.M. Heart Rate Variability and Cardiac Autonomic Dysfunction: Prevalence, Risk Factors, and Relationship to Arterial Stiffness in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study. Diabetes Care 2019, 42, 2143–2150. [Google Scholar] [CrossRef]
- Steffes, M.W.; Brown, D.M.; Michael Mauer, S. Diabetic Glomerulopathy Following Unilateral Nephrectomy in the Rat. Diabetes 1978, 27, 35–41. [Google Scholar] [CrossRef]
- Factor, S.M.; Bhan, R.; Minase, T.; Wolinsky, H.; Sonnenblick, E.H. Hypertensive-Diabetic Cardiomyopathy in the Rat: An Experimental Model of Human Disease. Am. J. Pathol. 1981, 102, 219–228. [Google Scholar] [PubMed]
- Kawashima, H.; Igarashi, T.; Nakajima, Y.; Akiyama, Y.; Usuki, K.; Ohtake, S. Chronic Hypertension Induced by Streptozotocin in Rats. Naunyn Schmiedebergs Arch. Pharmacol. 1978, 305, 123–126. [Google Scholar] [CrossRef]
- Somani, P.; Singh, H.P.; Saini, R.K.; Rabinovitch, A. Streptozotocin-Induced Diabetes in the Spontaneously Hypertensive Rat. Metabolism 1979, 28, 1075–1077. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.M.; Kemp-Harper, B.K.; Parkington, H.C.; Head, G.A.; Evans, R.G. Endothelial Dysfunction and Arterial Pressure Regulation during Early Diabetes in Mice: Roles for Nitric Oxide and Endothelium-Derived Hyperpolarizing Factor. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 293, R707–R713. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, P.; Schulz, E.; Oelze, M.; Müller, J.; Schuhmacher, S.; Alhamdani, M.S.S.; Debrezion, J.; Hortmann, M.; Reifenberg, K.; Fleming, I.; et al. AT1-Receptor Blockade by Telmisartan Upregulates GTP-Cyclohydrolase I and Protects ENOS in Diabetic Rats. Free. Radic. Biol. Med. 2008, 45, 619–626. [Google Scholar] [CrossRef]
- Ruiz-Hernández, A.; Romero-Nava, R.; Huang, F.; Hong, E.; Villafaña, S. Altered Function and Expression of the Orphan GPR135 at the Cardiovascular Level in Diabetic Wistar Rats. J. Recept. Signal Transduct. 2018, 38, 484–491. [Google Scholar] [CrossRef]
- Ray, A.; Maharana, K.C.; Meenakshi, S.; Singh, S. Endothelial Dysfunction and Its Relation in Different Disorders: Recent Update. Health Sci. Rev. 2023, 7, 100084. [Google Scholar] [CrossRef]
- Pannirselvam, M.; Verma, S.; Anderson, T.J.; Triggle, C.R. Cellular Basis of Endothelial Dysfunction in Small Mesenteric Arteries from Spontaneously Diabetic (Db/Db−/−) Mice: Role of Decreased Tetrahydrobiopterin Bioavailability. Br. J. Pharmacol. 2002, 136, 255–263. [Google Scholar] [CrossRef]
- Lien, C.-F.; Chen, S.-J.; Tsai, M.-C.; Lin, C.-S. Potential Role of Protein Kinase C in the Pathophysiology of Diabetes-Associated Atherosclerosis. Front. Pharmacol. 2021, 12, 716332. [Google Scholar] [CrossRef]
- Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular Death, Reactive Oxygen Species (ROS) and Diabetic Complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Meza, C.A.; la Favor, J.D.; Kim, D.-H.; Hickner, R.C. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int. J. Mol. Sci. 2019, 20, 3775. [Google Scholar] [CrossRef]
- Stadler, K. Peroxynitrite-Driven Mechanisms in Diabetes and Insulin Resistance-the Latest Advances. Curr. Med. Chem. 2011, 18, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Sena, C.M.; Pereira, A.M.; Seiça, R. Endothelial Dysfunction—A Major Mediator of Diabetic Vascular Disease. Biochim. Biophys. Acta-Mol. Basis Dis. 2013, 1832, 2216–2231. [Google Scholar] [CrossRef]
- Fang, L.; Radovits, T.; Szabó, G.; Mózes, M.M.; Rosivall, L.; Kökény, G. Selective Phosphodiesterase-5 (PDE-5) Inhibitor Vardenafil Ameliorates Renal Damage in Type 1 Diabetic Rats by Restoring Cyclic 3′,5′ Guanosine Monophosphate (CGMP) Level in Podocytes. Nephrol. Dial. Transplant. 2013, 28, 1751–1761. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; An, R. Resveratrol and Sildenafil Synergistically Improve Diabetes-Associated Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats. Life Sci. 2015, 135, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Feng, J.-L.; Li, X.; Chen, Z.-L.; Bao, B.-H.; Deng, S.; Dai, H.-H.; Meng, F.-C.; Wang, B.; Li, H.-S. Effect of Leech-Centipede Medicine on Improving Erectile Function in Diabetes-Induced Erectile Dysfunction Rats via PDE5 Signalling Pathway-Related Molecules. Pharm. Biol. 2021, 59, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-S.; Lau, A.; Tu, R.; Lue, T.F. Identification of Three Alternative First Exons and an Intronic Promoter of Human PDE5A Gene. Biochem. Biophys. Res. Commun. 2000, 268, 596–602. [Google Scholar] [CrossRef]
- Meng, X.; Kondo, M.; Morino, K.; Fuke, T.; Obata, T.; Yoshizaki, T.; Ugi, S.; Nishio, Y.; Maeda, S.; Araki, E.; et al. Transcription Factor AP-2β: A Negative Regulator of IRS-1 Gene Expression. Biochem. Biophys. Res. Commun. 2010, 392, 526–532. [Google Scholar] [CrossRef]
- Mishra, M.; Zhong, Q.; Kowluru, R.A. Epigenetic Modifications of Keap1 Regulate Its Interaction with the Protective Factor Nrf2 in the Development of Diabetic Retinopathy. Investig. Opthalmology Vis. Sci. 2014, 55, 7256. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, X.; Hu, X.; Lee, S.; Traverse, J.H.; Zhu, G.; Fassett, J.; Tao, Y.; Zhang, P.; dos Remedios, C.; et al. Oxidative Stress Regulates Left Ventricular PDE5 Expression in the Failing Heart. Circulation 2010, 121, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, S.; Shukla, N.; Bond, M.; Sala-Newby, G.B.; Newby, A.C.; Angelini, G.D.; Jeremy, J.Y. Superoxide from NADPH Oxidase Upregulates Type 5 Phosphodiesterase in Human Vascular Smooth Muscle Cells: Inhibition with Iloprost and NONOate. Br. J. Pharmacol. 2008, 155, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, J.; Wang, L.; Peng, S.; Yin, J.; Jia, L.; Yang, X.; Yuan, Z.; Wu, C. NF-ΚB Upregulates Type 5 Phosphodiesterase in N9 Microglial Cells: Inhibition by Sildenafil and Yonkenafil. Mol. Neurobiol. 2016, 53, 2647–2658. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-F.; Chen, C.-Y.; Au, L.-C. Comparison between the Repression Potency of SiRNA Targeting the Coding Region and the 3′-Untranslated Region of MRNA. BioMed Res. Int. 2013, 2013, 703849. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.Q.; Chang, D.C. The Gene-Silencing Efficiency of SiRNA Is Strongly Dependent on the Local Structure of MRNA at the Targeted Region. Biochem. Biophys. Res. Commun. 2004, 318, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zheng, J.; Yao, X.; Weng, G.; Wu, L. Essential Role of the CGMP/PKG Signaling Pathway in Regulating the Proliferation and Survival of Human Renal Carcinoma Cells. Int. J. Mol. Med. 2014, 34, 1430–1438. [Google Scholar] [CrossRef]
- Lin, G.; Hayashi, N.; Carrion, R.; Chang, L.-J.; Lue, T.F.; Lin, C.-S. Improving erectile function by silencing phosphodiesterase-5. J. Urol. 2005, 174, 1142–1148. [Google Scholar] [CrossRef]
- Wallis, R.M.; Corbin, J.D.; Francis, S.H.; Ellis, P. Tissue Distribution of Phosphodiesterase Families and the Effects of Sildenafil on Tissue Cyclic Nucleotides, Platelet Function, and the Contractile Responses of Trabeculae Carneae and Aortic Rings in Vitro. Am. J. Cardiol. 1999, 83, 3–12. [Google Scholar] [CrossRef]
- Medina, P.; Segarra, G.; Martínez-León, J.B.; Vila, J.M.; Aldasoro, M.; Otero, E.; Lluch, S. Relaxation Induced by CGMP Phosphodiesterase Inhibitors Sildenafil and Zaprinast in Human Vessels. Ann. Thorac. Surg. 2000, 70, 1327–1331. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, L.; Alexeyev, M.; Alvarez, D.F.; Strada, S.J.; Stevens, T. Type 5 Phosphodiesterase Expression Is a Critical Determinant of the Endothelial Cell Angiogenic Phenotype. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2009, 296, L220–L228. [Google Scholar] [CrossRef]
- Martinez, L.A.; Naguibneva, I.; Lehrmann, H.; Vervisch, A.; Tchénio, T.; Lozano, G.; Harel-Bellan, A. Synthetic Small Inhibiting RNAs: Efficient Tools to Inactivate Oncogenic Mutations and Restore P53 Pathways. Proc. Natl. Acad. Sci. USA 2002, 99, 14849–14854. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, E.-K.; Palomäki, T.; Pasanen, M. Oligonucleotide-Based Pharmaceuticals: Non-Clinical and Clinical Safety Signals and Non-Clinical Testing Strategies. Regul. Toxicol. Pharmacol. 2017, 90, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Raemdonck, K.; Vandenbroucke, R.E.; Demeester, J.; Sanders, N.N.; De Smedt, S.C. Maintaining the Silence: Reflections on Long-Term RNAi. Drug Discov. Today 2008, 13, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, L.B.; Calvin, S.A.; Lobenhofer, E.K. Transcriptional Effects of Transfection: The Potential for Misinterpretation of Gene Expression Data Generated from Transiently Transfected Cells. Biotechniques 2009, 47, 617–624. [Google Scholar] [CrossRef] [PubMed]
Control | Diabetes | Diabetes Vehicle | Diabetes siRNA | |
---|---|---|---|---|
Weight (g) | 384.40 ± 6.43 | 223.40 ± 5.96 * | 190.67 ± 9.74 | 276.67 ± 14.53 |
Glucose (mg/dL) | 113.56 ± 1.33 | 529.67 ± 18.96 * | 517.78 ± 12.22 | 410.89 ± 17.42 |
HR (beats/min) | 414.73 ± 10.47 | 330.18 ± 4.24 * | 344.44 ± 16.64 * | 355.25 ± 8.08 |
SAP (mm Hg) | 117.63 ± 1.02 | 118.09 ± 1.15 | 118.00 ± 0.24 | 118.33 ± 0.29 |
DAP (mm Hg) | 77.40 ± 1.12 | 85.46 ± 1.13 | 81.18 ± 18 | 78.09 ± 2.31 |
siRNA-1. Sequence: GCAGAACTTCCAGATGAAACA | ||
---|---|---|
NM_133584.1 | TGTCTGATCTGGAAACAGCGCTGTGTACAATTCGGATGTTCACTGACCTCAACCTTGTGC | 2104 |
NM_001083.4 | TGTCTGATCTGGAAACAGCACTGTGTACAATTCGGATGTTTACTGACCTCAACCTTGTGC | 1889 |
NM_033430.3 | TGTCTGATCTGGAAACAGCACTGTGTACAATTCGGATGTTTACTGACCTCAACCTTGTGC | 2192 |
NM_033437.3 | TGTCTGATCTGGAAACAGCACTGTGTACAATTCGGATGTTTACTGACCTCAACCTTGTGC | 1694 |
NM_133584.1 | AGAACTTCCAGATGAAACACGAGGTTCTTTGCCGATGGATTTTGAGTGTCAAGAGAATT | 2164 |
NM_001083.4 | AGAACTTCCAGATGAAACATGAGGTTCTTTGCAGATGGATTTTAAGTGTTAAGAAGAATT | 1949 |
NM_033430.3 | AGAACTTCCAGATGAAACATGAGGTTCTTTGCAGATGGATTTTAAGTGTTAAGAAGAATT | 2252 |
NM_033437.3 | AGAACTTCCAGATGAAACATGAGGTTCTTTGCAGATGGATTTTAAGTGTTAAGAAGAATT | 1754 |
siRNA-2. Sequence: GCCTCTCCATTGAAGAATATA | ||
NM_133584.1 | TCGACCAGTGCTTGATGGTTCTAAACAGCCCAGGCAACCAGATCCTCATGGCCTCTCCA | 2464 |
NM_001083.4 | TTGACCAGTGCCTGATGATTCTTAATAGTCCAGGCAATCAGATTCTCAGTGGCCTCTCCA | 2249 |
NM_033430.3 | TTGACCAGTGCCTGATGATTCTTAATAGTCCAGGCAATCAGATTCTCAGTGGCCTCTCCA | 2552 |
NM_033437.3 | TTGACCAGTGCCTGATGATTCTTAATAGTCCAGGCAATCAGATTCTCAGTGGCCTCTCCA | 2054 |
NM_133584.1 | TTGAAGAATATAAGACCACATTGAAAATAATCAAGCAAGCAATTTTAGCCACTGACTAG | 2524 |
NM_001083.4 | TTGAAGAATATAAGACCACGTTGAAAATAATCAAGCAAGCTATTTTAGCTACAGACTAG | 2309 |
NM_033430.3 | TTGAAGAATATAAGACCACGTTGAAAATAATCAAGCAAGCTATTTTAGCTACAGACTAG | 2612 |
NM_033437.3 | TTGAAGAATATAAGACCACGTTGAAAATAATCAAGCAAGCTATTTTAGCTACAGACTAG | 2114 |
NM_133584.1 | Rattus norvegicus phosphodiesterase 5A (Pde5a), mRNA | |
NM_001083.4 | Homo sapiens phosphodiesterase 5A (PDE5A), transcript variant 1, mRNA | |
NM_033430.3 | Homo sapiens phosphodiesterase 5A (PDE5A), transcript variant 2, mRNA | |
NM_033437.3 | Homo sapiens phosphodiesterase 5A (PDE5A), transcript variant 3, mRNA |
Species | Coordinate | Secondary Structure | Silence Region |
---|---|---|---|
Rattus norvegicus (NM_133584.1) | 2103–2124 | Stem-hairpin loop | CDS (exon 11) |
Homo sapiens Variant 1 (NM_001083.4) | 1888–1909 | Hairpin loop | CDS (exon 11) |
Homo sapiens Variant 2 (NM_033430.3) | 2191–2212 | Stack-hairpin loop | CDS (exon 11) |
Homo sapiens Variant 3 (NM_033437.3) | 1693–1714 | Stack-hairpin loop | CDS (exon 10) |
Species | Coordinate | Secondary Structure | Silence Region |
---|---|---|---|
Rattus norvegicus (NM_133584.1) | 2456–2477 | Loop-stack-loop | CDS (exon 15) |
Homo sapiens Variant 1 (NM_001083.4) | 2241–2262 | Hairpin loop-bulge | CDS (exon 16) |
Homo sapiens Variant 2 (NM_033430.3) | 2544–2565 | Hairpin loop | CDS (exon 15) |
Homo sapiens Variant 3 (NM_033437.3) | 2046–2067 | Stack-hairpin loop | CDS (exon 14) |
Sequence | TM (°C) | MW (g/mol) |
---|---|---|
PDE5A18 (G) | 53.1 | 6432.3 |
PDE5A23 (G) | 49.3 | 6389.2 |
PDE5A18 (P) | 53.1 | 6418.2 |
PDE5A23 (P) | 49.3 | 6460.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Rubio, V.G.; Cabrera-Becerra, S.E.; Ocampo-Ortega, S.A.; Blancas-Napoles, C.M.; Sierra-Sánchez, V.M.; Romero-Nava, R.; Gutiérrez-Rojas, R.A.; Huang, F.; Hong, E.; Villafaña, S. siRNA Targeting PDE5A Partially Restores Vascular Damage Due to Type 1 Diabetes in a Streptozotocin-Induced Rat Model. Sci. Pharm. 2023, 91, 52. https://doi.org/10.3390/scipharm91040052
Garcia-Rubio VG, Cabrera-Becerra SE, Ocampo-Ortega SA, Blancas-Napoles CM, Sierra-Sánchez VM, Romero-Nava R, Gutiérrez-Rojas RA, Huang F, Hong E, Villafaña S. siRNA Targeting PDE5A Partially Restores Vascular Damage Due to Type 1 Diabetes in a Streptozotocin-Induced Rat Model. Scientia Pharmaceutica. 2023; 91(4):52. https://doi.org/10.3390/scipharm91040052
Chicago/Turabian StyleGarcia-Rubio, Vanessa Giselle, Sandra Edith Cabrera-Becerra, Sergio Adrian Ocampo-Ortega, Citlali Margarita Blancas-Napoles, Vivany Maydel Sierra-Sánchez, Rodrigo Romero-Nava, Rocío Alejandra Gutiérrez-Rojas, Fengyang Huang, Enrique Hong, and Santiago Villafaña. 2023. "siRNA Targeting PDE5A Partially Restores Vascular Damage Due to Type 1 Diabetes in a Streptozotocin-Induced Rat Model" Scientia Pharmaceutica 91, no. 4: 52. https://doi.org/10.3390/scipharm91040052
APA StyleGarcia-Rubio, V. G., Cabrera-Becerra, S. E., Ocampo-Ortega, S. A., Blancas-Napoles, C. M., Sierra-Sánchez, V. M., Romero-Nava, R., Gutiérrez-Rojas, R. A., Huang, F., Hong, E., & Villafaña, S. (2023). siRNA Targeting PDE5A Partially Restores Vascular Damage Due to Type 1 Diabetes in a Streptozotocin-Induced Rat Model. Scientia Pharmaceutica, 91(4), 52. https://doi.org/10.3390/scipharm91040052