Antihyperuricemic, Anti-Inflammatory and Antihypertensive Effect of a Dry Extract from Solidago virgaurea L. (Asteraceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Drugs
2.2. Plant material and Extract
2.3. Phytochemical Analysis
2.4. Animals
2.5. Antihyperuricemic Effect
2.6. Anti-Inflammatory Effect
2.7. Antihypertensive Effect in Hyperuricemic Animals
2.8. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. Antihyperuricemic Effect
3.3. Anti-Inflammatory Effect
3.4. Antihypertensive Effect in Hyperuricemic Animals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roddy, E.; Mallen, C.D.; Doherty, M. Gout. BMJ 2013, 347, f5648. [Google Scholar] [CrossRef] [PubMed]
- Punzi, L.; Scanu, A.; Galozzi, P.; Luisetto, R.; Spinella, P.; Scire, C.A.; Oliviero, F. One year in review 2020: Gout. Clin. Exp. Rheumatol. 2020, 38, 807–821. [Google Scholar] [PubMed]
- Pascual, E.; Addadi, L.; Andres, M.; Sivera, F. Mechanism of crystal formation in gout. Nat. Rev. Rheumatol. 2015, 11, 725–730. [Google Scholar] [CrossRef]
- Feig, D.I. Serum uric acid and the risk of hypertension and chronic kidney disease. Curr. Opin. Rheumatol. 2014, 26, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Richette, P.; Garay, R. Novel drug discovery strategies for gout. Expert Opin. Drug Discov. 2013, 8, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Wang, C.Z.; Wang, S.Q.; Mi, C.; He, Y.; Zhang, J.; Zhang, Y.W.; Anderson, S.; Yuan, C.S. Anti-hyperuricemia effects of allopurinol are improved by Smilax riparia, a traditional Chinese herbal medicine. J. Ethnopharmacol. 2015, 162, 362–368. [Google Scholar] [CrossRef]
- Ling, X.; Bochu, W. A review of phytotherapy of gout: Perspective of new pharmacological treatments. Pharmazie 2014, 69, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Corp, N.; Pendry, B. The role of Western herbal medicine in the treatment of gout. J. Herb. Med. 2013, 3, 157–170. [Google Scholar] [CrossRef]
- Havlik, J.; Gonzalez de la Huebra, R.; Hejtmanikova, K.; Fernandez, J.; Simonova, J.; Melich, M.; Rada, V. Xanthine oxidase inhibitory properties of Czech medicinal plants. J. Ethnopharmacol. 2010, 132, 461–465. [Google Scholar] [CrossRef]
- Wichtl, M.; Anton, R. Plantes Thérapeutiques, Tradition, Pratique Officinale, Science et Thérapeutique, 2nd ed.; EM Inter/Tec & Doc: Paris, France, 2003. [Google Scholar]
- European Medicines Agency (EMEA). Assessment Report on Solidago virgaurea L. Herba. 2008. Available online: https://www.ema.europa.eu/en/documents/herbal-report/assessment-report-solidago-virgaurea-l-herba_en.pdf. (accessed on 10 April 2021).
- Menkovic, N.; Savikin, K.; Tasic, S.; Zdunic, G.; Stesevic, D.; Milosavljevic, S.; Vincek, D. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije mountains (Montenegro). J. Ethnopharmacol. 2011, 133, 97–107. [Google Scholar] [CrossRef]
- Tămaș, M. Solidago species in Phytotherapy. Acta Phytother. Rom. 2000, 6, 43–44. [Google Scholar]
- El-Ghazaly, M.; Khayyal, M.T.; Okpanyi, S.N.; Arens-Corell, M. Study on the anti-inflammatory activity of Populus tremula, Solidago virgaurea and Fraxinus excelsior. Arzeim. Forsch. 1992, 42, 333–336. [Google Scholar]
- Romanian Pharmacopoeia, 10th ed.; Editura Medicala: Bucuresti, Romania, 2015.
- Plazonic, A.; Bucar, F.; Males, Z.; Mornar, A.; Nigovic, B.; Kujundzic, N. Identification and quantification of flavonoids and phenolic acids in Burr Parsley (Caucalis platycarpos L.) using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules 2009, 14, 2466–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugino, H.; Shimada, H. Effect of isoproterenol on renal uric acid excretion in rats. Jpn. J. Pharmacol. 1987, 45, 343–348. [Google Scholar] [CrossRef]
- Vostinaru, O.; Dinte, E.; Soran, M.L.; Lung, I.; Opris, O.; Mogosan, C. Evaluation of the anti-gout potential of an extract from Calluna vulgaris L. (Ericaceae) in rats. Rec. Nat. Prod. 2018, 12, 432–444. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenan-induced oedema in the hind paw of rat as an assay for anti-inflammatory activity. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Conea, S.; Mogosan, C.; Vostinaru, O.; Toma, C.C.; Cuc Hepcal, I.; Cazacu, I.; Pop, C.; Vlase, L. Polyphenolic profile, anti-inflammatory and antinociceptive activity of an extract from Arctium lappa L. roots. Not. Bot. Horti Agrobot. 2017, 45, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Mazzali, M.; Hughes, J.; Kim, Y.G.; Jefferson, A.; Kang, D.H.; Gordon, K.L.; Lan, H.Y.; Kivlighn, S.; Johnson, R. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001, 38, 1101–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobjanschi, L.; Paltinean, R.; Vlase, L.; Babota, M.; Fritea, L.; Tamas, M. Comparative phytochemical research of Solidago genus: S. graminifolia. Note I. Flavonoids. Acta Biol. Marisiensis 2018, 1, 18–26. [Google Scholar] [CrossRef]
- Tămaș, M.; Roșca, M. Cercetări asupra saponinelor din speciile indigene de Solidago. Farmacia 1988, 36, 167–172. [Google Scholar]
- Hiller, K.; Fötsch, G. Zur quantitativen Verteilung der Phenolglykoside Virgaureosid A und Leiocarposid in Solidago virgaurea L. Pharmazie 1986, 41, 415–416. [Google Scholar]
- Narang, R.K.; Vincent, Z.; Phipps-Green, A.; Stamp, L.K.; Merriman, T.R.; Dalbeth, N. Population-specific factors associated with fractional excretion of uric acid. Arthritis Res. Ther. 2019, 21, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, G.; Pan, J.; Gong, D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J. Agric. Food Chem. 2015, 63, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: Inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem. 2013, 141, 3766–3773. [Google Scholar] [CrossRef]
- Sugino, H.; Shimada, H. The uricosuric effect in rats of E5050, a new derivative of ethanolamine involves inhibition of the tubular postsecretory reabsorption of urate. Jpn. J. Pharmacol. 1995, 68, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-S.; Hu, Q.-H.; Zhang, X.; Zhu, Q.; Kong, L.-D. Beneficial effect of rutin on oxonate-induced hyperuricemia. Pharmacology 2013, 92, 75–83. [Google Scholar] [CrossRef]
- Yoo, H.; Ku, S.-K.; Baek, Y.-D.; Bae, J.-S. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm. Res. 2014, 63, 197–206. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; De Souza, G.E. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 2006, 29, 2236–2240. [Google Scholar] [CrossRef] [Green Version]
- Khosla, U.M.; Zharikov, S.; Finch, J.L.; Nakagawa, T.; Roncal, C.; Mu, W.; Krotova, K.; Block, E.R.; Prabhakar, S.; Johnson, R.J. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005, 67, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Scheepers, L.E.J.M.; Wei, F.-F.; Stolarz-Skrzypek, K.; Malyutina, S.; Tikhonoff, V.; Thijs, L.; Salvi, E. Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: A populational study. J. Hypertens. 2016, 34, 2147–2154. [Google Scholar] [CrossRef]
- Agarwal, V.; Nidhi, H.; Messerli, F.H. Effect of alopurinol on blood pressure: A systematic review and meta-analysis. J. Clin. Hypertens. 2013, 15, 435–442. [Google Scholar] [CrossRef]
- Buzas, R.; Tautu, O.-F.; Dorobantu, M.; Ivan, V.; Lighezan, D. Serum uric acid and arterial hypertension-data from Sephar III survey. PLoS ONE 2018, 13, e0199865. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J.; Jimenez, R.; Santos-Buelga, C.; Osuna, A. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep. 2009, 61, 67–75. [Google Scholar] [CrossRef]
Group (Dose) | Serum Uric Acid (mg/dL) | Urine Uric Acid (mg/dL) | Serum Creatinine (mg/dL) | Urine Creatinine (mg/dL) | Fractional Excretion of Uric Acid (%) |
---|---|---|---|---|---|
Oxonate control (250 mg/kg) | 1.30 ± 0.20 | 34.65 ± 3.64 | 0.72 ± 0.03 | 74.2 ± 6.42 | 25.86 |
ESV (125 mg/kg) | 1.04 ± 0.11 | 72.80 ± 3.70 | 0.68 ± 0.07 | 107.3 ± 4.98 | 44.36 |
ESV (250 mg/kg) | 0.86 ± 0.08 * | 101.8 ± 8.34 * | 0.53 ± 0.04 | 113.7 ± 8.01 | 55.17 * |
ESV (500 mg/kg) | 0.60 ± 0.07 * | 125.4 ± 3.84 * | 0.48 ± 0.05 | 138.1 ± 7.12 | 72.64 * |
Probenecid (125 mg/kg) | 0.92 ± 0.06 * | 54.67 ± 4.32 * | 0.60 ± 0.07 | 89.5 ± 8.03 | 39.83 * |
Group | Dose | Edema 1 h (mL) | Edema 2 h (mL) | Edema 3 h (mL) | Edema 4 h (mL) |
---|---|---|---|---|---|
Control (vehicle) | - | 0.72 ± 0.09 | 1.03 ± 0.23 | 2.28 ± 0.41 | 3.02 ± 0.27 |
ESV | 125 mg/kg | 0.74 ± 0.23 | 1.10 ± 0.48 | 2.04 ± 0.22 | 2.89 ± 0.36 |
ESV | 250 mg/kg | 0.70 ± 0.14 | 1.04 ± 0.29 | 1.87 ± 0.58 | 2.74 ± 0.33 |
ESV | 500 mg/kg | 0.66 ± 0.12 * | 0.81 ± 0.14 * | 1.48 ± 0.29 * | 1.38 ± 0.26 * |
Diclofenac | 20 mg/kg | 0.57 ± 0.09 * | 0.73 ± 0.21 * | 1.17 ± 0.15 * | 1.30 ± 0.26 * |
Group (Dose) | SBP Week 0 (mm Hg) | SBP Week 3 (mm Hg) |
---|---|---|
Oxonate control (250 mg/kg) | 111.8 ± 4.43 | 143.4 ± 4.03 |
Oxo + ESV (125 mg/kg) | 111.4 ± 6.65 | 138.2 ± 6.18 |
Oxo + ESV (250 mg/kg) | 114.2 ± 5.93 | 134.8 ± 4.76 * |
Oxo + ESV (500 mg/kg) | 113.6 ± 4.27 | 124.0 ± 2.91 * |
Oxo + Probenecid (125 mg/kg) | 113 ± 4.30 | 126.3 ± 2.13 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tămaş, M.; Vostinaru, O.; Soran, L.; Lung, I.; Opris, O.; Toiu, A.; Gavan, A.; Dinte, E.; Mogosan, C. Antihyperuricemic, Anti-Inflammatory and Antihypertensive Effect of a Dry Extract from Solidago virgaurea L. (Asteraceae). Sci. Pharm. 2021, 89, 27. https://doi.org/10.3390/scipharm89020027
Tămaş M, Vostinaru O, Soran L, Lung I, Opris O, Toiu A, Gavan A, Dinte E, Mogosan C. Antihyperuricemic, Anti-Inflammatory and Antihypertensive Effect of a Dry Extract from Solidago virgaurea L. (Asteraceae). Scientia Pharmaceutica. 2021; 89(2):27. https://doi.org/10.3390/scipharm89020027
Chicago/Turabian StyleTămaş, Mircea, Oliviu Vostinaru, Loredana Soran, Ildiko Lung, Ocsana Opris, Anca Toiu, Alexandru Gavan, Elena Dinte, and Cristina Mogosan. 2021. "Antihyperuricemic, Anti-Inflammatory and Antihypertensive Effect of a Dry Extract from Solidago virgaurea L. (Asteraceae)" Scientia Pharmaceutica 89, no. 2: 27. https://doi.org/10.3390/scipharm89020027
APA StyleTămaş, M., Vostinaru, O., Soran, L., Lung, I., Opris, O., Toiu, A., Gavan, A., Dinte, E., & Mogosan, C. (2021). Antihyperuricemic, Anti-Inflammatory and Antihypertensive Effect of a Dry Extract from Solidago virgaurea L. (Asteraceae). Scientia Pharmaceutica, 89(2), 27. https://doi.org/10.3390/scipharm89020027