Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons
Abstract
:1. Introduction
2. COVID-19 ARDS Pathophysiology
3. The Potential Therapeutic Role of Volatile Anesthetics
4. Favorable Specifics of Volatile Anesthetics in ARDS Sedation
5. Practical Obstacles and Physiological Barriers of Inhalational Sedation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef]
- Gibson, P.G.; Qin, L.; Puah, S. COVID-19 ARDS: Clinical features and differences to “usual” pre-COVID ARDS. Med. J. Aust. 2020, 213, 54–56. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE 2020, 15, e0235458. [Google Scholar] [CrossRef]
- Wong, C.K.; Lam, C.W.K.; Wu, A.K.L.; Ip, W.K.; Lee, N.L.S.; Chan, I.H.S.; Lit, L.C.W.; Hui, D.S.C.; Chan, M.H.M.; Chung, S.S.C.; et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019-Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. SSRN Electron. J. 2020, 395, 10223. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J. Virol. 2005, 79, 14614–14621. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, Z.; Wang, Y.; Zhou, Y.; Ma, Y.; Zuo, W. Single-Cell RNA Expression Profiling of ACE2, the putative receptor of Wuhan COVID-19. BioRxiv 2020. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; Van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Xiao, X.; Chakraborti, S.; Dimitrov, A.S.; Gramatikoff, K.; Dimitrov, D.S. The SARS-CoV S glycoprotein: Expression and functional characterization. Biochem. Biophys. Res. Commun. 2003, 312, 1159–1164. [Google Scholar] [CrossRef]
- Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 2005, 102, 11876–11881. [Google Scholar] [CrossRef] [Green Version]
- Nava, M.M.; Miroshnikova, Y.A.; Biggs, L.C.; Whitefield, D.B.; Metge, F.; Boucas, J.; Vihinen, H.; Jokitalo, E.; Li, X.; Arcos, J.M.G.; et al. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell 2020, 181, 800–817.e22. [Google Scholar] [CrossRef]
- Wong, S.K.; Li, W.; Moore, M.J.; Choe, H.; Farzan, M. A 193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2. J. Biol. Chem. 2003, 279, 3197–3201. [Google Scholar] [CrossRef] [Green Version]
- Yang, M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; Macary, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.; Maheswari, U.; Parthasarathy, K.; Ng, L.; Liu, D.X.; Gong, X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 2007, 16, 2065–2071. [Google Scholar] [CrossRef]
- Lu, W.; Zheng, B.-J.; Xu, K.; Schwarz, W.; Du, L.; Wong, C.K.L.; Chen, J.; Duan, S.; Deubel, V.; Sun, B. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl. Acad. Sci. USA 2006, 103, 12540–12545. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; McKinlay, C.; Gage, P.; Ewart, G. SARS coronavirus E protein forms cation-selective ion channels. Virology 2004, 330, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xie, S.; Sun, B. Viral proteins function as ion channels. Biochim. Biophys. Acta Biomembr. 2011, 1808, 510–515. [Google Scholar] [CrossRef]
- Nieto-Torres, J.L.; Verdiá-Báguena, C.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Castaño-Rodriguez, C.; Fernandez-Delgado, R.; Torres, J.; Aguilella, V.M.; Enjuanes, L. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015, 485, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T.; Ockinger, J.; Yu, J.; Byles, V.; McColl, A.; Hofer, A.M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. USA 2012, 109, 11282–11287. [Google Scholar] [CrossRef] [Green Version]
- Petrilli, V.; Papin, S.; Dostert, C.; Mayor, A.; Martinon, F.; Tschopp, J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007, 14, 1583–1589. [Google Scholar] [CrossRef]
- Fernandesalnemri, T.; Wu, J.; Yu, J.-W.; Datta, P.K.; Miller, B.; Jankowski, W.; Rosenberg, S.A.; Zhang, J.; Alnemri, E.S. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007, 14, 1590–1604. [Google Scholar] [CrossRef]
- Bauernfeind, F.; Ablasser, A.; Bartok, E.; Kim, S.; Schmid-Burgk, J.; Cavlar, T.; Hornung, V. Inflammasomes: Current understanding and open questions. Cell. Mol. Life Sci. 2010, 68, 765–783. [Google Scholar] [CrossRef]
- Chen, I.-Y.; Moriyama, M.; Chang, M.-F.; Ichinohe, T. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front. Microbiol. 2019, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.-J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity 2012, 36, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.; Natarajan, K.; Clatworthy, M.R.; Wang, Z.; Germain, R.N. The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and Inflammasome Activation. Cell 2013, 153, 348–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.L.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526, 666–671. [Google Scholar] [CrossRef]
- Mortaz, E.; Tabarsi, P.; Varahram, M.; Folkerts, G.; Adcock, I.M. The Immune Response and Immunopathology of COVID-19. Front. Immunol. 2020, 11, 2037. [Google Scholar] [CrossRef]
- Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients with Lung Cancer. J. Thorac. Oncol. 2020, 15, 700–704. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Dreher, M.; Kersten, A.; Bickenbach, J.; Balfanz, P.; Hartmann, B.; Cornelissen, C.; Daher, A.; Stöhr, R.; Kleines, M.; Lemmen, S.W.; et al. The characteristics of 50 hospitalized COVID-19 patients with and without ARDS. Dtsch. Aerzteblatt Online 2020, 117, 271–278. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Lu, Z.; Zhang, L.; Fan, T.; Xiong, R.; Shen, X.; Feng, H.; Meng, H.; Lin, W.; Jiang, W.; et al. The clinical course and its correlated immune status in COVID-19 pneumonia. J. Clin. Virol. 2020, 127, 104361. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, H.; Yuan, C.; Yao, C.; Luo, W.; Shen, X.; Wang, J.; Shao, J.; Xiang, Y. Clinical and Immune Features of Hospitalized Pediatric Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China. JAMA Netw. Open 2020, 3, e2010895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Y.; Qiao, L.; Wang, W.; Chen, D. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients with Coronavirus Disease 2019 (COVID-19). Ann. Intern. Med. 2020, 173, 402–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.Y. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020, 33, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, X. Acute respiratory failure in COVID-19: Is it “typical” ARDS? Crit. Care 2020, 24, 198. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wang, J.; Hajizadeh, N.; Moore, E.E.; McIntyre, R.C.; Moore, P.K.; Veress, L.A.; Yaffe, M.B.; Moore, H.B.; Barrett, C.D. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J. Thromb. Haemost. 2020, 18, 1752–1755. [Google Scholar] [CrossRef]
- He, L.; Ding, Y.; Zhang, Q.; Che, X.; He, Y.; Shen, H.; Wang, H.; Li, Z.; Zhao, L.; Geng, J.; et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006, 210, 288–297. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev. 2020, 7, 998–1002. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.S.M.; Wu, A.; To, K.F.; Lee, N.; Lam, C.W.K.; Wong, C.K.; Chan, P.K.S.; Ng, M.H.L.; Yu, L.M.; Hui, D.S.; et al. Haematological manifestations in patients with severe acute respiratory syndrome: Retrospective analysis. BMJ 2003, 326, 1358–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Qiu, Z.; Zhang, L.; Han, Y.; He, W.; Liu, Z.-Y.; Ma, X.; Fan, H.; Lu, W.; Xie, J.; et al. Significant Changes of Peripheral T Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. J. Infect. Dis. 2004, 189, 648–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Lau, Y.F.; Lamirande, E.W.; Paddock, C.D.; Bartlett, J.H.; Zaki, S.R.; Subbarao, K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol. 2010, 84, 1289–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhao, J.; Perlman, S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J. Virol. 2010, 84, 9318–9325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.-J.; Goh, P.-Y.; Fielding, B.C.; Shen, S.; Chou, C.-F.; Fu, J.-L.; Leong, H.N.; Leo, Y.S.; Ooi, E.E.; Ling, A.E.; et al. Profiles of Antibody Responses against Severe Acute Respiratory Syndrome Coronavirus Recombinant Proteins and Their Potential Use as Diagnostic Markers. Clin. Diagn. Lab. Immunol. 2004, 11, 362–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-S.; Hsieh, Y.-C.; Su, I.-J.; Lin, T.-H.; Chiu, S.-C.; Hsu, Y.-F.; Lin, J.-H.; Wang, M.-C.; Chen, J.-Y.; Hsiao, P.-W.; et al. Early detection of antibodies against various structural proteins of the SARS-associated coronavirus in SARS patients. J. Biomed. Sci. 2004, 11, 117–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Y.; Du, B.; Wang, Y.S.; Kang, H.Y.J.; Wang, F.; Sun, B.; Qiu, H.B.; Tong, Z.H. The keypoints in treatment of the critical coronavirus disease 2019 patient (2). Chin. J. Tuberc. Respir. Dis. 2020, 43, 277–281. [Google Scholar]
- Efficacy and Safety of Corticosteroids in COVID-19 US National Library of Medicine: ClinicalTrials.gov. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04273321 (accessed on 20 July 2020).
- CellMed AG. GLP-1 CellBeads® for the Treatment of Stroke Patients with Space-Occupying Intracerebral Hemorrhage. NCT01298830. Available online: http://www.clinicaltrials.gov (accessed on 13 May 2016).
- Roivant Sciences, Inc. Roivant Announces Development of Anti-GM-CSF Monoclonal Antibody to Prevent and Treat Acute Respiratory Distress Syndrome (ARDS) in Patients with COVID-19. 2020. Available online: https://www.biospace.com/article/releases/roivant-announces-development-of-anti-gm-csf-monoclonal-antibody-to-prevent-and-treat-acute-respiratory-distress-syndrome-ards-in-patients-with-covid-19/ (accessed on 3 September 2020).
- Bioscience Izana. Initiation of Two-Centre Compassionate Use Study Involving Namilumab in the Treatment of Individual Patients with Rapidly Worsening COVID-19 Infection in Italy. 2020. Available online: https://izanabio.com/initiation-of-two-centre-compassionate-use-study-involving-namilumab-in-the-treatment-of-individual-patients-with-rapidly-worsening-covid-19-infection-in-italy (accessed on 5 September 2020).
- Ye, Q.; Wang, B.; Mao, J. Cytokine storm in COVID-19 and treatment. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Chen, C.; Qi, F.; Shi, K.; Li, Y.; Li, J.; Chen, Y.; Pan, J.; Zhou, T.; Lin, X.; Zhang, J.; et al. Thalidomide combined with low-dose glucocorticoid in the treatment of COVID-19 pneumonia. 2020. Preprints. [Google Scholar]
- Tobinick, E. TNF-α inhibition for potential therapeutic modulation of SARS coronavirus infection. Curr. Med. Res. Opin. 2004, 20, 39–40. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Majumdar, S.; Singh, R.; Misra, A. Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Kalimeris, K.; Christodoulaki, K.; Karakitsos, P.; Batistatou, A.; Lekka, M.E.; Bai, M.; Kitsiouli, E.; Nakos, G.; Kostopanagiotou, G. Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung. Acta Anaesthesiol. Scand. 2011, 55, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Flondor, M.; Hofstetter, C.; Boost, K.; Betz, C.; Homann, M.; Zwissler, B. Isoflurane Inhalation after Induction of Endotoxemia in Rats Attenuates the Systemic Cytokine Response. Eur. Surg. Res. 2007, 40, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Giraud, O.; Molliex, S.; Rolland, C.; Leçon-Malas, V.; Desmonts, J.M.; Aubier, M.; Dehoux, M. Halogenated anesthetics reduce interleukin-1beta-induced cytokine secretion by rat alveolar type II cells in primary culture. Anesthesiology 2003, 98, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Zhu, S.; Wang, L.; He, Y.; Xie, H.; Zheng, S. Sevoflurane Protects against Acute Kidney Injury in a Small-Size Liver Transplantation Model. Am. J. Nephrol. 2010, 32, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhata, H.; Shimizu, R.; Yokoyama, M.M. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int. J. Immunopharmacol. 1995, 17, 529–534. [Google Scholar] [CrossRef]
- Kim, M.; Ham, A.; Kim, J.Y.; Brown, K.M.; D’Agati, V.D.; Lee, H.T. The volatile anesthetic isoflurane induces ecto-5′-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury. Kidney Int. 2013, 84, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altay, O.; Suzuki, H.; Hasegawa, Y.; Ostrowski, R.P.; Tang, J.; Zhang, J. Isoflurane on brain inflammation. Neurobiol. Dis. 2014, 62, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Lu, Y.; Dong, Y.; Zhang, G.; Zhang, Y.; Xu, Z.; Culley, D.J.; Crosby, G.; Marcantonio, E.R.; Tanzi, R.E.; et al. The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-α, IL-6, and IL-1β. Neurobiol. Aging 2012, 33, 1364–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, H.-F.; Cao, D.-H.; Yang, Y.; Wang, H.-Q.; Zhu, L.-J.; Ruan, B.-H.; Du, J.; Wang, M.-C. Isoflurane Protects Against Injury Caused by Deprivation of Oxygen and Glucose in Microglia Through Regulation of the Toll-Like Receptor 4 Pathway. J. Mol. Neurosci. 2014, 54, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kai, S.; Matsuyama, T.; Adachi, T.; Fukuda, K.; Hirota, K. General Anesthetics Inhibit LPS-Induced IL-1β Expression in Glial Cells. PLoS ONE 2013, 8, e82930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Tan, H.; Jiang, W.; Zuo, Z. The Choice of General Anesthetics May Not Affect Neuroinflammation and Impairment of Learning and Memory After Surgery in Elderly Rats. J. Neuroimmune Pharmacol. 2015, 10, 179–189. [Google Scholar] [CrossRef]
- Kotani, N.; Takahashi, S.; Sessler, D.I.; Hashiba, E.; Kubota, T.; Hashimoto, H.; Matsuki, A. Volatile Anesthetics Augment Expression of Proinflammatory Cytokines in Rat Alveolar Macrophages during Mechanical Ventilation. Anesthesiologists 1999, 91, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Yoon, J.H.; Hong, S.J.; Lee, S.H.; Sim, S.B. The Effects of Sevoflurane on Systemic and Pulmonary Inflammatory Responses After Cardiopulmonary Bypass. J. Cardiothorac. Vasc. Anesth. 2009, 23, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Canakci, C.F.; Cicek, Y.; Canakci, V. Reactive Oxygen Species and Human Inflammatory Periodontal Diseases. Biochem. Mosc. 2005, 70, 619–628. [Google Scholar] [CrossRef]
- Rancan, L.; Huerta, L.; Cusati, G.; Erquicia, I.; Isea, J.; Paredes, S.D.; García, C.; Garutti, I.; Simón, C.; Vara, E. Sevoflurane Prevents Liver Inflammatory Response Induced by Lung Ischemia-Reperfusion. Transplantation 2014, 98, 1151–1157. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, S.-Y.; Li, Y.-W.; Zhang, L.; Shou-Yuan, T.; Li, J.; Chen, Y.-Y.; Wang, Y.-X.; Liang, Y.; Zhang, X.-S.; et al. Sevoflurane preconditioning improving cerebral focal ischemia–reperfusion damage in a rat model via PI3K/Akt signaling pathway. Gene 2015, 569, 60–65. [Google Scholar] [CrossRef]
- Shen, X.; Dong, Y.; Xu, Z.; Wang, H.; Miao, C.; Soriano, S.G.; Sun, D.; Baxter, M.G.; Zhang, Y.; Xie, Z. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 2013, 118, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Burburan, S.M.; Silva, J.D.; Abreu, S.C.; Samary, C.S.; Guimarães, I.H.L.; Xisto, D.G.; Morales, M.M.; Rocco, P.R. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia 2014, 69, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.Y.; Fang, L.; Wu, H.M.; Wu, L.; He, F.; Liu, R.Y. Effect of Toll-like receptor 2 on the inhibition role of sevoflurane on airway inflammation in asthmatic mice. Zhonghua Yi Xue Za Zhi 2016, 96, 138–141. [Google Scholar] [PubMed]
- Polak, P.E.; Dull, R.O.; Kalinin, S.; Sharp, A.J.; Ripper, R.; Weinberg, G.; Schwartz, D.E.; Rubinstein, I.; Feinstein, D.L. Sevoflurane reduces clinical disease in a mouse model of multiple sclerosis. J. Neuroinflamm. 2012, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Cata, J.P.; Bauer, M.; Sokari, T.; Ramírez, M.F.; Mason, D.; Plautz, G.; Kurz, A. Effects of surgery, general anesthesia, and perioperative epidural analgesia on the immune function of patients with non-small cell lung cancer. J. Clin. Anesth. 2013, 25, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Deegan, C.A.; Murray, D.; Doran, P.; Moriarty, D.C.; Sessler, D.I.; Mascha, E.; Kavanagh, B.P.; Buggy, D.J. Anesthetic Technique and the Cytokine and Matrix Metalloproteinase Response to Primary Breast Cancer Surgery. Reg. Anesth. Pain Med. 2010, 35, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Kim, M.; Song, J.H.; Chen, S.W.; Gubitosa, G.; Emala, C.W. Sevoflurane-mediated TGF-beta1 signaling in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 2008, 294, F371–F378. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, J.; Shin, S.; Baek, S.; Choi, K.-U.; Jeon, Y.; Kim, W.-S.; Bae, J.; Choi, H.-J.; Kim, H.-K.; et al. Effects of sevoflurane on collagen production and growth factor expression in rats with an excision wound. Acta Anaesthesiol. Scand. 2009, 54, 885–893. [Google Scholar] [CrossRef]
- Parham, P. The Immune System; Informa UK Limited: London, UK, 2014. [Google Scholar]
- Fröhlich, D.; Rothe, G.; Schwall, B.; Schmid, P.; Schmitz, G.; Taeger, K.; Hobbhahn, J. Effects of volatile anaesthetics on human neutrophil oxidative response to the bacterial peptide FMLP. Br. J. Anaesth. 1997, 78, 718–723. [Google Scholar] [CrossRef]
- Stevenson, G.W.; Hall, S.C.; Rudnick, S.; Seleny, F.L.; Stevenson, H.C. The Effect of Anesthetic Agents on the Human Immune Response. Anesthesiologists 1990, 72, 542–552. [Google Scholar] [CrossRef]
- Kowalski, C.; Zahler, S.; Becker, B.F.; Flaucher, A.; Conzen, P.F.; Gerlach, E.; Peter, K. Halothane, Isoflurane, and Sevoflurane Reduce Postischemic Adhesion of Neutrophils in the Coronary System. Anesthesiologists 1997, 86, 188–195. [Google Scholar] [CrossRef]
- Heindl, B.; Reichle, F.M.; Zahler, S.; Conzen, P.F.; Becker, B.F. Sevoflurane and Isoflurane Protect the Reperfused Guinea Pig Heart by Reducing Postischemic Adhesion of Polymorphonuclear Neutrophils. Anesthesiologists 1999, 91, 521–530. [Google Scholar] [CrossRef]
- Penna, A.; Johnson, K.; Camilleri, J.; Knight, P. Alterations in Influenza A Virus Specific Immune Injury in Mice Anesthetized with Halothane or Ketamine. Intervirology 1990, 31, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Reutershan, J.; Chang, D.; Hayes, J.K.; Ley, K. Protective Effects of Isoflurane Pretreatment in Endotoxin-induced Lung Injury. Anesthesiology 2006, 104, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneemilch, C.E.; Hachenberg, T.; Ansorge, S.; Ittenson, A.; Bank, U. Effects of different anaesthetic agents on immune cell function in vitro. Eur. J. Anaesthesiol. 2005, 22, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of Natural Killer Cell Activity and Promotion of Tumor Metastasis by Ketamine, Thiopental, and Halothane, but Not by Propofol: Mediating Mechanisms and Prophylactic Measures. Anesth. Analg. 2003, 97, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Markovic, S.N.; Knight, P.R.; Murasko, D.M. Inhibition of Interferon Stimulation of Natural Killer Cell Activity in Mice Anesthetized with Halothane or Isoflurane. Anesthesiologists 1993, 78, 700–706. [Google Scholar] [CrossRef]
- Wada, H.; Seki, S.; Takahashi, T.; Kawarabayashi, N.; Higuchi, H.; Habu, Y.; Sugahara, S.; Kazama, T. Combined Spinal and General Anesthesia Attenuates Liver Metastasis by Preserving Th1/Th2 Cytokine Balance. Anesthesiologists 2007, 106, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhen, Y.; Dong, Y.; Xu, Z.; Yue, Y.; Golde, T.E.; Tanzi, R.E.; Moir, R.D.; Xie, Z. Anesthetic Propofol Attenuates the Isoflurane-Induced Caspase-3 Activation and Aβ Oligomerization. PLoS ONE 2011, 6, e27019. [Google Scholar] [CrossRef]
- Cheng, B.; Zhang, Y.; Wang, A.; Dong, Y.; Xie, Z. Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment. Mol. Neurobiol. 2015, 52, 1580–1589. [Google Scholar] [CrossRef] [Green Version]
- Horn, N.A.; De Rossi, L.; Robitzsch, T.; Hecker, K.E.; Hutschenreuter, G.; Rossaint, R. The effects of sevoflurane and desflurane in vitro on platelet-leukocyte adhesion in whole blood. Anaesthesia 2003, 58, 312–319. [Google Scholar] [CrossRef]
- Elrashidy, A.A.; Abdelrahman, R.S.; Ghali, A.M.; Elsheikh, A.M.; Elsheikh, M.M. Effects of sevoflurane and isoflurane on coagulation system: A comparative study. Tanta Med. Sci. J. 2007, 2, 11-10. [Google Scholar]
- Law, N.; Ng, K.; Irwin, M.; Man, J. Comparison of coagulation and blood loss during anaesthesia with inhaled isoflurane or intravenous propofol. Br. J. Anaesth. 2001, 86, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kow, C.S.; Hasan, S.S. Use of low-molecular-weight heparin in COVID-19 patients. J. Vasc. Surg. Venous Lymphat. Disord. 2020, 8, 900–901. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, S.; Kato, M. Anesthetics, immune cells, and immune responses. J. Anesth. 2008, 22, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Picq, C.A.; Clarençon, D.; Sinniger, V.E.; Bonaz, B.L.; Mayol, J.-F.S. Impact of Anesthetics on Immune Functions in a Rat Model of Vagus Nerve Stimulation. PLoS ONE 2013, 8, e67086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, H.; Kurosawa, S.; Horinouchi, T.; Kato, M.; Hashimoto, Y. Inhalation Anesthetics Induce Apoptosis in Normal Peripheral Lymphocytes In Vitro. Anesthesiologists 2001, 95, 1467–1472. [Google Scholar] [CrossRef]
- Woo, J.H.; Baik, H.J.; Kim, C.H.; Chung, R.K.; Kim, D.Y.; Lee, G.Y.; Chun, E.H. Effect of Propofol and Desflurane on Immune Cell Populations in Breast Cancer Patients: A Randomized Trial. J. Korean Med. Sci. 2015, 30, 1503–1508. [Google Scholar] [CrossRef] [Green Version]
- Inada, T.; Yamanouchi, Y.; Jomura, S.; Sakamoto, S.; Takahashi, M.; Kambara, T.; Shingu, K. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia 2004, 59, 954–959. [Google Scholar] [CrossRef]
- Yang, H.; Liang, G.; Hawkins, B.J.; Madesh, M.; Pierwola, A.; Wei, H. Inhalational anesthetics induce cell damage by disruption of intracellular calcium homeostasis with different potencies. Anesthesiology 2008, 109, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Puig, N.; Ferrero, P.; Bay, M.; Hidalgo, G.; Valenti, J.; Amerio, N.; Elena, G. Effects of sevoflurane general anesthesia: Immunological studies in mice. Int. Immunopharmacol. 2002, 2, 95–104. [Google Scholar] [CrossRef]
- Imanaka, H.; Shimaoka, M.; Matsuura, N.; Nishimura, M.; Ohta, N.; Kiyono, H. Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-beta 1 mRNA upregulation in rat lungs. Anesth. Analg. 2001, 92, 428–436. [Google Scholar] [CrossRef]
- Stollings, L.M.; Jia, L.-J.; Tang, P.; Dou, H.; Lu, B.; Xu, Y. Immune Modulation by Volatile Anesthetics. Anesthesiologists 2016, 125, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigtsberger, S.; Lachmann, R.A.; Leutert, A.C.; Schläpfer, M.; Booy, C.; Reyes, L.; Urner, M.; Schild, J.; Schimmer, R.C.; Beck-Schimmer, B. Sevoflurane Ameliorates Gas Exchange and Attenuates Lung Damage in Experimental Lipopolysaccharide-induced Lung Injury. Anesthesiologists 2009, 111, 1238–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauviat, M.-P.; Frizelle, H.P.; Descorps-Declère, A.; Mazoit, J.-X. Effects of halothane on the membrane potential in skeletal muscle of the frog. Br. J. Pharmacol. 2000, 130, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Liu, J.; Chen, M.X. General anesthesia mediated by effects on ion channels. World J. Crit. Care Med. 2012, 1, 80–93. [Google Scholar] [CrossRef]
- Winegar, B.D.; Owen, D.F.; Yost, C.S.; Forsayeth, J.R.; Mayeri, E. Volatile general anesthetics produce hyperpolarization of Aplysia neurons by activation of a discrete population of baseline potassium channels. Anesthesiology 1996, 85, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Bedows, E.; Davidson, B.A.; Knight, P.R. Effect of halothane on the replication of animal viruses. Antimicrob. Agents Chemother. 1984, 25, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Matthay, M.A.; McAuley, D.F.; Ware, L.B. Clinical trials in acute respiratory distress syndrome: Challenges and opportunities. Lancet Respir. Med. 2017, 5, 524–534. [Google Scholar] [CrossRef]
- Knight, P.R.; Nahrwold, M.L.; Bedows, E. Inhibiting Effects of Enflurane and Isoflurane Anesthesia on Measles Virus Replication: Comparison with Halothane. Antimicrob. Agents Chemother. 1981, 20, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Knight, P.R.; Nahrwold, M.L.; Bedows, E. Anesthetic action and virus replication: Inhibition of measles virus replication in cells exposed to halothane. Antimicrob. Agents Chemother. 1980, 17, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Vetter, P.; Eckerle, I.; Kaiser, L. Covid-19: A puzzle with many missing pieces. BMJ 2020, 368, m627. [Google Scholar] [CrossRef] [Green Version]
- Misra, S.; Koshy, T. A review of the practice of sedation with inhalational anaesthetics in the intensive care unit with the AnaConDa ® device. Indian J. Anaesth. 2012, 56, 518–523. [Google Scholar] [CrossRef] [PubMed]
- L’Her, E.; Dy, L.; Pili, R.; Prat, G.; Tonnelier, J.-M.; Lefevre, M.; Renault, A.A.; Boles, J.-M. Feasibility and potential cost/benefit of routine isoflurane sedation using an anesthetic-conserving device: A prospective observational study. Respir. Care 2008, 53, 1295–1303. [Google Scholar]
- Baron, R.; Binder, A.; Biniek, R.; Braune, S.; Buerkle, H.; Dall, P.; Demirakca, S.; Eckardt, R.; Eggers, V.; Eichler, I.; et al. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015)—Short version. Ger. Med. Sci. 2015, 13, 19. [Google Scholar]
- Sophia, K.; Shimaoka, M.; Yuki, K. The Use of Volatile Anesthetics as Sedatives for Acute Respiratory Distress Syndrome. Transl. Perioper. Pain Med. 2019, 6, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, J.M. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth. Analg. 1997, 85, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Homburger, J.A.; Meiler, S.E. Anesthesia drugs, immunity, and long-term outcome. Curr. Opin. Anaesthesiol. 2006, 19, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Pirbudak, C.L.; Ugur, M.G.; Karadasli, H. Comparison of effects of low-flow sevoflurane and desflurane anesthesia on neutrophil and T-cell populations. Curr. Ther. Res. Clin. Exp. 2012, 73, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Jerath, A.; Panckhurst, J.; Parotto, M.; Lightfoot, N.; Wasowicz, M.; Ferguson, N.D.; Steel, A.; Beattie, W.S. Safety and Efficacy of Volatile Anesthetic Agents Compared with Standard Intravenous Midazolam/Propofol Sedation in Ventilated Critical Care Patients: A Meta-analysis and Systematic Review of Prospective Trials. Anesth. Analg. 2017, 124, 1190–1199. [Google Scholar] [CrossRef]
- Bellgardt, M.; Bomberg, H.; Herzog-Niescery, J.; Dasch, B.; Vogelsang, H.; Weber, T.P.; Steinfort, C.; Uhl, W.; Wagenpfeil, S.; Volk, T.; et al. Survival after long-term isoflurane sedation as opposed to intravenous sedation in critically ill surgical patients: Retrospective analysis. Eur. J. Anaesthesiol. 2016, 33, 6–13. [Google Scholar] [CrossRef]
- Röhm, K.D.; Wolf, M.W.; Schöllhorn, T.; Schellhaass, A.; Boldt, J.; Piper, S.N. Short-term sevoflurane sedation using the Anaesthetic Conserving Device after cardiothoracic surgery. Intensiv. Care Med. 2008, 34, 1683–1689. [Google Scholar] [CrossRef]
- Jerath, A.; Beattie, S.W.; Chandy, T.; Karski, J.; Djaiani, G.; Rao, V.; Yau, T.; Wasowicz, M.; Perioperative Anesthesia Clinical Trials Group. Volatile-based short-term sedation in cardiac surgical patients: A prospective randomized controlled trial. Crit. Care Med. 2015, 43, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Landoni, G.; Pasin, L.; Cabrini, L.; Scandroglio, A.M.; Redaelli, M.B.; Votta, C.D.; Bellandi, M.; Borghi, G.; Zangrillo, A.; Scandroglio, M. Volatile Agents in Medical and Surgical Intensive Care Units: A Meta-Analysis of Randomized Clinical Trials. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.; Öwall, A.; Sackey, P.V. Wake-up times following sedation with sevoflurane versus propofol after cardiac surgery. Scand. Cardiovasc. J. 2012, 46, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Mesnil, M.; Capdevila, X.; Bringuier, S.; Trine, P.-O.; Falquet, Y.; Charbit, J.; Roustan, J.-P.; Chanques, G.; Jaber, S. Long-term sedation in intensive care unit: A randomized comparison between inhaled sevoflurane and intravenous propofol or midazolam. Intensiv. Care Med. 2011, 37, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Sackey, P.V.; Martling, C.-R.; Carlswärd, C.; Sundin, Ö.; Radell, P.J. Short- and long-term follow-up of intensive care unit patients after sedation with isoflurane and midazolam—A pilot study*. Crit. Care Med. 2008, 36, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Jabaudon, M.; Boucher, P.; Imhoff, E.; Chabanne, R.; Faure, J.-S.; Roszyk, L.; Thibault, S.; Blondonnet, R.; Clairefond, G.; Guérin, R.; et al. Sevoflurane for Sedation in Acute Respiratory Distress Syndrome. A Randomized Controlled Pilot Study. Am. J. Respir. Crit. Care Med. 2017, 195, 792–800. [Google Scholar] [CrossRef]
- Uhlig, C.; Bluth, T.; Schwarz, K.; Deckert, S.; Heinrich, L.; De Hert, S.; Landoni, G.; Serpa Neto, A.; Schultz, M.J.; Pelosi, P.; et al. Effects of Volatile Anesthetics on Mortality and Postoperative Pulmonary and Other Complications in Patients Undergoing Surgery: A Systematic Review and Meta-analysis. Anesthesiology 2016, 124, 1230–1245. [Google Scholar] [CrossRef]
- Grabitz, S.D.; Farhan, H.N.; Ruscic, K.J.; Timm, F.P.; Shin, C.H.; Thevathasan, T.; Staehr-Rye, A.K.; Kurth, T.; Eikermann, M. Dose-Dependent Protective Effect of Inhalational Anesthetics Against Postoperative Respiratory Complications: A Prospective Analysis of Data on File from Three Hospitals in New England. Crit. Care Med. 2017, 45, 30–39. [Google Scholar] [CrossRef]
- De Conno, E.; Steurer, M.P.; Wittlinger, M.; Zalunardo, M.P.; Weder, W.; Schneiter, D.; Schimmer, R.C.; Klaghofer, R.; Neff, T.A.; Schmid, E.R.; et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology 2009, 110, 1316–1326. [Google Scholar] [CrossRef] [Green Version]
- Koutsogiannaki, S.; Schaefers, M.M.; Okuno, T.; Ohba, M.; Yokomizo, T.; Priebe, G.P.; Dinardo, J.A.; Sulpicio, S.G.; Yuki, K. From the Cover: Prolonged Exposure to Volatile Anesthetic Isoflurane Worsens the Outcome of Polymicrobial Abdominal Sepsis. Toxicol. Sci. 2016, 156, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Yuki, K.; Bu, W.; Xi, J.; Sen, M.; Shimaoka, M.; Eckenhoff, R.G. Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1. FASEB J. 2012, 26, 4408–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harr, J.N.; Moore, E.E.; Stringham, J.; Wohlauer, M.V.; Fragoso, M.; Jones, W.L.; Gamboni, F.; Silliman, C.C.; Banerjee, A. Isoflurane prevents acute lung injury through ADP-mediated platelet inhibition. Surgery 2012, 152, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strosing, K.M.; Faller, S.; Gyllenram, V.; Engelstaedter, H.; Buerkle, H.; Spassov, S.; Hoetzel, A. Inhaled Anesthetics Exert Different Protective Properties in a Mouse Model of Ventilator-Induced Lung Injury. Anesth. Analg. 2016, 123, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Nyrén, S.; Radell, P.; Mure, M.; Petersson, J.; Jacobsson, H.; Lindahl, S.G.E.; Sánchez-Crespo, A. Inhalation Anesthesia Increases V/Q Regional Heterogeneity during Spontaneous Breathing in Healthy Subjects. Anesthesiologists 2010, 113, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Schilling, T.; Kozian, A.; Kretzschmar, M.; Huth, C.; Welte, T.; Bühling, F.; Hedenstierna, G.; Hachenberg, T. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br. J. Anaesth. 2007, 99, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.-T.; Wang, H.; Li, W.; Wang, L.-F.; Hou, L.-C.; Mu, J.-L.; Liu, X.; Chen, H.-J.; Xie, K.-L.; Li, N.-L.; et al. Anesthetic Isoflurane Posttreatment Attenuates Experimental Lung Injury by Inhibiting Inflammation and Apoptosis. Mediat. Inflamm. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Y.-Y.; Chen, X.; Li, J.; Wang, S.; Faclier, G.; Macdonald, J.F.; Hogg, J.C.; Osrser, B.A.; Lu, W.-Y. Isoflurane Regulates Atypical Type-A γ-Aminobutyric Acid Receptors in Alveolar Type II Epithelial Cells. Anesthesiologists 2013, 118, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ye, Y.; Su, H.; Yang, J. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways. Braz. J. Med Biol. Res. 2017, 50, e5747. [Google Scholar] [CrossRef]
- Forkuo, G.S.; Nieman, A.N.; Kodali, R.; Zahn, N.M.; Li, G.; Rashid-Roni, M.S.; Stephen, M.R.; Harris, T.W.; Jahan, R.; Guthrie, M.L.; et al. A Novel Orally Available Asthma Drug Candidate That Reduces Smooth Muscle Constriction and Inflammation by Targeting GABA(A) Receptors in the Lung. Mol. Pharm. 2018, 15, 1766–1777. [Google Scholar] [CrossRef]
- Fortis, S.; Spieth, P.M.; Lu, W.-Y.; Parotto, M.; Haitsma, J.J.; Slutsky, A.S.; Zhong, N.; Mazer, C.D.; Zhang, H. Effects of anesthetic regimes on inflammatory responses in a rat model of acute lung injury. Intensiv. Care Med. 2012, 38, 1548–1555. [Google Scholar] [CrossRef]
- Gropper, M.A.; Miller, R.D.; Eriksson, L.I.; Fleisher, L.A.; Wiener-Kronish, J.P.; Cohen, N.H.; Leslie, K. Miller’s Anesthesia; Elsevier Health Sciences: Philadelphia, PA, USA, 2019; Volume 2. [Google Scholar]
- Schläpfer, M.; Leutert, A.C.; Voigtsberger, S.; Lachmann, R.A.; Booy, C.; Beck-Schimmer, B. Sevoflurane reduces severity of acute lung injury possibly by impairing formation of alveolar oedema. Clin. Exp. Immunol. 2012, 168, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.; Strosing, K.M.; Spassov, S.; Lin, Z.; Engelstaedter, H.; Tacke, S.; Hoetzel, A.; Faller, S. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury. PLoS ONE 2018, 13, e0192896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerath, A.; Ferguson, N.D.; Steel, A.; Wijeysundera, D.N.; Macdonald, J.; Wasowicz, M. The use of volatile anesthetic agents for long-term critical care sedation (VALTS): Study protocol for a pilot randomized controlled trial. Trials 2015, 16, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerath, A.; Ferguson, N.D.; Cuthbertson, B. Inhalational volatile-based sedation for COVID-19 pneumonia and ARDS. Intensiv. Care Med. 2020, 46, 1563–1566. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.D.; Le, C.; Lamers, V.; Eckelman, M.J. Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs. Anesth. Analg. 2012, 114, 1086–1090. [Google Scholar] [CrossRef]
- Jerath, A.; Steel, A.; Ferguson, N.; Wasowicz, M. High fluoride levels with isoflurane critical care sedation does not cause nephrotoxicity. Am. J. Respir. Crit. Care Med. 2016, 193, A3639. [Google Scholar]
- Maussion, E.; Combaz, S.; Cuisinier, A.; Chapuis, C.; Payen, J.-F. Renal dysfunction during sevoflurane sedation in the ICU. Eur. J. Anaesthesiol. 2019, 36, 377–379. [Google Scholar] [CrossRef]
- Zink, J.; Sasyniuk, B.I.; Dresel, P.E. Halothane-Epinephrine-induced Cardiac Arrhythmias and the Role of Heart Rate. Anesthesiologists 1975, 43, 548–555. [Google Scholar] [CrossRef]
- Wong, K.; Wasowicz, M.; Grewal, D.; Fowler, T.; Ng, M.; Ferguson, N.D.; Steel, A.; Jerath, A. Efficacy of a simple scavenging system for long-term critical care sedation using volatile agent-based anesthesia. Can. J. Anesth. J. Can. Anesth. 2015, 63, 630–632. [Google Scholar] [CrossRef] [Green Version]
- Osrser, B.A.; Wang, D.-S.; Lu, W.-Y. Sedating ventilated COVID-19 patients with inhalational anesthetic drugs. EBioMedicine 2020, 55, 102770. [Google Scholar] [CrossRef]
- Jerath, A.; Parotto, M.; Wasowicz, M.; Ferguson, N.D. Volatile Anesthetics. Is a New Player Emerging in Critical Care Sedation? Am. J. Respir. Crit. Care Med. 2016, 193, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Anesthesiologists ASo. APSF/ASA Guidance on Purposing Anesthesia Machines as ICU Ventilators: Anesthesia Patient Safety Foundation. 2020. Available online: https://wwwasahqorg/in-the-spotlight/coronavirus-covid-19-information/purposing-anesthesia-machines-for-ventilators (accessed on 16 October 2020).
- Zurich, U. Sevoflurane in COVID-19 ARDS (SevCov) US National Library of Medicine: ClinicalTrials.gov. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04355962 (accessed on 16 October 2020).
- Nieuwenhuijs-Moeke, G.J.; Jainandunsing, J.S.; Struys, M.M. Sevoflurane, a sigh of relief in COVID-19? Br. J. Anaesth. 2020, 125, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Ferrière, N.; Bodenes, L.; Bailly, P.; L’Her, E. Shortage of anesthetics: Think of inhaled sedation! J. Crit. Care 2020, S0883-9441, 30686–30689. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleiman, A.; Qaswal, A.B.; Alnouti, M.; Yousef, M.; Suleiman, B.; Jarbeh, M.E.; Alshawabkeh, G.; Bsisu, I.; Santarisi, A.; Ababneh, M. Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Sci. Pharm. 2021, 89, 6. https://doi.org/10.3390/scipharm89010006
Suleiman A, Qaswal AB, Alnouti M, Yousef M, Suleiman B, Jarbeh ME, Alshawabkeh G, Bsisu I, Santarisi A, Ababneh M. Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Scientia Pharmaceutica. 2021; 89(1):6. https://doi.org/10.3390/scipharm89010006
Chicago/Turabian StyleSuleiman, Aiman, Abdallah Barjas Qaswal, Mazen Alnouti, Moh’d Yousef, Bayan Suleiman, Mohammad El Jarbeh, Ghadeer Alshawabkeh, Isam Bsisu, Abeer Santarisi, and Muaweih Ababneh. 2021. "Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons" Scientia Pharmaceutica 89, no. 1: 6. https://doi.org/10.3390/scipharm89010006
APA StyleSuleiman, A., Qaswal, A. B., Alnouti, M., Yousef, M., Suleiman, B., Jarbeh, M. E., Alshawabkeh, G., Bsisu, I., Santarisi, A., & Ababneh, M. (2021). Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Scientia Pharmaceutica, 89(1), 6. https://doi.org/10.3390/scipharm89010006