A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species
Abstract
:1. Introduction
2. Traditional Uses of Angelica Species
3. The Chemical Composition of Essential Oils of Angelica Species
4. Biological Activities of Angelica Essential Oils
4.1. Antioxidant
4.2. Antimicrobial
4.3. Insecticidal
4.4. Behavioral
4.5. Anti-Inflammatory
4.6. Skin Permeation Enhancer
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Hammer, K.A. Chemistry and bioactivity of essential oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons: Oxford, UK, 2011; pp. 203–238. [Google Scholar]
- Mohammadhosseini, M.; Mahdavi, B.; Shahnama, M. Chemical composition of essential oils from aerial parts of Ferula gummosa (Apiaceae) in Jajarm Region, Iran using traditional hydrodistillation and solvent-free microwave extraction methods: A comparative approach. J. Essent. Oil Bear. Plants 2015, 18, 1321–1328. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar]
- Mohammadhosseini, M. Chemical composition of the essential oils and volatile fractions from flowers, stems and roots of Salvia multicaulis Vahl. by using MAHD, SFME and HS-SPME methods. J. Essent. Oil Bear. Plants 2015, 18, 1360–1371. [Google Scholar]
- Nekoei, M.; Mohammadhosseini, M. Chemical compositions of the essential oils from the aerial parts of Achillea wilhelmsii using traditional hydrodistillation, microwave assisted hydrodistillation and solvent-free microwave extraction methods: Comparison with the volatile compounds obtained by headspace solid phase microextraction. J. Essent. Oil Bear. Plants 2016, 19, 59–75. [Google Scholar]
- Feng, T.; Downie, S.R.; Yu, Y.; Zhang, X.; Chen, W.; He, X.; Liu, S. Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengduan Mountains of China based on nrDNA ITS sequences: Phylogenetic affinities and biogeographic implications. J. Plant Res. 2009, 122, 403–414. [Google Scholar] [CrossRef]
- Chen, J.T.; Li, H.Z.; Wang, D.; Yang, C.R.; Liu, Y. Determination of sucrose in Radix Angelicae sinensis by HPLC-ELSD. Mod. Chin. Med. 2008, 10, 19–20. [Google Scholar]
- Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China—A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Hook, I.L. Danggui to Angelica sinensis root: Are potential benefits to European women lost in translation? A review. J. Ethnopharmacol. 2014, 152, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Kim, S. Neuroprotective and cognitive enhancement potentials of Angelica gigas Nakai root: A review. Sci. Pharm. 2017, 85, 21. [Google Scholar] [CrossRef] [PubMed]
- Sowndhararajan, K.; Seo, M.; Kim, M.; Kim, H.; Kim, S. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity. Complement. Ther. Clin. Pract. 2017, 28, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hatano, R.; Takano, F.; Fushiya, S.; Michimata, M.; Tanaka, T.; Kazama, I.; Suzuki, M.; Matsubara, M. Water-soluble extracts from Angelica acutiloba Kitagawa enhance hematopoiesis by activating immature erythroid cells in mice with 5-fluorouracil-induced anemia. Exp. Hematol. 2004, 32, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, G.; Monacelli, B.; Silvestrini, A. Accumulation of essential oils in relation to root differentiation in Angelica archangelica L. Eur. J. Histochem. 2003, 47, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.S.; Nautiyal, M.C.; Cecotti, R.; Mella, M.; Tava, A. Variation in the essential oil composition of Angelica archangelica from three different altitudes in Western Himalaya, India. Ind. Crops Prod. 2016, 94, 401–404. [Google Scholar] [CrossRef]
- Agnihotri, V.K.; Thappa, R.K.; Meena, B.; Kapahi, B.K.; Saxena, R.K.; Qazi, G.N.; Agarwal, S.G. Essential oil composition of aerial parts of Angelica glauca growing wild in North-West Himalaya (India). Phytochemistry 2004, 65, 2411–2413. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, J.; Li, H.; Yang, X.; Liu, H.; Chen, J. In vivo anti-inflammatory activities of the essential oil from Radix Angelicae dahuricae. J. Nat. Med. 2016, 70, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Gao, Z.; Demirci, B.; Techen, N.; Wedge, D.E.; Ali, A.; Sampson, B.J.; Werle, C.; Bernier, U.R.; Khan, I.A.; et al. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species. J. Agric. Food Chem. 2014, 62, 8848–8857. [Google Scholar] [CrossRef] [PubMed]
- Nivinskiene, O.; Butkiene, R.; Mockute, D. Chemical composition of seed (fruit) essential oils of Angelica archangelica L. growing wild in Lithuania. Chemija 2005, 16, 51–54. [Google Scholar]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food 2014, 17, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Nivinskiene, O.; Butkiene, R.; Mockute, D. The chemical composition of the essential oil of Angelica archangelica L. roots growing wild in Lithuania. J. Essent. Oil Res. 2005, 17, 373–377. [Google Scholar] [CrossRef]
- Irshad, M.; Rehman, H.U.; Shahid, M.; Aziz, S.; Ghous, T. Antioxidant, antimicrobial and phytotoxic activities of essential oil of Angelica glauca. Asian J. Chem. 2011, 23, 1947–1951. [Google Scholar]
- Purohit, V.K.; Andola, H.C.; Haider, S.Z.; Tiwari, D.; Bahuguna, Y.M.; Gairola, K.C.; Arunachalam, K. Essential Oil Constituents of Angelica glauca Edgew. Roots: An Endangered Species from Uttarakhand Himalaya (India). Natl. Acad. Sci. Lett. 2015, 38, 445–447. [Google Scholar] [CrossRef]
- Sigurdsson, S.; Ogmundsdottir, H.M.; Gudbjarnason, S. The cytotoxic effect of two chemotypes of essential oils from the fruits of Angelica archangelica L. Anticancer Res. 2005, 25, 1877–1880. [Google Scholar] [PubMed]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosyst. 2016, 150, 558–563. [Google Scholar] [CrossRef]
- Park, C.H.; Juliani, H.R.; Park, H.W.; Yu, H.S.; Simon, J.E. Comparison of essential oil composition between Angelica gigas and Angelica acutiloba. Korean J. Plant Resour. 2003, 6, 183–187. [Google Scholar]
- Kim, M.R.; Abd El-Aty, A.M.; Kim, I.S.; Shim, J.H. Determination of volatile flavor components in danggui cultivars by solvent free injection and hydrodistillation followed by gas chromatographic-mass spectrometric analysis. J. Chromatogr. A 2006, 1116, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Tsaia, Y., Jr.; Linb, L.Y.; Wu, C.S.; Tai, S.P.; Chen, Y.C.; Chiang, H.M. Volatile compounds from roots, stems and leaves of Angelica acutiloba growing in Taiwan. Nat. Prod. Commun. 2014, 9, 583–586. [Google Scholar] [PubMed]
- Seo, H.Y.; Yang, S.H.; Shim, S.L.; No, K.M.; Park, K.S.; Song, K.D.; Kim, K.S. Volatile organic compounds of Angelica gigas Nakai, Korean medicinal herb. Nat. Prod. Res. 2007, 21, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Q.; Hua, Y.L.; Zhang, M.; Ji, P.; Li, J.X.; Zhang, L.; Li, P.L.; Wei, Y.M. Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation. Biomed. Chromatogr. 2015, 29, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.L.; Ji, P.; Xue, Z.Y.; Wei, Y.M. Construction and analysis of correlation networks based on gas chromatography-mass spectrometry metabonomics data for lipopolysaccharide-induced inflammation and intervention with volatile oil from Angelica sinensis in rats. Mol. Biosyst. 2015, 11, 3174–3187. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Zhang, L.; Hua, Y.; Ji, P.; Li, P.; Li, J.; Zhong, L.; Zhao, H.; Wei, Y. The investigation of anti-inflammatory activity of volatile oil of Angelica sinensis by plasma metabolomics approach. Int. Immunopharmacol. 2015, 29, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Champakaew, D.; Junkum, A.; Chaithong, U.; Jitpakdi, A.; Riyong, D.; Sanghong, R.; Intirach, J.; Muangmoon, R.; Chansang, A.; Tuetun, B.; et al. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand. Parasitol. Res. 2015, 114, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Shin, S. Antifungal and antioxidant activities of the essential oil from Angelica koreana Nakai. Evid. Based Complement. Altern. Med. 2014, 2014, 398503. [Google Scholar] [CrossRef] [PubMed]
- Simonović, S.R.; Stankov-Jovanović, V.P.; Mitić, V.D.; Ilić, M.D.; Petrović, G.M.; Stojanović, G.S. Chemical composition of Angelica pancicii essential oil determined by liquid and headspace GC-MS techniques. Nat. Prod. Commun. 2014, 9, 271–272. [Google Scholar] [PubMed]
- Mohammadi, M.; Yousefi, M.; Habibi, Z. Essential oils from stem and leaves of Angelica urumiensis (Mozaffarian) from Iran. Nat. Prod. Res. 2010, 24, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Suleimen, E.M.; Iskakova, Z.B.; Dudkin, R.V.; Gorovoi, P.G.; Wang, M.; Khan, I.; Ross, S.A.; Martins, C.H.G. Composition and biological activity of essential oils from East-Asian species Angelica viridiflora, A. cincta, and Coelopleurum gmelinii. Chem. Nat. Compd. 2014, 50, 1136–1139. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 2007, 55, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Wanjari, M.M.; Jain, S.K.; Tripathi, M. Evaluation of antiseizure activity of essential oil from roots of Angelica archangelica Linn. in mice. Indian J. Pharm. Sci. 2010, 72, 371–375. [Google Scholar] [PubMed]
- Prakash, B.; Singh, P.; Goni, R.; Raina, A.K.; Dubey, N.K. Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α-terpineol against isolated molds from walnut and their antiaflatoxigenic and antioxidant activity. J. Food Sci. Technol. 2015, 52, 2220–2228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.J.; Koo, B.S.; Kim, G.W.; Jang, E.Y.; Lee, J.R.; Kim, M.R.; Kim, S.C.; Kwon, Y.K.; Kim, K.J.; Huh, T.L.; et al. The essential oil from Angelica gigas NAKAI suppresses nicotine sensitization. Biol. Pharm. Bull. 2005, 28, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Kim, E.H.; Lee, J.H.; Lee, Y.C.; Moon, H.I. Immunotoxicity activity from various essential oils of Angelica genus from South Korea against Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2012, 34, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Rasal, V.P.; Patil, P.A.; Joshi, R.K. Effect of Angelica glauca essential oil on allergic airway changes induced by histamine and ovalbumin in experimental animals. Indian J. Pharmacol. 2017, 49, 55–59. [Google Scholar] [PubMed]
- Li, S.Y.; Yu, Y.; Li, S.P. Identification of antioxidants in essential oil of radix Angelicae sinensis using HPLC coupled with DAD-MS and ABTS-based assay. J. Agric. Food Chem. 2007, 55, 3358–3362. [Google Scholar] [CrossRef] [PubMed]
- Mullen, K.A.; Lee, A.R.; Lyman, R.L.; Mason, S.E.; Washburn, S.P.; Anderson, K.L. Short communication: An in vitro assessment of the antibacterial activity of plant-derived oils. J. Dairy Sci. 2014, 97, 5587–5591. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.J.; Hua, Y.L.; Ji, P.; Yao, W.L.; Zhang, W.Q.; Li, J.; Wei, Y.M. Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics. J. Ethnopharmacol. 2016, 191, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hua, Y.; Ji, P.; Yao, W.; Zhao, H.; Zhong, L.; Wei, Y. Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. Pharm. Biol. 2016, 54, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Min, L.; Li, W.J.; Kong, W.X.; Li, J.F.; Zhang, Y.J. The effects of Angelica essential oil in three murine tests of anxiety. Pharmacol. Biochem. Behav. 2004, 79, 377–382. [Google Scholar] [PubMed]
- Min, L.; Chen, S.W.; Li, W.J.; Wang, R.; Li, Y.L.; Wang, W.J.; Mi, X.J. The effects of Angelica essential oil in social interaction and hole-board tests. Pharmacol. Biochem. Behav. 2005, 81, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, T.; Chen, L.; Peng, S.; Liao, W.; Bai, R.; Zhao, X.; Yang, H.; Wu, C.; Zeng, H.; et al. Essential oils from Inula japonica and Angelicae dahuricae enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin via multiple mechanisms. J. Ethnopharmacol. 2016, 180, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, Q.D.; Wu, Y.M.; Liu, P.; Yao, J.H.; Lu, Q.; Zhang, H.; Duan, J.A. Potential of essential oils as penetration enhancers for transdermal administration of ibuprofen to treat dysmenorrhoea. Molecules 2015, 20, 18219–18236. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wu, Y.; Zhang, H.; Liu, P.; Yao, J.; Yao, P.; Chen, J.; Duan, J. Development of essential oils as skin permeation enhancers: Penetration enhancement effect and mechanism of action. Pharm. Biol. 2017, 55, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, C.; Salgueiro, L.; Gonçalves, M.J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef] [PubMed]
S. No. | Species | Parts | Extraction Method; Extraction Time; Yield | Place of Collection | Major Components | References |
---|---|---|---|---|---|---|
1 | Angelica archangelica L. | Seeds (fruits) from three habitats | Hydrodistillation; 2 h; 0.8–1.4% | Svencionys, Prienai and Vilnius districts in Lithunia | β-phellandrene (33.6–63.4%) and α-pinene (4.2–12.8%) | [21] |
Fruit of two chemotypes | Steam distillation; 5 h; 0.17–0.51% | Reykjavik, Iceland | α-pinene (41.4%, 28.9%, 14.4%), bicyclogermacrene (10.1%), and β-phellandrene (37.8% and 55.2%) | [26] | ||
Root (1–2, 3–4 and >5 mm) | Hydrodistillation; 30 min | Rome, Italy | α-pinene (23.89–32.69%) and δ-3-carene (3.41–17.07%) | [16] | ||
Root (3 habitats) | Hydrodistillation; 2 h; 0.2–0.5% | Svencionys, Prienai and Vilnius districts in Lithuania | α-pinene (15.7–20.8%), δ-3-carene (15.4–16.9%), limonene (8.0–9.2%), β-phellandrene (13.5–15.4%), α-phellandrene (8.0–9.1%), and p-cymene (6.8–10.6%) | [23] | ||
Root (3 different altitudes) | Hydrodistillation; 3 h; 0.28–0.35% | Uttarakashi, Rudraprayag and Pothiwasa in Uttarakhand, India | dillapiole (35.93–91.55%) and nothoapiole (0.14–62.81%) | [17] | ||
Root | Hydrodistillation; 2 h; 0.9% | Urbino, Italy | α-pinene (21.3%), δ-3-carene (16.5%), limonene (16.4%), and α-phellandrene (8.7%) | [22,27] | ||
2 | Angelica acutiloba (Siebold & Zucc.) Kitag. | Leaves, petiole and root | Hydrodistillation; 3 h; 0.44% | Rutgers University, New Brunswick, NJ, USA | Leaves: ligustilide (11.61%) and butylidene phthalide (7.29%) Petiole: butylidene phthalide (10.76%) Root: nonane (24.85%) and α-pinene (31.59%) | [28] |
Root | Solvent free solid injector; injection time—5 min and pre-heating time—7 min) | Yeosu Province, Republic of Korea | butylidene phthalide (17.82%), furfural (13.67%), 2-furanmethanol (11.97%), 5-methyl furfural (8.50%), maltol (7.28%), and butylidene dihydro-phthalide (5.78%) | [29] | ||
Root, stem and leaves | Steam distillation; 5 h; 0.05 (root), 0.06 (stem), and 0.12 (leaves) | Nantou, Taiwan | 3n-butyl phthalide (30.8–37.9%), γ-terpinene (21.1–27.2%), p-cymene (3.6–11.6%), and cis-β-ocimene (7.0–7.4%) | [30] | ||
Headspace-solid phase microextraction; 20 min | Nantou, Taiwan | γ-terpinene (41.2–52.1%), p-cymene (10.6–17.0%), β-myrcene (6.7–8.6%), cis-β-ocimene (4.9–7.4%), and alloocimene (4.2–5.3%) | [30] | |||
3 | Angelica glauca Edgew | Whole plant | Hydrodistillation; 3 h, 0.17% | Jammu and Kashmir, Pakistan | α-phellandrene (18.0%), β-pinene (14.0%), trans-carveol (16.4%), β-caryophyllene (8.6%), and β-caryophyllene oxide (8.0%). | [24] |
Aerial parts | Hydrodistillation; 3 h; 0.12% | Khillanmarg areas of Kashmir, India | α-phellandrene (13.5%), trans-carveol (12.0%), β-pinene (11.7%), thujene (7.5%), β-caryophyllene oxide (7.2%), β-caryophyllene (7.0%), γ-terpinene (6.7%), nerolidol (6.5%), and β-bisabolene (5.2%) | [18] | ||
Root | Hydrodistillation; 5 h; 0.3% and 1.8% | Himalayan locations of Uttarakhand, India | (Z)-ligustilide (40.6–53.0%), (Z)-butylidene phthalide (20.7–32.8%), and (E)-butylidene phthalide (2.5–5.9%) | [25] | ||
4 | Angelica gigas Nakai | Leaves, petiole and root | Hydrodistillation; 3 h; 0.18% | Rutgers University, New Brunswick, NJ, USA | Leaves: nonane (10.75%), α-pinene (33.07%), and germacrene (10.05%) Petiole: nonane (8.85%), α-pinene (40.59%), β-phellandrene (7.52%), and myrcene (6.38%) Root: γ-terpinene (14.08%) and ligustilide (46.63%) | [28] |
Root | Hydrodistillation; 4 h | Yeosu Province, Republic of Korea | nonane (19.99%), α-pinene (44.31%), camphene (6.66%), and δ-limonene (6.26%) | [29] | ||
Solvent-free solid injector; injection time—5 min and pre-heating time—7 min) | Yeosu Province, Republic of Korea | decursin (29.34%), decursinol angelate (16.83%), lomatin (10.25%), and marmesin (9.33%) | [29] | |||
Simultaneous steam distillation (n-pentane/diethyl ether); 2 h; 0.31% | Gwangju, Republic of Korea | α-pinene (30.89%), 2,4,6-trimethyl heptane (13.39%), α-limonene (4.29%), and camphene (4.10%) | [31] | |||
Steam distillation; 1 h 30 min; 0.31% | Pyeongchang, Republic of Korea | α-pinene (28.64%), β-eudesmol (14.80%), nonane (8.49%), and γ-eudesmol (5.97%) | [14] | |||
Supercritical CO2 extraction; 1 h; 1.67% | Pyeongchang, Republic of Korea | decursin (40.13%), decursinol angelate (28.44%), and β-eudesmol (7.84%) | [14] | |||
5 | Angelica sinensis (Oliv.) Diels | Root | Hydrodistillation; 8 h; 0.3% | Gansu Province, China | (Z)-ligustilide 78.61% and (Z)-butylidenephthalide 7.99% | [32,33,34] |
Solvent free solid injector; injection time—5 min and pre-heating time—7 min) | Yeosu Province, Republic of Korea | butylidene dihydro-phthalide, (15.23%), butylidene phthalide (14.27%), furfural (16%), camphene (10.66%), and 4-pyridinol (7.17%) | [29] | |||
Steam distillation; 3 h; 0.02% | Chiang Mai province, Thailand | 3-N-butylphthalide, butylidenephthalide, ligustilide and di-iso-octyl phthalate | [35] | |||
6 | Angelica koreana Maxim. | Root | Steam distillation; 0.28% | Jinbu, Gangwon-do, Republic of Korea | sabinene (31.85%), m-cresol (4.46%), α-pinene (4.00%), and α-bisabolol (3.63%) | [36] |
7 | Angelica dahurica (Fisch. Ex Hoffm.) Benth. & Hook. | Root | Supercritical CO2 extraction; 2 h; 1.8% | Jilin, China | dodecyl alcohol (13.71%), elemene (7.54%), hexadecanoic acid, ethyl ester (7.32%), 1-pentadecanol (6.08%), and α-pinene (6.25%), | [19] |
Hydrodistillation; 3 h; 0.45% | Beijing, China | α-pinene (46.3%), sabinene (9.3%), myrcene (5.5%), 1-dodecanol (5.2%), and terpinen-4-ol (4.9%). | [20] | |||
8 | Angelica pancicii Vandas ex Velen. | Root | Hydrodistillation; 2 h | Balkan mountains, Serbia | Liquid and headspace injection modes: β-phellandrene (54.9% and 60.1%), α-pinene (14.5% and 20.1%), and α-phellandrene (4.5% and 4.3%). | [37] |
9 | Angelica pubescentis Maxim. | Root | Hydrodistillation; 3 h; 0.65% | Beijing, China | α-pinene (37.6%), p-cymene (11.6%), limonene (8.7%), and cryptone (6.7%) | [20] |
10 | Angelica urumiensis (Mozaffarian) | Stem | Hydrodistillation; 3 h; 0.2% | Uremia, Province West Azerbaijan, Iran | Stem: α-cadinol (9.24%), (epi)-α-cadinol (5.76%), and δ-cadenine (6.11%) | [38] |
11 | Angelica urumiensis (Mozaffarian) | Leaves | Hydrodistillation; 3 h; 0.18% | Uremia, Province West Azerbaijan, Iran | Leaves: α-cadinol (20.2%), hexahydrofarnesyl acetone (10.03%), 1-dodecanol (7.55%), linoleic acid (6.37%) and oleic acid (5.34%) | [38] |
12 | Angelica viridiflora (Turcz.) Benth. ex Maxim. | Aerial parts | Steam distillation; 2 h; 0.2% | Shkotovskii District, Primorsky Krai, Russia | caryophyllene oxide (61.7%) and 3,4-dimethyl-3-cyclohexan-1-carboxaldehdye (5.8%) | [39] |
13 | Angelica cincta Boissieu | Aerial parts | Steam distillation; 2 h; 0.2% | Shkotovskii District, Primorsky Krai, Russia | α-pinene (67.2%), sabinene (5.8%) and β-pinene (4.9%) | [39] |
S. No. | Species | Parts | Biological activity | Model | References |
---|---|---|---|---|---|
1 | Angelica archangelica L. | Seeds | Antioxidant | Aldehyde/Carboxylic Acid Assay, DPPH radical scavenging assay, and Malonaldehyde/Gas Chromatography Assay | [40] |
Fruit of two chemotypes | Cytotoxic effect | Human pancreas cancer cell line PANC-1 and the mouse breast cancer cell line Crl | [26] | ||
Root | Anti-seizure | Maximal electroshock and pentylenetetrazol-induced seizures in mice | [41] | ||
Anti-aflatoxigenic and antioxidant activities | Aspergillus flavus DPPH radical scavenging assay | [42] | |||
Antimicrobial | Fusarium genus, Botrytis cinerea, and Alternaria solani, Clostridium difficile, Clostridium perfringens, Enterococcus faecalis, Eubacterium limosum, Peptostreptococcus anaerobius, and Candida albicans | [22,27] | |||
2 | Angelica gigas Nakai | Root | Nicotine Sensitization | Repeated nicotine-induced locomotor activity and extracellular dopamine levels in the nucleus accumbens of rats | [43] |
Human EEG | Increased absolute low beta (left temporal and left parietal) activity | [14] | |||
Leaves | Immunotoxicity | Larvae of Aedes aegypti | [44] | ||
3 | Angelica glauca Edgew | Whole plant | Antioxidant, antimicrobial, and phytotoxic | Bacteria: Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pasteurella multocida Fungi: Candida albicans, Microsporum canis, Aspergillus flavus and Fusarium solani. DPPH radical scavenging assay Phytotoxic activity against Lemna minor | [24] |
Broncho-relaxant | Airway was induced using histamine aerosol in guinea pigs and ovalbumin aerosol in albino mice. | [45] | |||
4 | Angelica sinensis (Oliv.) Diels | Root | Anti-inflammatory | Carrageenan-induced rats | [32] |
Antioxidant | DPPH, ABTS scavenging, and β-carotene bleaching assays. | [46] | |||
Anti-inflammatory | Carrageenan-induced rats and mechanism by plasma metabolomics approach | [34] | |||
Antibacterial | Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis | [47] | |||
Anti-inflammatory | Carrageenan-induced acute inflammation model rats | [48] | |||
Anti-inflammatory | Lipopolysaccharide-induced inflammation rat model | [33,49] | |||
Anxiolytic | Elevated plus-maze, light/dark and stress-induced hyperthermia tests | [50] | |||
Social interaction test of anxiety and the hole-board test | [51] | ||||
Repellent | Against Aedes aegypti | [35] | |||
5 | Angelica koreana Maxim. | Root | Antifungal and antioxidant | Aspergillus (A. flavus, A. fumigaus, A. niger, A. terreus and A. versicolor) and Trichophyton (T. mentagrophytes, T. rubrum and T. tonsurans) species DPPH scavenging, nitrite inhibition, and reducing power | [36] |
6 | Angelica dahurica (Fisch. Ex Hoffm.) Benth. & Hook. | Root | Anti-inflammatory and immunomodulating properties | Xylene-induced acute ear swelling and carrageenan-induced acute paw edema in mice; anti-inflammatory and immunomodulating properties in Freund’s complete adjuvant (FCA)-induced arthritis in rats. | [19] |
Enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin | MDR human breast cancer MCF-7/ADR cells | [52] | |||
Insecticidal | Yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides | [20] | |||
Antibacterial | Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis | [47] | |||
Immunotoxicity | Larvae of Aedes aegypti | [44] | |||
7 | Angelica pubescentis Maxim. | Root | Antifungal and Insecticidal | Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, Yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides | [20] |
8 | Angelica anomala Avé-Lall., Angelica cartilagino-marginata var. distans, Angelica czernevia, Angelica decursiva (Miq.) Franch. & Sav., Angelica fallax H. Boissieu , Angelica japonica A. Gray | Leaves | Immunotoxicity | Larvae of Aedes aegypti | [44] |
9 | Angelica species | Root | Penetration Enhancers for Transdermal Administration of Ibuprofen | Therapeutic efficacy of ibuprofen with essential oil was evaluated using dysmenorrheal model mice | [53] |
Skin permeation of drugs | Skin permeation of ibuprofen across rat abdominal skin | [54] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci. Pharm. 2017, 85, 33. https://doi.org/10.3390/scipharm85030033
Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Scientia Pharmaceutica. 2017; 85(3):33. https://doi.org/10.3390/scipharm85030033
Chicago/Turabian StyleSowndhararajan, Kandasamy, Ponnuvel Deepa, Minju Kim, Se Jin Park, and Songmun Kim. 2017. "A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species" Scientia Pharmaceutica 85, no. 3: 33. https://doi.org/10.3390/scipharm85030033
APA StyleSowndhararajan, K., Deepa, P., Kim, M., Park, S. J., & Kim, S. (2017). A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Scientia Pharmaceutica, 85(3), 33. https://doi.org/10.3390/scipharm85030033