Trace Level Quantification of the (−)2-(2-amino-5-chlorophenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol Genotoxic Impurity in Efavirenz Drug Substance and Drug Product Using LC–MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Preparation of Buffer Solution
2.3. Preparation of Standard and Sample Solutions
2.4. Instrumentation
2.5. Operating Conditions of Liquid Chromatography–Tandem Mass Spectrometry
2.6. Validation Study
3. Results and Discussion
3.1. Method Development
3.2. Method Validation
3.2.1. Specificity
3.2.2. Precision
3.2.3. Linearity
3.2.4. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.2.5. Recovery Studies
3.2.6. Robustness
3.2.7. Stability of Solution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pierce, M.E.; Chen, C.Y.; Choudhury, A.; Radesca, L.A.; Tan, L.; Zhao, D. Preparing 2-(1, 1, 1-trifluoro-2-hydroxy-4-cyclopropyl-but-3-yn-2-yl), 4-chloroaniline; Cyclization; Human Immunodeficiency Virus (HIV) Reverse Transcriptase Inhibitor Nontoxic Maaterials; Nonchromagraphic Purification. U.S. Patent 6,040,480, 21 March 2000. [Google Scholar]
- Ashby, J.; Tennant, R.W. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the US NCI/NTP. Mutat. Res. Genet. Toxicol. 1988, 204, 17–115. [Google Scholar] [CrossRef]
- Müller, L.; Mautheb, R.J.; Rileyc, C.M.; Andinod, M.M.; De Antonisd, D.; Beelse, C.; DeGeorgef, J.; De Knaepg, A.G.M.; Ellisonf, D.; Fagerlandh, J.A.; et al. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul. Toxicol. Pharmacol. 2006, 44, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.Z.; Woolf, E.J.; Mazenko, R.S.; Haddix-Wiener, H.; Chavez-Eng, C.M.; Constanzer, M.L.; Doss, G.A.; Matuszewski, B.K. Determination of efavirenz, a selective non-nucleoside reverse transcriptase inhibitor, in human plasma using HPLC with post-column photochemical derivatization and fluorescence detection. J. Pharm. Biomed. Anal. 2002, 28, 925–934. [Google Scholar] [CrossRef]
- Sarasa-Nacenta, M.; López-Púa, Y.; López-Cortés, L.F.; Mallolas, J.; Gatell, J.M.; Carné, X. Determination of efavirenz in human plasma by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 2001, 763, 53–59. [Google Scholar] [CrossRef]
- Villani, P.; Pregnolato, M.; Banfo, S.; Rettani, M.; Burroni, D.; Seminari, E.; Maserati, R.; Regazzi, M.B. High-performance liquid chromatography method for analyzing the antiretroviral agent efavirenz in human plasma. Ther. Drug Monit. 1999, 21, 346. [Google Scholar] [CrossRef] [PubMed]
- Langmann, P.; Schirmer, D.; Väth, T.; Zilly, M.; Klinker, H. High-performance liquid chromatographic method for the determination of HIV-1 non-nucleoside reverse transcriptase inhibitor efavirenz in plasma of patients during highly active antiretroviral therapy. J. Chromatogr. B Biomed. Sci. Appl. 2001, 755, 151–156. [Google Scholar] [CrossRef]
- De Aquino Ribeiro, J.A.; de Campos, L.M.M.; Alves, R.J.; Lages, G.P.; Pianetti, G.A. Efavirenz related compounds preparation by hydrolysis procedure: Setting reference standards for chromatographic purity analysis. J. Pharm. Biomed. Anal. 2007, 43, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, E.R.; Edmanson, A.L.; Cook, S.C.; Hovsepian, P.K. Development and validation of a reverse-phase HPLC method for analysis of efavirenz and its related substances in the drug substance and in a capsule formulation. J. Pharm. Biomed. Anal. 2001, 25, 267–284. [Google Scholar] [CrossRef]
- Weissburg, R.P.; Montgomery, E.R.; Junnier, L.A.; Segretario, J.; Cook, S.; Hovsepian, P.K. Investigation of critical factors for the resolution of SR695, a key impurity, from efavirenz in the reversed-phase assay of efavirenz dosage forms. J. Pharm. Biomed. Anal. 2002, 28, 45–56. [Google Scholar] [CrossRef]
- Maurin, M.B.; Rowe, S.M.; Blom, K.; Pierce, M.E. Kinetics and mechanism of hydrolysis of efavirenz. Pharm. Res. 2002, 19, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Gadkari, T.; Chandrachood, P.; Shahajietele, A.; Deshpande, N.; Salvekar, J.; Sonawene, S. Validated stability indicating LC-PDAMS method to investigate pH rate profile and degradation kinetics of efavirenz and identification of hydrolysis products by LC-MS. Int. J. Pharm. Sci. 2010, 2, 169–176. [Google Scholar]
- Efavirenz monograph. United States Pharmacopeia; USP38, NF33; United States Pharmacopoeial Convention Inc.: Rockville, CA, USA, 2015; p. 3656. [Google Scholar]
- Efavirenz tablets monograph. United States Pharmacopeia; USP38, NF33; United States Pharmacopoeial Convention Inc.: Rockville, CA, USA, 2015; p. 3661. [Google Scholar]
- Efavirenz capsules monograph. United States Pharmacopeia; USP38, NF33; United States Pharmacopoeial Convention Inc.: Rockville, CA, USA, 2015; p. 3659. [Google Scholar]
- Raman, N.V.V.S.S.; Prasad, A.V.S.S.; Reddy, K.R. Strategies for the identification, control and determination of genotoxic impurities in drug substances: A pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 2011, 55, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Dow, L.K.; Hansen, M.M.; Pack, B.W.; Page, T.J.; Baertschi, S.W. The assessment of impurities for genotoxic potential and subsequent control in drug substance and drug product. J. Pharm. Sci. 2013, 102, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.I. Control of Genotoxic Impurities in Active Pharmaceutical Ingredients: A Review and Perspective. Org. Proc. Res. Dev. 2010, 14, 946–959. [Google Scholar] [CrossRef]
- Elder, D.P.; Lipczynski, A.M.; Teasdale, A. Control and analysis of alkyl and benzyl halides and other related reactive organohalides as potential genotoxic impurities in active pharmaceutical ingredients (APIs). J. Pharm. Biomed. Anal. 2008, 48, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Bolta, H.M.; Fothb, H.; Hengstlerc, J.G.; Degena, G.H. Carcinogenicity categorization of chemicals—New aspects to be considered in a European perspective. Toxicol. Lett. 2004, 151, 29–41. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Agency (EMeA). Committee for Medicinal Products for Human Use (CHMP). Guideline on the Limits of Genotoxic Impurities. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002903.pdf (accessed on 16 January 2015).
- ICH Guideline M7 on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/02/WC500139217.pdf (accessed on 16 January 2015).
- ICH Q2(R1). Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002662.pdf (accessed on 16 January 2015).
Parameter | AMCOL |
---|---|
Regression equation | |
Slope | 41915.8 |
Intercept | 1066.8 |
R value | 0.9999 |
R2 value | 0.9997 |
LOD (in ppm) | 0.071 |
LOQ (in ppm) | 0.213 |
Precision at LOQ n = 6 (% RSD) | 2.3 |
Precision n = 6 (% RSD) | 0.8 |
Intermediate n = 6 precision (% RSD) | 0.6 |
Injection ID | LOD (0.07 ppm) | LOQ (0.21 ppm) |
---|---|---|
1 | 2684 | 8568 |
2 | 2962 | 8865 |
3 | 2851 | 9014 |
4 | 2762 | 8465 |
5 | 2914 | 8856 |
6 | 2645 | 8752 |
Mean Area | 2803.0 | 8753.3 |
Standard deviation. | 127.1 | 204.2 |
% RSD | 4.53 | 2.33 |
Sample | % Recovery of AMCOL a | |||
---|---|---|---|---|
0.2 ppm (LOQ) | 1.25 ppm | 2.5 ppm | 5 ppm | |
Pure sample-I | 96.8 ± 2.8 | 98.5 ± 0.8 | 99.6 ± 1.2 | 97.8 ± 2.1 |
Pure sample-II | 100.3 ± 1.2 | 98.2 ± 0.6 | 98.6 ± 0.8 | 98.3 ± 1.1 |
Pure sample-III | 98.1 ± 1.9 | 101.4 ± 1.2 | 98.3 ± 0.9 | 99.2 ± 1.2 |
Formulation sample-I | 98.8 ± 1.2 | 97.5 ± 1.1 | 98.7 ± 1.1 | 99.8 ± 1.3 |
Formulation sample-II | 101.3 ± 2.1 | 98.2 ± 0.6 | 100.2 ± 0.8 | 98.3 ± 1.1 |
Formulation sample-III | 99.5 ± 2.4 | 100.6 ± 1.2 | 99.3 ± 0.9 | 98.2 ± 1.6 |
Sample Name | Time (h) | Peak Area | Theoretical Concentration (ppm) | Measured Concentration (ppm) | % Recovery |
---|---|---|---|---|---|
Pure sample | 0 h | 8753 | 0.213 | 0.209 | 98.1 |
12 h | 8810 | 0.213 | 0.211 | 99.1 | |
24 h | 8713 | 0.213 | 0.208 | 97.6 | |
48 h | 8816 | 0.213 | 0.214 | 100.5 | |
Formulation sample | 0 h | 8865 | 0.213 | 0.212 | 99.5 |
12 h | 8923 | 0.213 | 0.213 | 100.3 | |
24 h | 8710 | 0.213 | 0.211 | 99.1 | |
48 h | 8689 | 0.213 | 0.215 | 100.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaishetty, N.; Palanisamy, K.; Maruthapillai, A.; Jaishetty, R. Trace Level Quantification of the (−)2-(2-amino-5-chlorophenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol Genotoxic Impurity in Efavirenz Drug Substance and Drug Product Using LC–MS/MS. Sci. Pharm. 2016, 84, 456-466. https://doi.org/10.3390/scipharm84030456
Jaishetty N, Palanisamy K, Maruthapillai A, Jaishetty R. Trace Level Quantification of the (−)2-(2-amino-5-chlorophenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol Genotoxic Impurity in Efavirenz Drug Substance and Drug Product Using LC–MS/MS. Scientia Pharmaceutica. 2016; 84(3):456-466. https://doi.org/10.3390/scipharm84030456
Chicago/Turabian StyleJaishetty, Nagadeep, Kamaraj Palanisamy, Arthanareeswari Maruthapillai, and Rajamanohar Jaishetty. 2016. "Trace Level Quantification of the (−)2-(2-amino-5-chlorophenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol Genotoxic Impurity in Efavirenz Drug Substance and Drug Product Using LC–MS/MS" Scientia Pharmaceutica 84, no. 3: 456-466. https://doi.org/10.3390/scipharm84030456
APA StyleJaishetty, N., Palanisamy, K., Maruthapillai, A., & Jaishetty, R. (2016). Trace Level Quantification of the (−)2-(2-amino-5-chlorophenyl)-4-cyclopropyl-1,1,1-trifluoro-3-butyn-2-ol Genotoxic Impurity in Efavirenz Drug Substance and Drug Product Using LC–MS/MS. Scientia Pharmaceutica, 84(3), 456-466. https://doi.org/10.3390/scipharm84030456