An Efficiency Measurement of E-Government Performance for Network Readiness: Non-Parametric Frontier Approach
Abstract
:1. Introduction
2. Literature Review
2.1. The Future Direction of Innovative E-Government
2.2. Informatization and International Comparison Index
3. Materials and Methods
3.1. Selection of Data and Variables
3.2. Collection of Analysis Targets
3.3. Data Envelopement Analysis
3.4. Tobit Regression
4. Analysis
4.1. Descriptive Statistics
4.2. Efficiency Results by Country
4.3. Returns to Scale Analysis Results
4.4. Factors Affecting ICT Network Readiness Efficiency
5. Conclusions
5.1. Discusion
5.2. Further Research and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayanso, A.; Chatterjee, D.; Cho, D.I. E-Government readiness index: A methodology and analysis. Gov. Inf. Q. 2011, 28, 522–532. [Google Scholar] [CrossRef]
- Hazlett, S.A.; Hill, F. E-government: The realities of using IT to transform the public sector. J. Serv. Theory Pract. 2003, 13, 445–452. [Google Scholar] [CrossRef]
- Moon, M.J. The evolution of e-government among municipalities: Rhetoric or reality? Public Adm. Rev. 2002, 62, 424–433. [Google Scholar] [CrossRef]
- Menna, A.; Walsh, P.R.; Ekhtari, H. Identifying enablers of innovation in developed economies: A National Innovation Systems approach. J. Innov. Manag. 2019, 7, 108–128. [Google Scholar] [CrossRef]
- Bosworth, B.P.; Triplett, J.E. The early 21st century US productivity expansion is still in services. Int. Product. Monit. 2007, 14, 3. [Google Scholar]
- Kretschmer, T. Information and Communication Technologies and Productivity Growth: A Survey of the Literature. OECD Digit. Econ. Pap. 2012, 195, 1–37. [Google Scholar] [CrossRef]
- Jorgenson, D.W.; Stiroh, K.J. US economic growth at the industry level. Am. Econ. Rev. 2000, 90, 161–167. [Google Scholar] [CrossRef][Green Version]
- Oliner, S.D.; Sichel, D.E. The resurgence of growth in the late 1990s: Is information technology the story? J. Econ. Per. 2020, 14, 3–22. [Google Scholar]
- Zhang, C.; Wang, X. The influence of ICT-driven innovation: A comparative study on national innovation efficiency between developed and emerging countries. Behav. Inf. Technol. 2019, 38, 876–886. [Google Scholar] [CrossRef]
- Barua, A.; Kriebel, C.H.; Mukhopadhyay, T. Information technologies and business value: An analytic and empirical investigation. Inf. Syst. Res. 1995, 6, 3–23. [Google Scholar] [CrossRef]
- Dewan, S.; Kraemer, K.L. Information technology and productivity: Evidence from country-level data. Manag. Sci. 2000, 46, 548–562. [Google Scholar] [CrossRef][Green Version]
- Fukugawa, N. Science parks in Japan and their value-added contributions to new technology-based firms. Int. J. Ind. Organ. 2006, 24, 381–400. [Google Scholar] [CrossRef]
- Koh, H.; Magee, C.L. A functional approach for studying technological progress: Application to information technology. Technol. Forecast. Soc. Change 2006, 73, 1061–1083. [Google Scholar] [CrossRef]
- Guellec, D.; Wunsch-Vincent, S. Policy responses to the economic crisis: Investing in innovation for long-term growth. OECD Digit. Econ. Pap. 2009, 6, 1–37. [Google Scholar] [CrossRef]
- Dobrota, M.; Jeremic, V.; Markovic, A. A new perspective on the ICT Development Index. Inf. Dev. 2012, 28, 271–280. [Google Scholar] [CrossRef]
- Leyli, A. Why to increase country’s network readiness level? Am. Sci. 2021, 1, 56–59. [Google Scholar]
- Dutta, S.; Lanvin, B. The Network Readiness Index 2020: Accelerating Digital Transformation in a Post-COVID Global Economy; Portulans Institute, WITSA: Washington, DC, USA, 2020. [Google Scholar]
- Máchová, R.; Lněnička, M. Evaluating the quality of open data portals on the national level. J. Theor. Appl. Electron. Commer. Res. 2017, 12, 21–41. [Google Scholar] [CrossRef][Green Version]
- Nevado-Peña, D.; López-Ruiz, V.R.; Alfaro-Navarro, J.L. Improving quality of life perception with ICT use and technological capacity in Europe. Technol. Forecast. Socl. Change 2019, 148, 119734. [Google Scholar] [CrossRef]
- Sitnicki, M.; Netreba, I. Interdependence Assessing for Networked Readiness Index Economic and Social Informative Factors*. Balt. J. Econ. 2020, 6, 47–53. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Cabanda, E.; Gholami, R. An alternative measure of the ICT-Opportunity Index. Inf. Manag. 2010, 47, 246–254. [Google Scholar] [CrossRef]
- Stare, M.; Jaklič, A.; Kotnik, P. Exploiting ICT potential in service firms in transition economies. Serv. Ind. J. 2006, 26, 287–302. [Google Scholar] [CrossRef]
- Franklin, M.; Stam, P.; Clayton, T. ICT impact assessment by linking data. Econ. Lab. Market. Rev. 2009, 3, 18–27. [Google Scholar] [CrossRef]
- Alderete, M.V. Examining the ICT access effect on socioeconomic development: The moderating role of ICT use and skills. Inf. Technol. Dev. 2017, 23, 42–58. [Google Scholar] [CrossRef]
- Prasanna, R.P.I.R.; Jayasundara, J.M.S.B.; Naradda Gamage, S.K.; Ekanayake, E.M.S.; Rajapakshe, P.S.K.; Abeyrathne, G.A.K.N.J. Sustainability of smes in the competition: A systemic review on technological challenges and sme performance. J. Open Innov. Technol. Mark. Complex. 2019, 5, 100. [Google Scholar] [CrossRef][Green Version]
- Farrell, M.J. The measurement of productive efficiency. J. R Stat. Soc. Ser. A Stat. Soc. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Jorgenson, D.W.; Vu, K. Information technology and the world economy. Scand. J. Econ. 2005, 107, 631–650. [Google Scholar] [CrossRef][Green Version]
- Okazaki, S. What do we know about mobile Internet adopters? A cluster analysis. Inf. Manag. 2006, 43, 127–141. [Google Scholar] [CrossRef][Green Version]
- Matteo, C.; Simone, G.; Paolo, M. ICT and Growth: A DEA Analysis of 14 OECD Countries. L’industria 2011, 3, 435–454. [Google Scholar]
- Marche, S.; McNiven, J.D. E-government and e-governance: The future isn’t what it used to be. Can. J. Adm. Sci. 2003, 20, 74–86. [Google Scholar] [CrossRef]
- Barnes, S.J.; Vidgen, R.T. Data triangulation and web quality metrics: A case study in e-government. Inf. Manag. 2006, 43, 767–777. [Google Scholar] [CrossRef]
- Yildiz, M. E-government research: Reviewing the literature, limitations, and ways forward. Gov. Inf. Q. 2007, 24, 646–665. [Google Scholar] [CrossRef]
- Abu-Shanab, E.; Al-Azzam, A. Trust Dimensions and the adoption of E-government in Jordan. Int. J. Inf. Commun. Technol. Hum. Dev. 2012, 4, 39–51. [Google Scholar] [CrossRef][Green Version]
- Al-Kibsi, G.; De Boer, K.; Mourshed, M.; Rea, N.P. Putting Citizens On-Line, Not in Line. McKinsey Q. 2001, 64–73. Available online: https://www.proquest.com/openview/7e4ecc1c1e64e587745ff765694d975b/1?pq-origsite=gscholar&cbl=30375 (accessed on 1 October 2021).
- West, D.M. E-government and the transformation of service delivery and citizen attitudes. Public Adm. Rev. 2004, 64, 15–27. [Google Scholar] [CrossRef]
- Von Haldenwang, C. Electronic government (e-government) and development. Eur. J. Dev. Res. 2004, 16, 417–432. [Google Scholar] [CrossRef]
- Norris, P. Critical Citizens: Global Support for Democratic Government; Oxford University Press Inc.: New York, NY, USA, 1999. [Google Scholar]
- Anderson, P. Perspective: Complexity theory and organization science. Organ. Sci. 1999, 10, 216–232. [Google Scholar] [CrossRef][Green Version]
- Fountain, J.E. Paradoxes of public sector customer service. Governance 2001, 14, 55–73. [Google Scholar] [CrossRef][Green Version]
- Pillania, R.K. Competitiveness and emerging markets. Bus. Strategy Ser. 2009, 10, 90–95. [Google Scholar] [CrossRef]
- Batterbury, S.P.; Fernando, J.L. Rescaling governance and the impacts of political and environmental decentralization: An introduction. World Dev. 2006, 34, 1851–1863. [Google Scholar] [CrossRef]
- Kharlamova, G.; Vertelieva, O. The international competitiveness of countries: Economic-mathematical approach. Econ. Soc. 2013, 6, 39–52. [Google Scholar] [CrossRef]
- Asogwa, B.E. Electronic government as a paradigm shift for efficient public services: Opportunities and challenges for Nigerian government. Libr. Hi Tech 2013, 31, 141–159. [Google Scholar] [CrossRef]
- Waller, L.; Genius, A. Barriers to transforming government in Jamaica: Challenges to implementing initiatives to enhance the efficiency, effectiveness, and service delivery of government through ICTs (e-Government). Transform. Gov. People Process Policy 2015, 9, 480–497. [Google Scholar] [CrossRef]
- Prybutok, V.R.; Zhang, X.; Ryan, S.D. Evaluating leadership, IT quality, and net benefits in an e-government environment. Inf. Manag. 2008, 45, 143–152. [Google Scholar] [CrossRef]
- Irani, Z.; Love, P.E.; Montazemi, A. E-government: Past, present, and future. Eur. J. Inf. Syst. 2007, 16, 103–105. [Google Scholar] [CrossRef]
- Mohammed, F.; Ibrahim, O. Refining e-government readiness index by cloud computing. J. Teknol. 2013, 65, 23–34. [Google Scholar] [CrossRef][Green Version]
- Koh, C.E.; Prybutok, V.R.; Zhang, X. Measuring e-government readiness. Inf. Manag. 2008, 45, 540–546. [Google Scholar] [CrossRef]
- Chanyagorn, P.; Kungwannarongkun, B. ICT readiness assessment model for public and private organizations in developing country. Int. J. Inf. Educ. Technol. 2011, 1, 99–106. [Google Scholar] [CrossRef][Green Version]
- Azman, H.; Salman, A.; Razak, N.A.; Hussin, S.; Hasim, M.S.; Sidin, S.M. Determining critical success factors for ICT readiness in a digital economy: A study from user perspective. Adv. Sci. Lett. 2015, 21, 1367–1369. [Google Scholar] [CrossRef]
- Wielicki, T.; Arendt, L. A knowledge-driven shift in perception of ICT implementation barriers: Comparative study of US and European SMEs. J. Inf. Sci. 2010, 36, 162–174. [Google Scholar] [CrossRef]
- Kaylor, C.; Deshazo, R.; Van Eck, D. Gauging e-government: A report on implementing services among American cities. Gov. Inf. Q. 2001, 18, 293–307. [Google Scholar] [CrossRef]
- Norris, D.F.; Moon, M.J. Advancing e-government at the grassroots: Tortoise or hare? Public Adm. Rev. 2005, 65, 64–75. [Google Scholar] [CrossRef]
- Taranenko, I. Strategic Analysis of Innovation-Based Competitiveness in The Global Economy. Montenegrin J. Econ. 2013, 9, 127–134. [Google Scholar]
- Nasab, E.H.; Aghaei, M. The effect of ICT on economic growth: Further evidence. IBBA 2009, 5, 46–56. [Google Scholar]
- Babenko, V.; Perepelytsa, A. Research of the informatization process development of the countries of the World. Technol. Audit Prod. Res. 2018, 6, 22–29. [Google Scholar] [CrossRef]
- Babenko, V.; Perevozova, I.; Mandych, O.; Kvyatko, T.; Maliy, O.; Mykolenko, I. World informatization in conditions of international globalization: Factors of influence. GJESM 2019, 5, 172–179. [Google Scholar]
- James, J. The ICT Development Index and the digital divide: How are they related? Technol. Forecast. Soc. Change 2012, 79, 587–594. [Google Scholar] [CrossRef]
- Cuervo, M.R.V.; Menéndez, A.J.L. A multivariate framework for the analysis of the digital divide: Evidence for the European Union-15. Inf. Manag. 2006, 43, 756–766. [Google Scholar] [CrossRef]
- Osman, I.H.; Zablith, F. Re-evaluating electronic government development index to monitor the transformation toward achieving sustainable development goals. J. Bus. Res. 2021, 131, 426–440. [Google Scholar] [CrossRef]
- Wu, J.; Guo, S.; Huang, H.; Liu, W.; Xiang, Y. Information, and communications technologies for sustainable development goals: State-of-the-art, needs and perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 2389–2406. [Google Scholar] [CrossRef][Green Version]
- Gupta, N.; Benson, C.C. Sustainability, and competitive advantage: An empirical study of value creation. Compet. Forum 2011, 9, 121–136. [Google Scholar]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols in DEA. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Banker, R.D.; Cooper, W.W.; Seiford, L.M.; Thrall, R.M.; Zhu, J. Returns to scale in different DEA models. Eur. J. Oper. Res. 2004, 154, 345–362. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Sutopo, W.; Astuti, R.W.; Suryandari, R.T. Accelerating a technology commercialization; with a discussion on the relation between technology transfer efficiency and open innovation. J. Open Innov. Technol. Mark. Complex. 2019, 5, 95. [Google Scholar] [CrossRef][Green Version]
- Becchetti, L.; andres londono Bedoya, D.; Paganetto, L. ICT investment, productivity, and efficiency: Evidence at firm level using a stochastic frontier approach. J. Product. Anal. 2003, 20, 143–167. [Google Scholar] [CrossRef]
- Lee, B.; Sohn, E.; Won, D.; Yeo, W.; Kim, K.; Kim, S. The efficiency analysis of national R&D planning for the field of precision medicine in korea. J. Open Innov. Technol. Mark. Complex. 2018, 4, 39. [Google Scholar]
- Aristovnik, A. The impact of ICT on educational performance and its efficiency in selected EU and OECD countries: A non-parametric analysis. Turkish Online J. Educ. Technol. 2012, 11, 144–152. [Google Scholar] [CrossRef][Green Version]
- Hwang, B.Y.; Jun, H.J.; Chang, M.H.; Kim, D.C. Efficiency Analysis of the Royalty System from the Perspective of Open Innovation. J. Open Innov. Technol. Mark. Complex. 2018, 4, 22. [Google Scholar] [CrossRef][Green Version]
- Milana, C.; Zeli, A. The contribution of ICT to production efficiency in Italy: Firm-level evidence using data envelopment analysis and econometric estimations. OECD Sci. Technol. Ind. Work. Pap. 2002, 2002, 1–60. [Google Scholar]
- Susiluoto, I. Effects of ICT on Regional Economic Efficiency; Helsinki City Urban Facts Office Web Publications: Helsinki, Finland, 2003. [Google Scholar]
- Thanassoulis, E. A data envelopment analysis approach to clustering operating units for resource allocation purposes. Omega 1996, 24, 463–476. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef][Green Version]
- Samut, P.K.; Cafrı, R. Analysis of the efficiency determinants of health systems in OECD countries by DEA and panel tobit. Soc. Indic. Res. 2016, 129, 113–132. [Google Scholar] [CrossRef]
- Afzal, M.N.I. An empirical investigation of the National Innovation System (NIS) using Data Envelopment Analysis (DEA) and the TOBIT model. Int. Rev. Appl. Econ. 2014, 28, 507–523. [Google Scholar] [CrossRef]
- McDonald, J. Using least squares and tobit in second stage DEA efficiency analyses. Eur. J. Oper. Res. 2009, 197, 792–798. [Google Scholar] [CrossRef]
- Hsu, F.M.; Hsueh, C.C. Measuring relative efficiency of government-sponsored R&D projects: A three-stage approach. Eval. Program Plan 2009, 32, 178–186. [Google Scholar]
- Schwab, K. The Global Competitiveness Report 2019; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
Organizations | International Comparative Index of Informatization | |
---|---|---|
International organizations | ITU | ICT Development index, IDI |
ICT Opportunity Index, ICT-OI | ||
Digital Opportunity Index, DOI | ||
UN | e-Government Development index, EGDI | |
e-Participation Index, EPI | ||
WB | Knowledge Economy Index, KEI | |
Civilian departments | WEF | Networked Readiness Index, NRI |
Global Competitiveness Index, GCI | ||
IMD | World Competitiveness Index, WCS | |
EIU | Digital Economy Rankings | |
CIW | Global Innovation Index, GII |
Factors | Measuring Indicator | Sub-Indicator Contents | |
---|---|---|---|
Input | Technology | Access | Index |
Content | |||
Future Technologies | |||
People | Individuals | ||
Businesses | |||
Governments | |||
Governance | Trust | ||
Regulation | |||
Inclusion | |||
Output | Impact | Economy | |
Quality of Life | |||
SDG Contribution |
Variable | DMU | Pillar | Min | Max | Mean |
---|---|---|---|---|---|
Input | 134 | Technology | 6.45 | 85.67 | 42.22 |
(Congo, Dem. Rep) | (Switzerland) | ||||
134 | People | 8.25 | 80.81 | 46.49 | |
(Chad) | (Denmark) | ||||
134 | Governance | 16.95 | 91.30 | 56.92 | |
(Yemen) | (Norway) | ||||
Output | 134 | Impact | 21.32 | 88.17 | 52.34 |
(Chad) | (Singapore) |
1st Quartile High-Income Countries | 2nd Quartile Upper-Middle-Income Countries | ||||||
---|---|---|---|---|---|---|---|
DMU | TE(CRS) (1) | PTE(VRS) (2) | SE (3) | DMU | TE(CRS) | PTE(VRS) | SE |
Australia | 0.8616 | 0.8693(DRS) | 0.9912 | Argentina | 0.9001 | 0.9008(DRS) | 0.9992 |
Austria | 0.8892 | 0.8893(IRS) | 0.9998 | Armenia | 0.7814 | 0.8005(DRS) | 0.9762 |
Belgium | 0.9070 | 0.9071(IRS) | 0.9999 | Azerbaijan | 0.8736 | 1.0000 | 0.8736(IRS) |
Canada | 0.8650 | 0.8706(DRS) | 0.9937 | Bahrain | 0.7810 | 0.9224 | 0.8467(DRS) |
Czech Republic | 0.9428 | 0.9432(IRS) | 0.9996 | Belarus | 0.9242 | 0.9244(DRS) | 0.9998 |
Denmark | 0.8501 | 0.8898(DRS) | 0.9554 | Brazil | 0.8622 | 0.8632(DRS) | 0.9989 |
Estonia | 0.8520 | 0.8633(DRS) | 0.9869 | Bulgaria | 0.7089 | 0.8222(DRS) | 0.8622 |
Finland | 0.8390 | 0.8573(DRS) | 0.9787 | Chile | 0.7192 | 0.7736(DRS) | 0.9297 |
France | 0.9139 | 0.9168(DRS) | 0.9969 | China | 0.7925 | 0.9154 | 0.8657(DRS) |
Germany | 0.9099 | 0.9171(DRS) | 0.9921 | Costa Rica | 0.8561 | 0.8960(DRS) | 0.9555 |
Hong Kong | 0.9178 | 0.9408(DRS) | 0.9755 | Croatia | 0.8305 | 0.8816(DRS) | 0.9420 |
Iceland | 0.8886 | 0.9628 | 0.9229(IRS) | Cyprus | 0.7739 | 0.9419 | 0.8216(DRS) |
Ireland | 1.0000 | 1.0000 | 1.0000 | Greece | 0.7115 | 0.8474 | 0.8395(DRS) |
Israel | 0.9390 | 0.9726 | 0.9655(IRS) | Hungary | 0.7809 | 0.9511 | 0.8210(DRS) |
Italy | 0.9619 | 1.0000 | 0.9619(IRS) | Kazakhstan | 0.9407 | 0.9423(DRS) | 0.9982 |
Japan | 0.9576 | 0.9644(IRS) | 0.9929 | Kuwait | 0.8628 | 0.8969(DRS) | 0.9620 |
Korea, Rep. | 0.9239 | 0.9355(DRS) | 0.9877 | Latvia | 0.7436 | 0.9033 | 0.8232(DRS) |
Lithuania | 0.8633 | 0.8723(DRS) | 0.9897 | Mauritius | 0.8367 | 0.8430(DRS) | 0.9925 |
Luxembourg | 0.8676 | 0.8679(DRS) | 0.9996 | Mexico | 1.0000 | 1.0000 | 1.0000 |
Malaysia | 1.0000 | 1.0000 | 1.0000 | Montenegro | 0.7217 | 0.7872(DRS) | 0.9169 |
Malta | 0.9992 | 1.0000 | 0.9992(IRS) | North Macedonia | 0.8193 | 0.8195(DRS) | 0.9998 |
Netherlands | 0.8835 | 0.9218(DRS) | 0.9585 | Oman | 0.9640 | 0.9657(DRS) | 0.9982 |
New Zealand | 0.8500 | 0.8586(DRS) | 0.9900 | Qatar | 0.8159 | 1.0000 | 0.8159(DRS) |
Norway | 0.8888 | 0.9005(DRS) | 0.9870 | Romania | 0.8010 | 0.9120 | 0.8783(DRS) |
Poland | 1.0000 | 1.0000 | 1.0000 | Russia | 0.7691 | 0.8370(DRS) | 0.9188 |
Portugal | 0.9105 | 0.9794 | 0.9296(IRS) | Saudi Arabia | 0.7263 | 0.8381(DRS) | 0.8666 |
Singapore | 1.0000 | 1.0000 | 1.0000 | Serbia | 0.8232 | 0.8668(DRS) | 0.9497 |
Slovenia | 0.9466 | 0.9489(IRS) | 0.9976 | Slovakia | 0.7933 | 0.9714 | 0.8166(DRS) |
Spain | 0.8960 | 0.8961(IRS) | 0.9999 | Thailand | 0.8196 | 0.8776(DRS) | 0.9339 |
Sweden | 0.8786 | 0.9100(DRS) | 0.9655 | Turkey | 0.7656 | 0.7681(DRS) | 0.9968 |
Switzerland | 0.9540 | 0.9716(DRS) | 0.9819 | Ukraine | 0.7896 | 0.7912(DRS) | 0.9981 |
UAE | 0.9166 | 0.9563(DRS) | 0.9584 | Uruguay | 0.8027 | 0.8795(DRS) | 0.9126 |
United Kingdom | 0.8927 | 0.8954(DRS) | 0.9970 | Viet Nam | 1.0000 | 1.0000 | 1.0000 |
United States | 0.8180 | 0.8354(DRS) | 0.9792 | Mean | 0.8209 | 0.8891 | 0.9245 |
Mean | 0.9113 | 0.9269 | 0.9833 | Std. | 0.0777 | 0.0677 | 0.0674 |
Mean | 0.9113 | 0.9269 | 0.9833 | 2nd Quartile | CRS: 2, DRS: 10, IRS: 1/PTE: 21, SE: 10 | ||
1st Quartile | CRS: 4, DRS: 17, IRS: 13/PTE: 25, SE: 5 | (Returns to scale) indicate the cause of the inefficiency |
3rd Quartile Lower-Middle-Income Countries | 4th Quartile Low-Income Countries | ||||||
---|---|---|---|---|---|---|---|
DMU | TE(CRS) (1) | PTE(VRS) (2) | SE (3) | DMU | TE(CRS) | PTE(VRS) | SE |
Albania | 0.7471 | 0.8448(DRS) | 0.8844 | Algeria | 0.6459 | 0.9274 | 0.6964(DRS) |
Bolivia | 0.9042 | 1.0000 | 0.9042(I) | Angola | 0.6949 | 0.7426(DRS) | 0.9359 |
Bosnia * | 0.7592 | 0.8410(DRS) | 0.9027 | Bangladesh | 0.6851 | 0.9793 | 0.6996(DRS) |
Botswana | 0.7256 | 0.7369(DRS) | 0.9847 | Benin | 0.6236 | 0.8130 | 0.7671(DRS) |
Cabo Verde | 0.7836 | 0.8838(DRS) | 0.8867 | Burkina Faso | 0.9171 | 0.9831 | 0.9329(DRS) |
Colombia | 0.6895 | 0.8669 | 0.7953(DRS) | Burundi | 0.9071 | 0.9945 | 0.9121(DRS) |
Dominican, Rep. | 0.7544 | 0.8764 | 0.8609(DRS) | Cambodia | 0.6940 | 0.9803 | 0.7079(DRS) |
Ecuador | 0.8370 | 0.9155 | 0.9142(DRS) | Cameroon | 0.5905 | 0.7673(DRS) | 0.7696 |
Egypt | 0.7277 | 0.8275(DRS) | 0.8794 | Chad | 1.0000 | 1.0000 | 1.0000 |
El Salvador | 1.0000 | 1.0000 | 1.0000 | Congo * | 1.0000 | 1.0000 | 1.0000 |
Georgia | 0.5430 | 0.7604 | 0.7141(DRS) | Côte d’Ivoire | 0.5651 | 0.7714 | 0.7325(DRS) |
Ghana | 0.7748 | 1.0000 | 0.7748(IRS) | Eswatini | 0.6379 | 0.8006 | 0.7968(DRS) |
India | 0.5675 | 0.6847(DRS) | 0.8288 | Ethiopia | 1.0000 | 1.0000 | 1.0000 |
Indonesia | 0.6773 | 0.8708 | 0.7778(DRS) | Gambia | 0.6754 | 0.8667 | 0.7792(DRS) |
Iran, Islamic Rep | 0.6763 | 0.7699(DRS) | 0.8785 | Guatemala | 0.7037 | 1.0000 | 0.7037(DRS) |
Jamaica | 0.7808 | 0.9424 | 0.8286(DRS) | Guinea | 0.6873 | 0.9096 | 0.7556(DRS) |
Jordan | 0.6270 | 0.7931 | 0.7905(DRS) | Honduras | 0.6631 | 0.9571 | 0.6928(DRS) |
Kenya | 0.7347 | 0.7612(DRS) | 0.9652 | Lesotho | 0.6999 | 0.8542 | 0.8194(DRS) |
Kyrgyzstan | 0.8897 | 0.8989(DRS) | 0.9898 | Madagascar | 0.7383 | 0.8879 | 0.8315(DRS) |
Lao PDR | 1.0000 | 1.0000 | 1.0000 | Malawi | 0.9741 | 0.9861(DRS) | 0.9878 |
Lebanon | 0.6130 | 0.7258(DRS) | 0.8446 | Mali | 0.7814 | 0.9453 | 0.8266(DRS) |
Moldova | 0.6846 | 0.8734 | 0.7838(DRS) | Mozambique | 0.6180 | 0.7280(DRS) | 0.8489 |
Mongolia | 0.8219 | 0.8658(DRS) | 0.9493 | Namibia | 0.5447 | 0.8453 | 0.6444(DRS) |
Morocco | 0.6622 | 0.7579(DRS) | 0.8737 | Nepal | 0.5913 | 0.8309 | 0.7116(DRS) |
Panama | 0.7788 | 0.8930 | 0.8721(DRS) | Nigeria | 0.5748 | 0.7304(DRS) | 0.7870 |
Paraguay | 0.9557 | 0.9557(DRS) | 1.0000 | Pakistan | 0.5843 | 0.8567 | 0.6820(DRS) |
Peru | 0.7601 | 0.8609(DRS) | 0.8829 | Tajikistan | 0.6529 | 0.9411 | 0.6938(DRS) |
Philippines | 0.8772 | 1.0000 | 0.8772(DRS) | Tanzania | 0.6161 | 0.8185 | 0.7527(DRS) |
Rwanda | 0.7386 | 0.7632(DRS) | 0.9678 | Uganda | 0.5146 | 0.7133(DRS) | 0.7214 |
Senegal | 0.7646 | 0.7650(IRS) | 0.9995 | Venezuela | 0.7630 | 1.0000 | 0.7630(DRS) |
South Africa | 0.5480 | 0.6776(DRS) | 0.8088 | Yemen | 1.0000 | 1.0000 | 1.0000 |
Sri Lanka | 0.8067 | 0.8884(DRS) | 0.9081 | Zambia | 0.6079 | 0.7803 | 0.7790(DRS) |
Trinidad * | 0.7355 | 0.8503(DRS) | 0.8650 | Zimbabwe | 0.4348 | 0.5555(DRS) | 0.7827 |
Tunisia | 0.6645 | 0.7479(DRS) | 0.8885 | Mean | 0.7087 | 0.8778 | 0.8035 |
Mean | 0.7533 | 0.8500 | 0.8848 | Std. | 0.1532 | 0.1114 | 0.1066 |
Std. | 0.1128 | 0.0925 | 0.0745 | 4th Quartile | CRS: 4, DRS: 29 / PTE: 7, SE: 22 | ||
3rd Quartile | CRS: 2, DRS: 29, IRS: 3 / PTE: 20, SE: 12 | (Returns to scale) indicate the cause of the inefficiency |
Construct | Factor | Scale | Estimate | z Value | Pr(>|z|) |
---|---|---|---|---|---|
High income countries | GDP growth (1) | 0.0507 | 0.0212 | 2.992 | 0.003 *** |
GDP Environmental (2) | 0.0523 | 0.0019 | 2.258 | 0.024 ** | |
Institutions | 0.0512 | −0.0035 | −2.493 | 0.013 ** | |
Skills | 0.0476 | −0.0056 | −3.478 | 0.001 *** | |
Business dynamism | 0.0520 | −0.0036 | −2.246 | 0.025 ** | |
Upper-Middle income countries | Institutions | 0.0771 | −0.0054 | −1.967 | 0.049 ** |
Skills | 0.0753 | −0.0049 | −2.357 | 0.018 ** | |
Innovation capability | 0.0773 | −0.0037 | −1.792 | 0.073 * | |
Lower Middle income countries | Population | 0.1130 | −1.619 × 10−4 | −1.887 | 0.059 * |
Institutions | 0.0912 | −0.0130 | −4.809 | 1.52 × 10−6 *** | |
Infrastructure | 0.1104 | −0.0068 | −2.269 | 0.023 ** | |
Skills | 0.1142 | −0.0051 | −1.773 | 0.076 * | |
Financial system | 0.1098 | −0.0058 | −2.349 | 0.019 ** | |
Market size | 0.1113 | −0.0027 | −2.179 | 0.029 ** | |
Business dynamism | 0.1074 | −0.0074 | −2.824 | 0.005 *** | |
Innovation capability | 0.0887 | −0.0139 | −5.067 | 4.04 × 10−7 *** | |
Low income countries | GDP per capita | 0.1613 | −4.272 × 10−5 | −2.073 | 0.038 ** |
Institutions | 0.1496 | −0.0143 | −3.253 | 0.001 *** | |
Infrastructure | 0.1487 | −0.0093 | −3.263 | 0.001 *** | |
ICT adoption | 0.1465 | −0.0088 | −3.486 | 0.001 *** | |
Macro-economic stability | 0.1623 | −0.0035 | −2.019 | 0.044 ** | |
Skills | 0.1540 | −0.0084 | −2.793 | 0.005 *** | |
Product market | 0.1648 | −0.0095 | −1.832 | 0.067 * | |
Labor market | 0.1576 | −0.0127 | −2.573 | 0.010 ** | |
Financial system | 0.1547 | −0.0101 | −2.783 | 0.005 *** | |
Business dynamism | 0.1428 | −0.0129 | −3.796 | 0.000 *** | |
Innovation capability | 0.1473 | −0.0208 | −3.369 | 0.000 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, H.; Nam, T.; Oh, M.; Choi, S. An Efficiency Measurement of E-Government Performance for Network Readiness: Non-Parametric Frontier Approach. J. Open Innov. Technol. Mark. Complex. 2022, 8, 10. https://doi.org/10.3390/joitmc8010010
Nam H, Nam T, Oh M, Choi S. An Efficiency Measurement of E-Government Performance for Network Readiness: Non-Parametric Frontier Approach. Journal of Open Innovation: Technology, Market, and Complexity. 2022; 8(1):10. https://doi.org/10.3390/joitmc8010010
Chicago/Turabian StyleNam, Hyundong, Taewoo Nam, Minjeong Oh, and Sungyong Choi. 2022. "An Efficiency Measurement of E-Government Performance for Network Readiness: Non-Parametric Frontier Approach" Journal of Open Innovation: Technology, Market, and Complexity 8, no. 1: 10. https://doi.org/10.3390/joitmc8010010