Network Proximity Evolution of Open Innovation Diffusion: A Case of Artificial Intelligence for Healthcare
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Open Innovation Theory
2.2. Hypotheses Proposed
2.2.1. Technological Proximity
2.2.2. Spatial Proximity
2.2.3. Organizational Proximity
2.2.4. Temporal Proximity
3. Methodology
3.1. Empirical Research Method
3.2. Data Source
4. Empirical Analysis Results
4.1. QAP Correlation Analysis
4.2. QAP Regression Result
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yun, J.J.; Park, K.; Hahm, S.D.; Kim, D. Basic Income with High Open Innovation Dynamics: The Way to the Entrepreneurial State. J. Open Innov. Technol. Mark. Complex. 2019, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Bettiol, M.; Chiarvesio, M.; Di Maria, E.; Gottardello, D. Local or global? Does internationalization drive innovation in clusters? Eur. Plan Stud. 2019, 27, 1995–2014. [Google Scholar] [CrossRef]
- Franco, M.; Esteves, L. Inter-clustering as a network of knowledge and learning: Multiple case studies. J. Innov. Knowl. 2020, 5, 39–49. [Google Scholar] [CrossRef]
- Ooms, W.; Piepenbrink, R. Open Innovation for Wicked Problems: Using Proximity to Overcome Barriers. Calif. Manag. Rev. 2021, 63, 62–100. [Google Scholar] [CrossRef]
- Komninos, N.; Kakderi, C.; Collado, A.; Papadaki, I.; Panori, A. Digital Transformation of City Ecosystems: Platforms Shaping Engagement and Externalities across Vertical Markets. J. Urban Technol. 2021, 28, 93–114. [Google Scholar] [CrossRef]
- Brink, T. Organising of dynamic proximities enables robustness, innovation and growth: The longitudinal case of small and medium-sized enterprises (SMEs) in food producing firm networks. Ind. Mark. Manag. 2018, 75, 66–79. [Google Scholar] [CrossRef]
- Sekliuckiene, J.; Sedziniauskiene, R.; Viburys, V. Adoption of Open Innovation in the Internationalization of Knowledge Intensive Firms. Eng. Econ. 2016, 27, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Leckel, A.; Veilleux, S.; Dana, L.P. Local Open Innovation: A means for public policy to increase collaboration for innovation in SMEs. Technol. Soc. 2020, 153, 119891. [Google Scholar] [CrossRef]
- Öberg, C.; Alexander, A.T. The openness of open innovation in ecosystems—Integrating innovation and management literature on knowledge linkages. J. Innov. Knowl. 2019, 4, 211–218. [Google Scholar] [CrossRef]
- Suh, Y.; Jeon, J. Monitoring patterns of open innovation using the patent-based brokerage analysis. Technol. Soc. 2019, 146, 595–605. [Google Scholar] [CrossRef]
- Radziwon, A.; Bogers, M. Open innovation in SMEs: Exploring inter-organizational relationships in an ecosystem. Technol. Soc. 2019, 146, 573–587. [Google Scholar] [CrossRef]
- Boschma, R. Proximity and Innovation: A Critical Assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- O’Connor, M.; Doran, J.; McCarthy, N. Cognitive proximity and innovation performance: Are collaborators equal? Eur. J. Innov. Manag. 2020, 24, 637–654. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.; Tang, M.; Lan, H. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. J. Clean. Prod. 2021, 283, 124649. [Google Scholar] [CrossRef]
- Knoben, J.; Oerlemans, L.A.G. Proximity and inter-organizational collaboration: A literature review. Int. J. Manag. Rev. 2006, 8, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Balland, P. Proximity and the Evolution of Collaboration Networks: Evidence from Research and Development Projects within the Global Navigation Satellite System (GNSS) Industry. Reg. Stud. 2012, 46, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Kim, E. Factors Affecting the Outbound Open Innovation Strategies in Pharmaceutical Industry: Focus on Out-Licensing Deal. J. Open Innov. Technol. Mark. Complex. 2019, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Nestle, V.; Täube, F.A.; Heidenreich, S.; Bogers, M. Establishing open innovation culture in cluster initiatives: The role of trust and information asymmetry. Technol. Soc. 2019, 146, 563–572. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Z.; Zhang, Q.; Liang, H. External knowledge search and firms’ incremental innovation capability: The joint moderating effect of technological proximity and network embeddedness. Manag. Decis. 2020, 58, 2049–2072. [Google Scholar] [CrossRef]
- Leydesdorff, L. Synergy in Knowledge-Based Innovation Systems at National and Regional Levels: The Triple-Helix Model and the Fourth Industrial Revolution. J. Open Innov. Technol. Mark. Complex. 2018, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Quiñones, R.; Caladcad, J.A.; Quiñones, H.; Caballes, S.A.; Abellana, D.P.; Jabilles, E.M.; Himang, C.; Ocampo, L. Open Innovation with Fuzzy Cognitive Mapping for Modeling the Barriers of University Technology Transfer: A Philippine Scenario. J. Open Innov. Technol. Mark. Complex. 2019, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zeng, G.; Cao, X. Open innovation and innovative performance of universities: Evidence from China. Growth Chang. 2020, 51, 1142–1157. [Google Scholar] [CrossRef]
- Sun, Y.; Grimes, S. The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China. Technol. Soc. 2017, 125, 125–136. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G. Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China. Scientometrics 2019, 119, 561–593. [Google Scholar] [CrossRef]
- Marrocu, E.; Paci, R.; Usai, S. Proximity, networking and knowledge production in Europe: What lessons for innovation policy? Technol. Soc. 2013, 80, 1484–1498. [Google Scholar] [CrossRef]
- Guan, J.C.; Yan, Y. Technological proximity and recombinative innovation in the alternative energy field. Res. Policy 2016, 45, 1460–1473. [Google Scholar] [CrossRef]
- Capaldo, A.; Petruzzelli, A.M. Partner Geographic and Organizational Proximity and the Innovative Performance of Knowledge-Creating Alliances. Eur. Manag. Rev. 2014, 11, 63–84. [Google Scholar] [CrossRef]
- Kapetaniou, C.; Lee, S.H. Geographical proximity and open innovation of SMEs in Cyprus. Small. Bus. Econ. 2019, 52, 261–276. [Google Scholar] [CrossRef]
- Cao, X.; Zeng, G.; Ye, L. The structure and proximity mechanism of formal innovation networks: Evidence from Shanghai high-tech ITISAs. Growth Chang. 2019, 50, 569–586. [Google Scholar] [CrossRef]
- Hansen, T.; Mattes, J. Proximity and power in collaborative innovation projects. Reg. Stud. 2018, 52, 35–46. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Jensen, P.D. Promoting Industrial Symbiosis: Using the Concept of Proximity to Explore Social Network Development. J. Ind. Ecol. 2016, 20, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Balland, P.; Boschma, R.; Frenken, K. Proximity and Innovation: From Statics to Dynamics. Reg. Stud. 2015, 49, 907–920. [Google Scholar] [CrossRef]
- Rosiello, A.; Maleki, A. A dynamic multi-sector analysis of technological catch-up: The impact of technology cycle times, knowledge base complexity and variety. Res. Policy 2021, 50, 104194. [Google Scholar] [CrossRef]
- Della Corte, V. Innovation through Coopetition: Future Directions and New Challenges. J. Open Innov. Technol. Mark. Complex. 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Letaifa, S.B.; Rabeau, Y. Too close to collaborate? How geographic proximity could impede entrepreneurship and innovation. J. Bus. Res. 2013, 66, 2071–2078. [Google Scholar] [CrossRef]
- Fitjar, R.D.; Rodríguez-Pose, A. The geographical dimension of innovation collaboration: Networking and innovation in Norway. Urban. Stud. 2014, 51, 2572–2595. [Google Scholar] [CrossRef]
- Rasiah, R. Building Networks to Harness Innovation Synergies: Towards an Open Systems Approach to Sustainable Development. J. Open Innov. Technol. Mark. Complex. 2019, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Ferras Hernandez, X.; Nylund, P.A. Clusters as Innovation Engines: The Accelerating Strengths of Proximity. Eur. Manag. Rev. 2018, 16, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Tanner, A.N. Changing locus of innovation: A micro-process approach on the dynamics of proximity. Eur. Plan. Stud. 2018, 26, 2304–2322. [Google Scholar] [CrossRef] [Green Version]
- Lazzeretti, L.; Capone, F. How proximity matters in innovation networks dynamics along the cluster evolution. A study of the high technology applied to cultural goods. J. Bus. Res. 2016, 69, 5855–5865. [Google Scholar] [CrossRef]
- Menzel, M. Interrelating Dynamic Proximities by Bridging, Reducing and Producing Distances. Reg. Stud. 2015, 49, 1892–1907. [Google Scholar] [CrossRef]
Dimensions | Main Research Progress | Limitation |
---|---|---|
Open innovation diffusion | Innovation ecosystem formation [7,8,11] Knowledge flow network [9,20] Open innovation strategy [10,17,18] Innovation proximity network [16,19] | Ignores the combination of multiple proximity dimensions |
Technological proximity | Interregional innovation networks [23] Moderating effect of spillover [24] | Lacks a comprehensive explanation for the interaction of multiple proximities |
Spatial proximity | Weak proximity effect [25,26] Influence on knowledge creation [27,28] | |
Organizational proximity | Promotion effect of proximity [29,30] Symbiosis relationship [31] | |
Temporal proximity | Co-evolutional knowledge network [32] Technology catchup [33] |
Variables | Name | Connotation |
---|---|---|
Y | Open innovation diffusion | Patent citation relationship between the patent applicants in a specific technology field |
X1 | Technological proximity | Technical branch cooccurrence relationship between the patent applicants: this study classified the branches according to the international patent classification (IPC) at the subgroup level, and the corresponding values are from the IPC statistics |
X2 | Spatial proximity | Patent jurisdiction cooccurrence relationship between the patent applicants |
X3 | Organizational proximity | Judgment matrix of organization similarity between the patent applicants: the proximity in the matrix is assigned the value of one if similar and zero if not similar; the organization attributes include university (or institution) and enterprise. |
X4 | Temporal proximity | Timespan cooccurrence relationship between the patent applicants |
Y | X1 | X2 | X3 | X4 | |
---|---|---|---|---|---|
Mean | 2.34 | 18.22 | 4.19 | 0.52 | 9.02 |
Standard deviation | 10.24 | 27.73 | 6.76 | 0.5 | 8.9 |
Sum | 8838 | 68,908 | 15,848 | 1958 | 34,112 |
Variance | 104.94 | 768.78 | 45.75 | 0.25 | 79.16 |
Minimum | 0 | 0 | 0 | 0 | 0 |
Maximum | 212 | 484 | 49 | 1 | 193 |
No. of obs. | 3782 | 3782 | 3782 | 3782 | 3782 |
Y | X1 | X2 | X3 | X4 | |
---|---|---|---|---|---|
Y | – | ||||
X1 | 0.845 *** (0.000) | – | |||
X2 | 0.385 *** (0.000) | 0.403 *** (0.000) | – | ||
X3 | 0.135 ** (0.002) | 0.127 * (0.015) | 0.144 ** (0.003) | – | |
X4 | 0.664 *** (0.000) | 0.822 *** (0.000) | 0.289 *** (0.000) | 0.070 (0.095) | – |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
---|---|---|---|---|---|---|---|
X1 | 0.824 *** (0.000) | 0.843 *** (0.000) | 0.923 *** (0.000) | 0.896 *** (0.000) | |||
X2 | 0.053 ** (0.004) | 0.377 *** (0.000) | 0.210 *** (0.000) | 0.047 ** (0.008) | |||
X3 | 0.022 (0.074) | 0.049 (0.065) | 0.070 *** (0.000) | 0.014 * (0.160) | |||
X4 | −0.094 * (0.005) | 0.603 *** (0.000) | 0.660 *** (0.000) | −0.087 ** (0.006) | |||
Intercept | −3.543 | −3.567 | −2.892 | −0.579 | −5.262 | −5.261 | −3.238 |
R2 | 0.716 | 0.714 | 0.717 | 0.150 | 0.481 | 0.446 | 0.719 |
Variable | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 |
---|---|---|---|---|---|---|---|
X1 | 0.758 *** (0.000) | 0.859 *** (0.000) | 0.929 *** (0.000) | 0.893 *** (0.000) | |||
X2 | 0.032 * (0.038) | 0.308 *** (0.000) | 0.135 *** (0.000) | 0.001 (0.431) | |||
X3 | 0.029 * (0.024) | −0.016 (0.259) | 0.060 ** (0.003) | 0.041 ** (0.005) | |||
X4 | −0.090 *** (0.001) | 0.384 *** (0.000) | 0.636 *** (0.000) | −0.083 ** (0.010) | |||
X1 × X2 | 0.088 *** (0.001) | 0.186 *** (0.000) | |||||
X1 × X3 | −0.035 ** (0.010) | −0.092 * (0.028) | |||||
X1 × X4 | −0.011 (0.416) | −0.190 ** (0.003) | |||||
X2 × X3 | 0.191 *** (0.000) | −0.056 * (0.014) | |||||
X2 × X4 | 0.298 *** (0.000) | 0.068 * (0.045) | |||||
X3 × X4 | 0.054 * (0.016) | 0.094 * (0.012) | |||||
Intercept | −3.482 | −3.400 | −2.909 | −1.700 | −4.933 | −5.750 | −3.519 |
R2 | 0.718 | 0.715 | 0.717 | 0.176 | 0.507 | 0.448 | 0.726 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, H. Network Proximity Evolution of Open Innovation Diffusion: A Case of Artificial Intelligence for Healthcare. J. Open Innov. Technol. Mark. Complex. 2021, 7, 222. https://doi.org/10.3390/joitmc7040222
Zhang B, Wang H. Network Proximity Evolution of Open Innovation Diffusion: A Case of Artificial Intelligence for Healthcare. Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(4):222. https://doi.org/10.3390/joitmc7040222
Chicago/Turabian StyleZhang, Ben, and Hua Wang. 2021. "Network Proximity Evolution of Open Innovation Diffusion: A Case of Artificial Intelligence for Healthcare" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 4: 222. https://doi.org/10.3390/joitmc7040222
APA StyleZhang, B., & Wang, H. (2021). Network Proximity Evolution of Open Innovation Diffusion: A Case of Artificial Intelligence for Healthcare. Journal of Open Innovation: Technology, Market, and Complexity, 7(4), 222. https://doi.org/10.3390/joitmc7040222