A New Optimization Technique for the Location and Routing Management in Agricultural Logistics
Abstract
:1. Introduction
2. Literature Review
3. Problem Statement and Mathematical Model
3.1. Problem Statement
3.2. Mathematical Model
Indices | ||||
i | set of farms indexed by i and j | |||
Parameters | ||||
Qi | Rubber quantity of farm i (kg) | |||
C | Fuel cost per liter (Baht) | |||
Dij | Distance from farm i to procurement center j (km) | |||
Fij | Fuel consumption rate from farm i to procurement center j | |||
V | Capacity of vehicle (kg) | |||
Pj | Capacity of procurement center (kg) | |||
Decision Variables | ||||
zij | = 1 if farm i is assigned to procurement center j and direct shipment is appeared | |||
= 0 otherwise | ||||
xij | = 1 if travel from farm i to farm j and routing for the rest of direct shipment is appeared | |||
= 0 otherwise | ||||
ni | = Number of direct shipments at farm i | |||
Support Variables | ||||
ui | Accumulated rubber quantity in vehicle at farm i for sub-tour elimination | |||
mj | Number of round travels of procurement center j | |||
ri | Remaining rubber after direct shipment from farm i | |||
yj | = 1 if procurement center j is chosen | |||
= 0 otherwise |
(2) | ||
(3) | ||
(4) | ||
(5) | ||
(6) | ||
(7) | ||
(8) | ||
(9) | ||
(10) |
4. Solution Approach
4.1. Generate a Set of Tracks
Track Interpretation Method
4.2. All Tracks Select the Specified Black Box
4.3. Execute the Selected Black Box
4.3.1. SWAP
4.3.2. Adaptive Large Neighborhood Search (ALNS)
Destroying Operators
- Random Removal
- Worst Removal
- Related Removal
Repairing Operators
- Random Insertion
- Best Insertion
4.3.3. Variable Neighborhood Search (VNS)
- Farms Exchange (N1)
- Depots Exchange (N2)
- Depot Status Change (N3)
Algorithm 1 VNS |
Input: Set of neighborhood structures N = {N1, N2, N3} Initialization: Initial solution (a track that chooses to operate in this black box) = s kmax = 10 repeat k ← 1 while k ≤ kmax do s’ ← select (N1, N2, N3) s’’ ← local search s’ if f(s’’) < f(s) then s ← s’’ k ← 1 else k ← k+1 end if end while until stopping criterion is met return s |
4.4. Improve the Track
4.5. Repeat Step 1 to 4
Algorithm 2 VaNSAS |
Input Number of farms, fuel consumption rate, distance, rubber quantity, related capacity Output Fuel cost Begin While I less than predefined number of iterations. 1. Randomly generate number of track (NT) Zijt 2. Each track individually choses black box 3. Operate black box (optional) SWAP (optional) ALNS (optional) VNS 4. Improve the track I = I + 1; End |
5. Computational Framework and Result
6. Conclusions and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Marchiol, L. An Outlook of Crop Nutrition in the Fourth Agricultural Revolution. Ital. J. Agron. 2019, 14, 1367. [Google Scholar] [CrossRef]
- Sung, J. The Fourth Industrial Revolution and Precision Agriculture. In Automation in Agriculture: Securing Food Supplies for Future Generations; IntechOpen: London, UK, 2018. [Google Scholar]
- Bank of Thailand. Major Agricultural Price in Thailand Report. 2019. Available online: https://www.bot.or.th/Thai/MonetaryPolicy/NorthEastern/Pages/commodities.aspx (accessed on 9 September 2019).
- The Board of Investment of Thailand. Thailand’s Rubber Industry. Available online: https://www.boi.go.th/upload/content/Rubber_5a3b80bcc4882.pdf (accessed on 2 November 2019).
- Trade Statistics for International Business Development. List of Exporters for the Selected Product in 2018. Available online: https://www.trademap.org/Country_SelProduct.aspx?nvpm=1%7c%7c%7c%7c%7c4001%7c%7c%7c4%7c1%7c1%7c2%7c1%7c1%7c2%7c1%7c1 (accessed on 2 November 2019).
- The Board of Investment of Thailand: world’s Top Supplier of Natural Rubber. Available online: https://www.boi.go.th/upload/content/Rubber_Industry2018_5bb33471b8292.pdf (accessed on 2 November 2019).
- Lee, D. Thailand Natural Rubber Economics. Available online: https://www.halcyonagri.com/thailand-natural-rubber-economics (accessed on 2 November 2019).
- Srisawadi, S.; Paoprasert, N.; Wattanawongsakun, P.; Lerspalungsanti, S.; Srisurangkul, C.; Pitaksapsin, N. Cost and Benefit Analysis for Rubber Product Transportation. In Proceedings of the 4th International Conference on Engineering, Project, and Production Management (EPPM 2013), Bangkok, Thailand, 23–25 October 2013; pp. 450–459. [Google Scholar]
- Akararungruangkul, R.; Kaewman, S. Modified Differential Evolution Algorithm Solving the Special Case of Location Routing Problem. Math. Comput. Appl. 2018, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- Larson, P. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, David Simchi-Levi Philip Kaminsky Edith Simchi-Levi. J. Bus. Logist. 2001, 22, 259. [Google Scholar] [CrossRef]
- Watson-Gandy, C.D.T.; Dohrn, P.J. Depot location with van salesmen—A practical approach. Omega 1973, 1, 321–329. [Google Scholar] [CrossRef]
- Madsen, O.B.G. Methods for solving combined two level location-routing problems of realistic dimensions. Eur. J. Oper. Res. 1983, 12, 295–301. [Google Scholar] [CrossRef]
- Alumur, S.; Kara, B.Y. A new model for the hazardous waste location-routing problem. Comput. Oper. Res. 2007, 34, 1406–1423. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, M.; Walther, G. The electric location routing problem with time windows and partial recharging. Eur. J. Oper. Res. 2017, 260, 995–1013. [Google Scholar] [CrossRef]
- Yakıcı, E. Solving location and routing problem for UAVs. Comput. Ind. Eng. 2016, 102, 294–301. [Google Scholar] [CrossRef]
- Wang, X.; Li, X. Carbon reduction in the location routing problem with heterogeneous fleet, simultaneous pickup-delivery and time windows. Procedia. Comput. Sci. 2017, 112, 1131–1140. [Google Scholar] [CrossRef]
- Demir, E.; Bektaş, T.; Laporte, G. A review of recent research on green road freight transportation. Eur. J. Oper. Res. 2014, 237, 775–793. [Google Scholar] [CrossRef] [Green Version]
- Karaoglan, I.; Altiparmak, F.; Kara, I.; Dengiz, B. A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery. Eur. J. Oper. Res. 2011, 211, 318–332. [Google Scholar] [CrossRef]
- Albareda-Sambola, M.; Fernández, E.; Nickel, S. Multiperiod location-routing with decoupled time scales. Eur. J. Oper. Res. 2012, 217, 248–258. [Google Scholar] [CrossRef]
- Samanlioglu, F. A multi-objective mathematical model for the industrial hazardous waste location-routing problem. Eur. J. Oper. Res. 2013, 226, 332–340. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Lin, S.-Y. A simulated annealing heuristic for the open location-routing problem. Comput. Oper. Res. 2015, 62, 184–196. [Google Scholar]
- Toro, E.M.; Franco, J.F.; Echeverri, M.G.; Guimarães, F.G. A multi-objective model for the green capacitated location-routing problem considering environmental impact. Comput. Ind. Eng. 2017, 110, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Govindan, K.; Jafarian, A.; Khodaverdi, R.; Devika, K. Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int. J. Prof. Econ. 2014, 152, 9–28. [Google Scholar] [CrossRef]
- Dukkanci, O.; Peker, M.; Kara, B.Y. Green hub location problem. Transp. Res. Part F Log. Transp. 2019, 125, 116–139. [Google Scholar] [CrossRef]
- Dukkanci, O.; Kara, B.Y.; Bektaş, T. The green location-routing problem. Comput. Oper. Res. 2019, 105, 187–202. [Google Scholar] [CrossRef]
- Toro, E.; Franco, J.; Granada-Echeverri, M.; Guimarães, F.; Rendón, R. Green open location-routing problem considering economic and environmental costs. Int. J. Ind. Eng. Comput. 2016, 8, 203–216. [Google Scholar] [CrossRef]
- Wang, S.; Tao, F.; Shi, Y. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint. Int. J. Environ. Res. Public Health. 2018, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. Eur. J. Oper. Res. 2007, 177, 649–672. [Google Scholar] [CrossRef] [Green Version]
- De, A.; Mogale, D.G.; Zhang, M.; Pratap, S.; Kumar, S.K.; Huang, G.Q. Multi-period multi-echelon inventory transportation problem considering stakeholders behavioural tendencies. Int. J. Prod. Econ. 2019, 107566. [Google Scholar] [CrossRef]
- De, A.; Choudhary, A.; Turkay, M.K.; Tiwari, M. Bunkering policies for a fuel bunker management problem for liner shipping networks. Eur. J. Oper. Res. 2019. [Google Scholar] [CrossRef]
- Barreto, S.; Ferreira, C.; Paixão, J.; Santos, B.S. Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 2007, 179, 968–977. [Google Scholar] [CrossRef]
- Boudahri, F.; Mtalaa, W.; Bennekrouf, M.; Sari, Z. Application of a Clustering Based Location-Routing Model to a Real Agri-food Supply Chain Redesign. In Advanced Methods for Computational Collective intelligence; Springer: Berlin/Heidelberg, Germany, 2013; Volume 457, pp. 323–331. [Google Scholar]
- Yu, V.F.; Lin, S.-W.; Lee, W.; Ting, C.-J. A simulated annealing heuristic for the capacitated location routing problem. Comput. Ind. Eng. 2010, 58, 288–299. [Google Scholar] [CrossRef]
- Sajjadi, S.R.; Cheraghi, S. Multi-products location-routing problem integrated with inventory under stochastic demand. Int. J. Ind. Syst. Eng. 2011, 7, 454–476. [Google Scholar] [CrossRef]
- Karaoglan, I.; Altiparmak, F.; Kara, I.; Dengiz, B. The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach. Omega 2012, 40, 465–477. [Google Scholar] [CrossRef]
- Stenger, A.; Schneider, M.; Schwind, M.; Vigo, D. Location routing for small package shippers with subcontracting options. Int. J. Pro. Econ. 2012, 140, 702–712. [Google Scholar] [CrossRef]
- Derbel, H.; Jarboui, B.; Hanafi, S.; Chabchoub, H. An Iterated Local Search for Solving a Location-Routing Problem. Electron. Notes. Discret. Math. 2010, 36, 875–882. [Google Scholar] [CrossRef]
- De, A.; Wang, J.; Tiwari, M.K. Fuel Bunker Management Strategies within Sustainable Container Shipping Operation Considering Disruption and Recovery Policies. IEEE Trans. Eng. Manag. 2019, 1–23. [Google Scholar] [CrossRef] [Green Version]
- De, A.; Wang, J.; Tiwari, M. Hybridizing Basic Variable Neighborhood Search With Particle Swarm Optimization for Solving Sustainable Ship Routing and Bunker Management Problem. IEEE Trans. Intell. Transp. Syst. 2019, 1–12. [Google Scholar] [CrossRef]
- Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]
- Jarboui, B.; Derbel, H.; Hanafi, S.; Mladenović, N. Variable neighborhood search for location routing. Comput. Oper. Res. 2013, 40, 47–57. [Google Scholar] [CrossRef]
- Schwengerer, M.; Pirkwieser, S.; Raidl, G. A Variable Neighborhood Search Approach for the Two-Echelon Location-Routing Problem; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7245, pp. 13–24. [Google Scholar]
- Macedo, R.; Hanafi, S.; Jarboui, B.; Mladenovic, N.; Alves, C.; Carvalho, J. Variable Neighborhood Search for the Location Routing Problem with Multiple Routes. In Proceedings of the 2013 International Conference on Industrial Engineering and Systems Management (IESM), Rabat, Morocco, 28–30 October 2013; pp. 19–24. [Google Scholar]
- Ropke, S.; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 2006, 40, 455–472. [Google Scholar] [CrossRef]
- Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems; Technical Report; University of Strathclyde: Glasgow, Scotland, 1997. [Google Scholar]
- Hemmelmayr, V.C.; Cordeau, J.-F.; Crainic, T.G. An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics. Comput. Oper. Res. 2012, 39, 3215–3228. [Google Scholar] [CrossRef] [Green Version]
- Contardo, C.; Hemmelmayr, V.; Crainic, T.G. Lower and upper bounds for the two-echelon capacitated location-routing problem. Comput. Oper. Res. 2012, 39, 3185–3199. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, M.; Walther, G. An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities. Transp. Sci. 2017, 52, 331–352. [Google Scholar] [CrossRef]
- Prodhon, C.; Prins, C. A survey of recent research on location-routing problems. Eur. J. Oper. Res. 2014, 238, 1–17. [Google Scholar] [CrossRef]
- Drexl, M.; Schneider, M. A survey of variants and extensions of the location-routing problem. Eur. J. Oper. Res. 2015, 241, 283–308. [Google Scholar] [CrossRef]
Road Type | Ave. Speed (km/hr) | Fuel Consumption Rate (Liter/km) |
---|---|---|
A | 30 | 0.118 |
B | 40 | 0.107 |
C | 50 | 0.112 |
D | 60 | 0.090 |
E | 70 | 0.098 |
F | 80 | 0.098 |
G | 90 | 0.102 |
- | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | - | A | C | B | D |
2 | A | - | E | C | A |
3 | C | E | - | F | G |
4 | B | C | F | - | B |
5 | D | A | G | B | - |
- | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | - | 21 | 43 | 41 | 27 |
2 | 21 | - | 32 | 35 | 28 |
3 | 43 | 32 | - | 46 | 30 |
4 | 41 | 35 | 46 | - | 22 |
5 | 27 | 28 | 30 | 22 | - |
- | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | - | 2.478 | 4.816 | 4.387 | 2.430 |
2 | 2.478 | - | 3.136 | 3.920 | 3.304 |
3 | 4.816 | 3.136 | - | 4.508 | 3.060 |
4 | 4.387 | 3.920 | 4.508 | - | 2.354 |
5 | 2.430 | 3.304 | 3.060 | 2.354 | - |
Track | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.77 | 0.31 | 0.46 | 0.43 | 0.15 | 0.57 | 0.65 | 0.05 | 0.24 | 0.52 | 0.86 | 0.75 |
2 | 0.02 | 0.92 | 0.39 | 0.31 | 0.44 | 0.16 | 0.41 | 0.35 | 0.45 | 0.44 | 0.38 | 0.28 |
3 | 0.82 | 0.92 | 0.14 | 0.22 | 0.62 | 0.66 | 0.96 | 0.59 | 0.36 | 0.08 | 0.44 | 0.11 |
4 | 0.86 | 0.94 | 0.02 | 0.43 | 0.9 | 0.14 | 0.27 | 0.52 | 0.47 | 0.4 | 0.83 | 0.45 |
5 | 0.76 | 0.57 | 0.39 | 0.65 | 0.06 | 0.93 | 0.31 | 0.02 | 0.54 | 0.98 | 0.51 | 0.25 |
Item | Parameter | |||||
---|---|---|---|---|---|---|
Procurement center | 1 | 2 | ||||
Capacity (kg) | 25,000 | 25,000 | ||||
Farm | 1 | 2 | 3 | 4 | 5 | Total |
Rubber quantity (kg) | 16,540 | 6970 | 5190 | 7450 | 2120 | 38,270 |
Vehicle capacity = 15,000 kg | Fuel cost = 28 baht/liter |
Depot (A) | Farm (B) | Sequence (C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 |
0.77 | 0.31 | 0.46 | 0.43 | 0.15 | 0.57 | 0.65 | 0.05 | 0.24 | 0.52 | 0.86 | 0.75 |
Depot (A) | Farm (B) | Sequence (C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 2 | 4 | 3 | 1 | 3 | 4 | 5 | 1 | 2 | 2 | 1 |
0.15 | 0.31 | 0.43 | 0.46 | 0.77 | 0.05 | 0.24 | 0.52 | 0.57 | 0.65 | 0.75 | 0.86 |
Instance | Number of Farms | Total Rubber (kg) | Instance | Number of Farms | Total Rubber (kg) | Instance | Number of Farms | Total Rubber (kg) |
---|---|---|---|---|---|---|---|---|
S1 | 5 | 18,667 | M1 | 20 | 42,856 | L1 | 35 | 83,176 |
S2 | 6 | 25,241 | M2 | 20 | 48,665 | L2 | 40 | 87,368 |
S3 | 7 | 27,353 | M3 | 25 | 58,993 | L3 | 40 | 88,842 |
S4 | 8 | 28,535 | M4 | 25 | 58,250 | L4 | 45 | 92,254 |
S5 | 9 | 33,518 | M5 | 30 | 78,665 | L5 | 50 | 96,697 |
Case study | 95 | 204,427 |
Algorithms Name | Definition |
---|---|
VaNSAS-1 | Using black box selection equation (12) + track improvement equation (14) |
VaNSAS-2 | Using black box selection equation (12) + track improvement equation (15) |
VaNSAS-3 | Using black box selection equation (13) + track improvement equation (14) |
VaNSAS-4 | Using black box selection equation (13) + track improvement equation (15) |
Instances | Lingo | VaNSAS-1 | VaNSAS-2 | VaNSAS-3 | VaNSAS-4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Status | Objective (Baht) | Time (mins) | Objective (Baht) | Time (mins) | Objective (Baht) | Time (mins) | Objective (Baht) | Time (mins) | Objective (Baht) | Time (mins) | |
SM1 | Glo.opt * | 269.09 | 0.11 | 269.09 | 0.24 | 269.09 | 0.25 | 269.09 | 0.21 | 269.09 | 0.16 |
SM2 | Glo.opt | 430.62 | 0.15 | 430.62 | 0.26 | 430.62 | 0.22 | 430.62 | 0.23 | 430.62 | 0.20 |
SM3 | Glo.opt | 369.16 | 0.13 | 369.16 | 0.28 | 369.16 | 0.26 | 369.16 | 0.35 | 369.16 | 0.26 |
SM4 | Glo.opt | 315.68 | 0.14 | 315.68 | 0.34 | 315.68 | 0.21 | 315.68 | 0.31 | 315.68 | 0.28 |
SM5 | Glo.opt | 418.27 | 0.16 | 418.27 | 0.32 | 418.27 | 0.25 | 418.27 | 0.37 | 418.27 | 0.25 |
Average | 360.56 | 0.14 | 360.56 | 0.29 | 360.56 | 0.24 | 360.56 | 0.29 | 360.56 | 0.23 | |
ME1 | BOF ** | 2116.77 | 2880 | 2087.23 | 2.43 | 2087.23 | 2.56 | 2087.23 | 2.21 | 2087.23 | 2.38 |
ME2 | BOF | 2135.97 | 2880 | 2082.65 | 2.12 | 2082.65 | 2.38 | 2082.65 | 1.87 | 2082.65 | 1.93 |
ME3 | BOF | 2367.63 | 2880 | 2276.28 | 2.54 | 2260.21 | 2.76 | 2282.26 | 1.93 | 2282.26 | 2.06 |
ME4 | BOF | 2471.43 | 2880 | 2387.05 | 2.69 | 2404.44 | 2.62 | 2404.44 | 2.41 | 2407.33 | 2.52 |
ME5 | BOF | 2843.99 | 2880 | 2741.47 | 2.73 | 2745.62 | 2.69 | 2795.52 | 2.56 | 2741.47 | 2.45 |
Average | 2387.16 | 2880.00 | 2314.94 | 2.50 | 2316.03 | 2.60 | 2330.42 | 2.20 | 2320.19 | 2.27 | |
LA1 | Bound *** | 3885.37 | 7200 | 4214.33 | 7.32 | 4214.33 | 7.61 | 4312.25 | 8.02 | 4214.33 | 8.22 |
LA2 | Bound | 4322.43 | 7200 | 4698.34 | 8.19 | 4725.87 | 7.43 | 4791.33 | 7.84 | 4725.87 | 7.65 |
LA3 | Bound | 4569.53 | 7200 | 4889.22 | 8.24 | 4902.33 | 7.75 | 4910.85 | 7.86 | 4889.22 | 8.15 |
LA4 | Bound | 4869.86 | 7200 | 5123.55 | 8.15 | 5221.76 | 7.62 | 5233.51 | 8.24 | 5123.55 | 8.41 |
LA5 | Bound | 5288.90 | 7200 | 5592.08 | 9.21 | 5603.41 | 8.39 | 5605.38 | 9.15 | 5603.41 | 9.35 |
Case study | Bound | 10,772.45 | 7200 | 13,280.45 | 18.16 | 13,343.28 | 16.76 | 13,838.54 | 17.31 | 13,322.88 | 18.44 |
Average | 5618.09 | 7200.00 | 6299.66 | 9.88 | 6335.16 | 9.26 | 6448.64 | 9.74 | 6313.21 | 10.04 |
Instance | VaNSAS-1 | VaNSAS-2 | VaNSAS-3 | VaNSAS-4 |
---|---|---|---|---|
SM1 | 0.00 | 0.00 | 0.00 | 0.00 |
SM2 | 0.00 | 0.00 | 0.00 | 0.00 |
SM3 | 0.00 | 0.00 | 0.00 | 0.00 |
SM4 | 0.00 | 0.00 | 0.00 | 0.00 |
SM5 | 0.00 | 0.00 | 0.00 | 0.00 |
Average | 0.00 | 0.00 | 0.00 | 0.00 |
ME1 | −1.42 | −1.42 | −1.42 | −1.42 |
ME2 | −2.56 | −2.56 | −2.56 | −2.56 |
ME3 | −4.01 | −4.75 | −3.74 | −3.74 |
ME4 | −3.53 | −2.79 | −2.79 | −2.66 |
ME5 | −3.74 | −3.58 | −1.73 | −3.74 |
Average | −3.05 | −3.02 | −2.45 | −2.82 |
LA1 | 7.81 | 7.81 | 9.90 | 7.81 |
LA2 | 8.00 | 8.54 | 9.79 | 8.54 |
LA3 | 6.54 | 6.79 | 6.95 | 6.54 |
LA4 | 4.95 | 6.74 | 6.95 | 4.95 |
LA5 | 5.42 | 5.61 | 5.65 | 5.61 |
Case study | 18.88 | 19.27 | 22.16 | 19.14 |
Average | 8.60 | 9.13 | 10.23 | 8.76 |
Method | VaNSAS-1 | VaNSAS-2 | VaNSAS-3 | VaNSAS-4 |
---|---|---|---|---|
Lingo | 0.006 | 0.008 | 0.004 | 0.006 |
VaNSAS-1 | - | 0.848 | 0.202 | 0.253 |
VaNSAS-2 | - | - | 0.218 | 0.418 |
VaNSAS-3 | - | - | - | 0.404 |
Method | VaNSAS-1 | VaNSAS-2 | VaNSAS-3 | VaNSAS-4 |
---|---|---|---|---|
Lingo | 0.121 | 0.111 | 0.123 | 0.120 |
VaNSAS-1 | - | 0.069 | 0.135 | 0.121 |
VaNSAS-2 | - | - | 0.205 | 0.219 |
VaNSAS-3 | - | - | - | 0.143 |
VaNSAS-1 | VaNSAS-2 | VaNSAS-3 | VaNSAS-4 | |
---|---|---|---|---|
p-value | 0.001 | 0.001 | 0.001 | 0.001 |
No. | Selected Location | Transportation Route | Distance (km) | Fuel Used (liter) | Fuel Cost (Baht) |
---|---|---|---|---|---|
1 | 45 | 45-91-92-89-87-86-88-32-35-34-33-24-25-38-45 | 508.31 | 50.27 | 1407.56 |
2 | 45-42-43-37-26-45 | 249.77 | 21.92 | 613.88 | |
3 | 36 | 36-84-81-83-82-85-55-36 | 480.02 | 42.92 | 1201.72 |
4 | 15 | 15-16-15 | 80.70 | 7.26 | 203.28 |
5 | 15-13-44-15 | 112.13 | 8.72 | 244.28 | |
6 | 77 | 77-75-52-11-94-73-80-77 | 287.92 | 28.01 | 784.16 |
7 | 77-54-51-70-79-77 | 119.49 | 10.04 | 281.00 | |
8 | 77-64-65-66-67-77 | 49.71 | 4.18 | 117.12 | |
9 | 77-78-77 | 64.06 | 6.28 | 175.89 | |
10 | 1 | 1-4-1 | 86.96 | 7.81 | 218.56 |
11 | 1-4-7-1 | 108.58 | 11.09 | 310.52 | |
12 | 1-39-93 -1 | 167.03 | 16.89 | 472.88 | |
13 | 76 | 76-53-6-5-76 | 231.82 | 22.44 | 628.32 |
14 | 76-59-60-61-62-63-69-72-71-68-74-76 | 619.42 | 60.78 | 1701.96 | |
15 | 17 | 17-41-40-90-17 | 392.69 | 38.46 | 1076.88 |
16 | 17-23-27-30-28-31-29-17 | 358.06 | 32.14 | 899.84 | |
17 | 17-19-3-8-9-17 | 219.55 | 21.05 | 589.40 | |
18 | 10 | 10-20-22-21-10 | 202.66 | 18.47 | 517.20 |
19 | 10-18-14-12-2-10 | 198.99 | 18.02 | 504.60 | |
20 | 49 | 49-47-49 | 107.56 | 10.54 | 295.12 |
21 | 49-46-50-48-47-49 | 175.79 | 16.55 | 463.40 | |
22 | 49-56-57-58-95-49 | 210.37 | 20.46 | 572.88 | |
Total | 5031.59 | 474.30 | 13,280.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theeraviriya, C.; Pitakaso, R.; Sethanan, K.; Kaewman, S.; Kosacka-Olejnik, M. A New Optimization Technique for the Location and Routing Management in Agricultural Logistics. J. Open Innov. Technol. Mark. Complex. 2020, 6, 11. https://doi.org/10.3390/joitmc6010011
Theeraviriya C, Pitakaso R, Sethanan K, Kaewman S, Kosacka-Olejnik M. A New Optimization Technique for the Location and Routing Management in Agricultural Logistics. Journal of Open Innovation: Technology, Market, and Complexity. 2020; 6(1):11. https://doi.org/10.3390/joitmc6010011
Chicago/Turabian StyleTheeraviriya, Chalermchat, Rapeepan Pitakaso, Kanchana Sethanan, Sasitorn Kaewman, and Monika Kosacka-Olejnik. 2020. "A New Optimization Technique for the Location and Routing Management in Agricultural Logistics" Journal of Open Innovation: Technology, Market, and Complexity 6, no. 1: 11. https://doi.org/10.3390/joitmc6010011
APA StyleTheeraviriya, C., Pitakaso, R., Sethanan, K., Kaewman, S., & Kosacka-Olejnik, M. (2020). A New Optimization Technique for the Location and Routing Management in Agricultural Logistics. Journal of Open Innovation: Technology, Market, and Complexity, 6(1), 11. https://doi.org/10.3390/joitmc6010011