p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib
Abstract
1. Introduction
2. Materials and Methods
2.1. Principle of Assessment of Serum p53 Concentration
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Xu, J.; Wu, Z.S.; Shen, W.; Le, J.; Zheng, T.; Li, H.; Jia, L. Programmable nanoassembly consisting of two hairpin-DNAs for p53 gene determination. Biosens. Bioelectron. 2017, 94, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zeng, S.X.; Lu, H. Targeting p53-MDM2-MDMX loop for cancer therapy. In Mutant p53 and MDM2 in Cancer; Springer: Dordrecht, The Netherlands, 2014; pp. 281–319. [Google Scholar]
- Mor, E.; He, L.; Torchinsky, A.; Shomron, N. MicroRNA-34a is dispensable for p53 function as teratogenesis inducer. Arch. Toxicol. 2014, 88, 1749–1763. [Google Scholar] [CrossRef] [PubMed]
- Canon, J.; Osgood, T.; Olson, S.H.; Saiki, A.Y.; Robertson, R.; Yu, D.; John, E.; Qiuping, Y.; Lixia, J.; Ada, C.; et al. The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. Mol. Cancer Ther. 2015, 14, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. p53 regulation: Teamwork between RING domains of Mdm2 and MdmX. Cell Cycle 2011, 10, 4225–4229. [Google Scholar] [CrossRef] [PubMed]
- Daks, A.; Petukhov, A.; Fedorova, O.; Shuvalov, O.; Merkulov, V.; Vasileva, E.; Antonov, A.; Nikolai, A.B. E3 ubiquitin ligase Pirh2 enhances tumorigenic properties of human non-small cell lung carcinoma cells. Genes Cancer 2016, 7, 383–393. [Google Scholar] [PubMed]
- Merkel, C.A.; da Silva Soares, R.B.; de Carvalho, A.C.; Zanatta, D.B.; Bajgelman, M.C.; Fratini, P.; Eugenia, C.-S.; Bryan, E.S. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6. BMC Cancer 2010, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Chikkara, S.; Singh, K.; Chaubey, R.; Chandra, D.; Mishra, P.; Mahapatra, M.; Tulika, S.; Renu, S. Chronic myeloid leukemia with a rare fusion transcript, e19a2 BCR-ABL1: A report of three cases from India. Ann. Diagn. Pathol. 2017, 27, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Travis, D.; Whitby, L.; Bainbridge, J.; Cross, N.C.; Barnett, D. Measurement of BCR-ABL1 by RT-qPCR in chronic myeloid leukemia: Findings from an International EQA Programme. Br. J. Haematol. 2017, 177, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Rajala, H.L.; Missiry, M.E.; Ruusila, A.; Koskenvesa, P.; Brümmendorf, T.H.; Gjertsen, B.T. Tyrosine kinase inhibitor therapy-induced changes in humoral immunity in patients with chronic myeloid leukemia. J. Cancer Res. Clin. Oncol. 2017, 143, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Shi, J.; Chung, J.; Xu, X.; Avila, C.; Campbell, C.; Syed, A.A.; Lei, C.; Joanne, E.S. Medication adherence, molecular monitoring and clinical outcomes in patients with chronic myelogenous leukemia in a large HMO. J. Am. Pharm. Assoc. 2017, 57, 303–310. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Sahu, K.K.; Malhotra, P.; Uthamalingam, P.; Prakash, G.; Bal, A.; Varma, N. Chronic Myeloid Leukemia with Extramedullary Blast Crisis: Two Unusual Sites with Review of Literature. Indian J. Hematol. Blood Transfus. 2016, 32 (Suppl. S1), 89–95. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.A.; Tefferi, A. Chronicneutrophilicleukemia 2016: Update on diagnosis, molecular genetics, prognosis, and management. Am. J. Hematol. 2016, 91, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Koiso, H.; Tsukamoto, N.; Shimano, S.; Karasawa, M.; Murakami, H.; Nojima, Y. Chronic myelogenous leukemia accompanied by megaloblastic anemia showing atypical clinical features. Rinsho Ketsueki 2011, 52, 1772–1776. [Google Scholar] [PubMed]
- Nakamura, Y.; Arakawa, H. Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Sci. 2017, 21. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Cao, Y.; Han, G.; Zhang, Y.; You, Q.; Wang, Y.; Pan, Y. p53/microRNA-374b/AKT1 regulates colorectal cancer cell apoptosis in response to DNA damage. Int. J. Oncol. 2017, 50, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Etti, I.C.; Rasedee, A.; Hashim, N.M.; Abdul, A.B.; Kadir, A.; Yeap, S.K.; Peter, W.; Ibrahim, M.; Kian, L.L.; Christopher, J.E. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through the ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells. Drug Des. Devel. Ther. 2017, 11, 865–879. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.M.; Choi, Y.K.; Kim, A.J.; Cho, S.G.; Ko, S.G. p53causesbutein-mediated apoptosis of chronic myeloid leukemia cells. Mol. Med. Rep. 2016, 13, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, H.C.; Choe, Y.J.; Shin, S.J.; Lee, S.H.; Kim, H.S. Nutlin-3 induces BCL2A1 expression by activating ELK1 through the mitochondrial p53-ROS-ERK1/2 pathway. Int. J. Oncol. 2014, 45, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.J.; Cortes, J.E.; Kantarjian, H.M. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia. Expert Rev. Anticancer Ther. 2013, 13, 1433–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, L.; Li, L.; Wang, Z.; Ho, Y.; McDonald, T.; Tessa, L.H.; WenYong, C.; Ravi, B. Activation of p53 by SIRT1inhibitionenhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 2012, 21, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Kim, C.; Kim, W.S.; Lee, S.G.; Lee, J.H.; Shim, B.S.; Sung-Hoon, K.; Kyoo, S.A.; Kwang, S.A.; Korean, R.G. Extract Enhances the Anticancer Effects of imatinib mesylate Through Abrogation p38 and STAT5 Activation in KBM-5 Cells. Phytother. Res. 2015, 29, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.Z.; Mak, P.Y.; Mak, D.H.; Ruvolo, V.R.; Schober, W.; McQueen, T.; Jorge, C.; Hagop, M.K.; Richard, E.C.; Marina, K.; et al. Synergistic effects of p53activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget 2015, 6, 30487–30499. [Google Scholar] [CrossRef] [PubMed]
- Henze, J.; Mühlenberg, T.; Simon, S.; Grabellus, F.; Rubin, B.; Taeger, G.; Schuler, M.; Juergen, T.; Maria, D.-R.; Takahiro, T.; et al. p53 modulation as a therapeutic strategy in gastrointestinal stromal tumors. PLoS ONE 2012, 7, e37776. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Liu, C.C.; Yen, C.C.; Gau, J.P.; Wang, W.S.; Tzeng, C.H. Pml and TAp73 interacting with nuclear body mediate imatinib-inducedp53-independent apoptosis of chronic myeloid leukemia cells. Int. J. Cancer 2009, 125, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Saglio, G.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le, C.; Etienne, G.; Dorlhiac-Llacer, P.E.; Clark, R.E.; et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: A 5-year update of the randomized ENESTnd trial. Leukemia 2016, 30, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Hochhaus, A.; Saglio, G.; De, S.C.; Flinn, I.W.; Stenke, L.; Goh, Y.T.; Rosti, G.; Hirohisa, N.; Neil, J.G.; et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukemia: 24-month minimum follow-up of phase 3 randomisedENESTnd trial. Lancet Oncol. 2011, 12, 841–851. [Google Scholar] [CrossRef]
- Milojkovic, D.; Apperley, J. Mechanisms of Resistance to Imatinib and Second-Generation Tyrosine Inhibitors in chronic myeloid leukemia. Clin. Cancer Res. 2009, 15, 7519–7527. [Google Scholar] [CrossRef] [PubMed]
- James, A.R.; Unnikrishnan, B.S.; Priya, R.; Joseph, M.M.; Manojkumar, T.K.; Raveendran, P.K. Computational and mechanistic studies on the effect of galactoxyloglucan: Imatinibnanoconjugate in imatinib-resistant K562 cells. Tumour Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.F.; Lo, M.C.; Liu, Y.; Giannola, D.; Mitrikeska, E. Induction of p53 suppresses chronic myeloid leukemia. Leuk. Lymphoma 2017, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean ± SD, N, % |
---|---|
Age (years) | 52.67 ± 5.12 |
Gender (male: female ratio) | 33:27:00 |
Number | 88 |
Patients | 60 (68.18) |
Control | 28 (31.18) |
Duration of disease (years) | 2.1 ± 1.33 |
Current chemotherapy | 60 (100) |
Imatinib | 29 (48.33) |
Nilotinib | 31 (51.67) |
Other pharmacotherapy | |
Analgesic | 43 (71.66) |
Antibiotics | 51 (85.00) |
Antihypertensive drugs | 12 (35.00) |
Hepatosplenomegaly | |
Mild | 31 (51.67) |
Moderate | 22 (36.67) |
Huge | 9 (15.00) |
Smokers | 10 (16.66) |
Philadelphia chromosome | |
Positive | 11 (18.33) |
Negative | 49 (81.67) |
Variables | Control (n = 28) | Patients (n = 60) | p |
---|---|---|---|
Hb (g/L) | 14.8 ± 2.63 | 11.38 ± 3.29 | 0.21 |
WBC (×109/L) | 6.532 ± 2.4 | 88.93 ± 18.21 | 0.000 ** |
Platelet count (×109/L) | 338.68 ± 84.39 | 101.48 ± 22.57 | 0.000 ** |
Plateletcrit (%) | 0.24 ± 0.06 | 0.17 ± 0.04 | 0.000 ** |
MPV (fL) | 8.4 ± 3.55 | 14.84 ± 4.94 | 0.06 |
RDW (%) | 12.72 ± 2.52 | 11.43 ± 2.99 | 0.33 |
RDWCV (%) | 15.44 ± 1.78 | 16.44 ± 2.56 | 0.04 * |
MCH (pg/cell) | 29.53 ± 2.64 | 22.8 ± 3.11 | 0.35 |
MCV (fL) | 88.31 ± 18.27 | 86.29 ± 18.39 | 0.99 |
MCHC (g/dL) | 35.36 ± 1.59 | 29.86 ± 2.75 | 0.002 ** |
P53 (ng/mL) | 0.142 ± 0.11 | 2.135 ± 1.44 | 0.000 ** |
Variables | Imatinib (n = 29) | Nilotinib (n = 31) | t | p |
---|---|---|---|---|
Hb (g/L) | 11.5 ± 3.69 | 10.44 ± 3.38 | 1.15 | 0.63 |
WBC (×10 9/L) | 87.53 ± 17.4 | 88.11 ± 18.21 | 0.126 | 0.91 |
Platelet count (×10 9/L) | 100.55 ± 22.29 | 101.99 ± 22.54 | −0.24 | 0.95 |
Plateletcrit (%) | 0.16 ± 0.06 | 0.17 ± 0.02 | −0.85 | 0.39 |
MPV (fL) | 13.4 ± 3.22 | 15.52 ± 3.92 | −2.29 | 0.025 * |
RDW (%) | 11.66 ± 2.92 | 11.11 ± 2.75 | 0.75 | 0.45 |
RDWCV (%) | 15.82 ± 1.74 | 16.49 ± 2.21 | −1.30 | 0.19 |
MCH (pg/cell) | 19.33 ± 2.74 | 21.8 ± 2.19 | −3.84 | 0.0002 ** |
MCV (fL) | 88.31 ± 18.13 | 86.29 ± 16.35 | 0.45 | 0.65 |
MCHC (g/dL) | 28.26 ± 1.59 | 29.11 ± 1.79 | −1.94 | 0.056 |
P53 (ng/mL) | 1.18 ± 0.19 | 3.22 ± 1.99 | −5.58 | 0.0001 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Al-Buhadilly, A.K. p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases 2018, 6, 13. https://doi.org/10.3390/diseases6010013
Al-kuraishy HM, Al-Gareeb AI, Al-Buhadilly AK. p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases. 2018; 6(1):13. https://doi.org/10.3390/diseases6010013
Chicago/Turabian StyleAl-kuraishy, Hayder M., Ali I. Al-Gareeb, and Ali K. Al-Buhadilly. 2018. "p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib" Diseases 6, no. 1: 13. https://doi.org/10.3390/diseases6010013
APA StyleAl-kuraishy, H. M., Al-Gareeb, A. I., & Al-Buhadilly, A. K. (2018). p53 Gene (NY-CO-13) Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib. Diseases, 6(1), 13. https://doi.org/10.3390/diseases6010013