Endobiliary Radiofrequency Ablation for Hepato-Biliary Diseases: A Narrative Review
Abstract
1. Introduction
2. Mechanism of Action
3. Indications of Endobiliary RFA in Malignant Disease
3.1. Malignant Hilar and Extrahepatic Biliary Stricture
3.2. Biliary Intraductal Papillary Mucinous Neoplasm
3.3. Intraductal Extension of Ampullary Tumors
3.4. Malignant Ingrowth of Biliary Stents
4. Indications of Endobiliary RFA Benign Biliary Strictures
5. Safety and Complications
6. Limitations and Gaps in Knowledge
- The effectiveness of endobiliary RFA is inversely correlated with tumor size and patients age, as the best performance for endobiliary RFA was for tumors ≤20 mm [97].
- Endobiliary RFA needs to have a direct contact with the tumor, which might limit its applicability to tumors in inaccessible locations. Moreover, tumors near large blood vessels represent a therapeutic challenge [55]. Additionally, endobiliary RFA might cause a “heat-sink” effect, which leads to partial tumor destruction and cell death due to the limitation of applying maximal ablation current [98].
- There is a scarcity of randomized controlled trials and heterogeneity in study designs, patient populations, combined therapy, RFA setting, and lack of long-term data beyond 1–2 years post-endobiliary RFA. Additionally, since the introduction of immunotherapy for CCA treatment, no studies to date have assessed the combined effect of RFA with immunotherapy, necessitating further studies to assess patient outcomes.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RFA | radiofrequency ablation |
MBO | malignant biliary obstruction |
ERCP | endoscopic retrograde cholangiopancreatography |
CCA | cholangiocarcinoma |
B-IPMN | Biliary intraductal papillary mucinous neoplasm |
SEMS | self-expandable metal stent. |
References
- Green, B.L.; House, M.G. Nonsurgical Approaches to Treat Biliary Tract and Liver Tumors. Surg. Oncol. Clin. N. Am. 2019, 28, 573–586. [Google Scholar] [CrossRef]
- Buerlein, R.C.D.; Wang, A.Y. Endoscopic Retrograde Cholangiopancreatography-Guided Ablation for Cholangiocarcinoma. Gastrointest. Endosc. Clin. N. Am. 2019, 29, 351–367. [Google Scholar] [CrossRef]
- Razumilava, N.; Gores, G.J. Classification, diagnosis, and management of cholangiocarcinoma. Clin. Gastroenterol. Hepatol. 2013, 11, 13–21.e1. [Google Scholar] [CrossRef] [PubMed]
- Cillo, U.; Fondevila, C.; Donadon, M.; Gringeri, E.; Mocchegiani, F.; Schlitt, H.J.; Ijzermans, J.N.M.; Vivarelli, M.; Zieniewicz, K.; Olde Damink, S.W.M.; et al. Surgery for cholangiocarcinoma. Liver Int. 2019, 39 (Suppl. S1), 143–155. [Google Scholar] [CrossRef]
- Chaiteerakij, R.; Harmsen, W.S.; Marrero, C.R.; Aboelsoud, M.M.; Ndzengue, A.; Kaiya, J.; Therneau, T.M.; Sanchez, W.; Gores, G.J.; Roberts, L.R. A new clinically based staging system for perihilar cholangiocarcinoma. Am. J. Gastroenterol. 2014, 109, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.W.; Ghafoori, A.P.; Willett, C.G.; Tyler, D.S.; Pappas, T.N.; Clary, B.M.; Hurwitz, H.I.; Bendell, J.C.; Morse, M.A.; Clough, R.W.; et al. Concurrent chemoradiotherapy in resected extrahepatic cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Lee, H.J.; Lee, H.S.; Jo, J.H.; Cho, I.R.; Chung, M.J.; Park, J.Y.; Park, S.W.; Song, S.Y.; Bang, S. Benefit of neoadjuvant concurrent chemoradiotherapy for locally advanced perihilar cholangiocarcinoma. World J. Gastroenterol. 2017, 23, 3301–3308. [Google Scholar] [CrossRef]
- Jarosova, J.; Macinga, P.; Hujova, A.; Kral, J.; Urban, O.; Spicak, J.; Hucl, T. Endoscopic radiofrequency ablation for malignant biliary obstruction. World J. Gastrointest. Oncol. 2021, 13, 1383–1396. [Google Scholar] [CrossRef]
- Tarek, M. Membrane electroporation: A molecular dynamics simulation. Biophys. J. 2005, 88, 4045–4053. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, J.; Yu, X.; Han, Z.; Cheng, Z.; Liu, F.; Liang, P. Clinical and survival outcomes of percutaneous microwave ablation for intrahepatic cholangiocarcinoma. Int. J. Hyperth. 2018, 34, 292–297. [Google Scholar] [CrossRef]
- Yu, M.A.; Liang, P.; Yu, X.L.; Cheng, Z.G.; Han, Z.Y.; Liu, F.Y.; Yu, J. Sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma. Eur. J. Radiol. 2011, 80, 548–552. [Google Scholar] [CrossRef]
- Glazer, D.I.; Tatli, S.; Shyn, P.B.; Vangel, M.G.; Tuncali, K.; Silverman, S.G. Percutaneous Image-Guided Cryoablation of Hepatic Tumors: Single-Center Experience with Intermediate to Long-Term Outcomes. AJR Am. J. Roentgenol. 2017, 209, 1381–1389. [Google Scholar] [CrossRef]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef]
- Cheon, Y.K.; Cho, Y.D.; Baek, S.H.; Cha, S.W.; Moon, J.H.; Kim, Y.S.; Lee, J.S.; Lee, M.S.; Shim, C.S.; Kim, B.S. Comparison of survival of advanced hilar cholangiocarcinoma after biliary drainage alone versus photodynamic therapy with external drainage. Korean J. Gastroenterol. 2004, 44, 280–287. [Google Scholar]
- Zoepf, T.; Jakobs, R.; Arnold, J.C.; Apel, D.; Riemann, J.F. Palliation of nonresectable bile duct cancer: Improved survival after photodynamic therapy. Am. J. Gastroenterol. 2005, 100, 2426–2430. [Google Scholar] [CrossRef]
- Ortner, M.E.; Caca, K.; Berr, F.; Liebetruth, J.; Mansmann, U.; Huster, D.; Voderholzer, W.; Schachschal, G.; Mossner, J.; Lochs, H. Successful photodynamic therapy for nonresectable cholangiocarcinoma: A randomized prospective study. Gastroenterology 2003, 125, 1355–1363. [Google Scholar] [CrossRef]
- Labib, P.L.; Davidson, B.R.; Sharma, R.A.; Pereira, S.P. Locoregional therapies in cholangiocarcinoma. Hepat. Oncol. 2017, 4, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Nault, J.C.; Sutter, O.; Nahon, P.; Ganne-Carrie, N.; Seror, O. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 2018, 68, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Chahal, P.; Baron, T.H. Endoscopic palliation of cholangiocarcinoma. Curr. Opin. Gastroenterol. 2006, 22, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Sofi, A.A.; Khan, M.A.; Das, A.; Sachdev, M.; Khuder, S.; Nawras, A.; Lee, W. Radiofrequency ablation combined with biliary stent placement versus stent placement alone for malignant biliary strictures: A systematic review and meta-analysis. Gastrointest. Endosc. 2018, 87, 944–951.e1. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Zhou, H.; Zhou, Y.; Wang, Y.; Jin, H.; Lou, Q.; Zhang, X. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: A randomized trial. Endoscopy 2018, 50, 751–760. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Z.; Huang, Y.; Deng, X.; Zheng, S.; He, S.; Huang, G.; Hu, B.; Shi, M.; Liao, W.; et al. Radiofrequency ablation: Mechanisms and clinical applications. MedComm 2024, 5, e746. [Google Scholar] [CrossRef]
- Goldberg, S.N.; Gazelle, G.S.; Mueller, P.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am. J. Roentgenol. 2000, 174, 323–331. [Google Scholar] [CrossRef]
- Higgins, H.; Berger, D.L. RFA for liver tumors: Does it really work? Oncologist 2006, 11, 801–808. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kubota, T.; Horigome, R.; Kimura, N.; Honda, H.; Iwanaga, A.; Seki, K.; Honma, T.; Yoshida, T. Radiofrequency ablation during continuous saline infusion can extend ablation margins. World J. Gastroenterol. 2013, 19, 1278–1282. [Google Scholar] [CrossRef]
- Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. Oncologist 2019, 24, e990–e1005. [Google Scholar] [CrossRef]
- Curley, S.A. Radiofrequency ablation of malignant liver tumors. Oncologist 2001, 6, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.N. Radiofrequency ablation of primary and metastatic hepatic malignancies. Clin. Color. Cancer 2004, 4, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Regier, M.; Chun, F. Thermal Ablation of Renal Tumors: Indications, Techniques and Results. Dtsch. Arztebl. Int. 2015, 112, 412–418. [Google Scholar] [CrossRef]
- Goldberg, S.N.; Gazelle, G.S. Radiofrequency tissue ablation: Physical principles and techniques for increasing coagulation necrosis. Hepatogastroenterology 2001, 48, 359–367. [Google Scholar] [PubMed]
- Tal, A.O.; Vermehren, J.; Friedrich-Rust, M.; Bojunga, J.; Sarrazin, C.; Zeuzem, S.; Trojan, J.; Albert, J.G. Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. World J. Gastrointest. Endosc. 2014, 6, 13–19. [Google Scholar] [CrossRef]
- Monga, A.; Gupta, R.; Ramchandani, M.; Rao, G.V.; Santosh, D.; Reddy, D.N. Endoscopic radiofrequency ablation of cholangiocarcinoma: New palliative treatment modality (with videos). Gastrointest. Endosc. 2011, 74, 935–937. [Google Scholar] [CrossRef]
- Alitti, C.; Rode, A.; Trillaud, H.; Merle, P.; Blanc, J.F.; Blaise, L.; Demory, A.; Nkontchou, G.; Grando, V.; Ziol, M.; et al. Long-term oncological results of percutaneous radiofrequency ablation for intrahepatic cholangiocarcinoma. Liver Int. 2024, 44, 1363–1372. [Google Scholar] [CrossRef]
- Chu, H.H.; Kim, J.H.; Shin, Y.M.; Won, H.J.; Kim, P.N. Percutaneous Radiofrequency Ablation for Recurrent Intrahepatic Cholangiocarcinoma After Curative Resection: Multivariable Analysis of Factors Predicting Survival Outcomes. AJR Am. J. Roentgenol. 2021, 217, 426–432. [Google Scholar] [CrossRef]
- Xiang, X.; Hu, D.; Jin, Z.; Liu, P.; Lin, H. Radiofrequency Ablation vs. Surgical Resection for Small Early-Stage Primary Intrahepatic Cholangiocarcinoma. Front. Oncol. 2020, 10, 540662. [Google Scholar] [CrossRef] [PubMed]
- Sharaiha, R.Z.; Sethi, A.; Weaver, K.R.; Gonda, T.A.; Shah, R.J.; Fukami, N.; Kedia, P.; Kumta, N.A.; Clavo, C.M.; Saunders, M.D.; et al. Impact of Radiofrequency Ablation on Malignant Biliary Strictures: Results of a Collaborative Registry. Dig. Dis. Sci. 2015, 60, 2164–2169. [Google Scholar] [CrossRef] [PubMed]
- Dumonceau, J.M.; Tringali, A.; Papanikolaou, I.S.; Blero, D.; Mangiavillano, B.; Schmidt, A.; Vanbiervliet, G.; Costamagna, G.; Deviere, J.; Garcia-Cano, J.; et al. Endoscopic biliary stenting: Indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline—Updated October 2017. Endoscopy 2018, 50, 910–930. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Jeong, S.; Kim, E.J.; Kim, J.M.; Kim, Y.S.; Lee, D.H. Long-term results of temperature-controlled endobiliary radiofrequency ablation in a normal swine model. Gastrointest. Endosc. 2018, 87, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Chung, D.H.; Kim, Y.J.; Kim, Y.S.; Park, Y.H.; Kim, K.K.; Cho, J.H. Endobiliary radiofrequency ablation for distal extrahepatic cholangiocarcinoma: A clinicopathological study. PLoS ONE 2018, 13, e0206694. [Google Scholar] [CrossRef]
- Li, T.F.; Huang, G.H.; Li, Z.; Hao, C.F.; Ren, J.Z.; Duan, X.H.; Zhang, K.; Chen, C.; Han, X.W.; Jiao, D.C.; et al. Percutaneous transhepatic cholangiography and intraductal radiofrequency ablation combined with biliary stent placement for malignant biliary obstruction. J. Vasc. Interv. Radiol. 2015, 26, 715–721. [Google Scholar] [CrossRef]
- Sharaiha, R.Z.; Natov, N.; Glockenberg, K.S.; Widmer, J.; Gaidhane, M.; Kahaleh, M. Comparison of metal stenting with radiofrequency ablation versus stenting alone for treating malignant biliary strictures: Is there an added benefit? Dig. Dis. Sci. 2014, 59, 3099–3102. [Google Scholar] [CrossRef]
- Wu, T.T.; Li, H.C.; Li, W.M.; Ao, G.K.; Lin, H.; Zheng, F.; Song, J.Y. Percutaneous Intraluminal Radiofrequency Ablation for Malignant Extrahepatic Biliary Obstruction: A Safe and Feasible Method. Dig. Dis. Sci. 2015, 60, 2158–2163. [Google Scholar] [CrossRef]
- Steel, A.W.; Postgate, A.J.; Khorsandi, S.; Nicholls, J.; Jiao, L.; Vlavianos, P.; Habib, N.; Westaby, D. Endoscopically applied radiofrequency ablation appears to be safe in the treatment of malignant biliary obstruction. Gastrointest. Endosc. 2011, 73, 149–153. [Google Scholar] [CrossRef]
- Barret, M.; Leblanc, S.; Vienne, A.; Rouquette, A.; Beuvon, F.; Chaussade, S.; Prat, F. Optimization of the generator settings for endobiliary radiofrequency ablation. World J. Gastrointest. Endosc. 2015, 7, 1222–1229. [Google Scholar] [CrossRef]
- Xia, M.; Qin, W.; Hu, B. Endobiliary radiofrequency ablation for unresectable malignant biliary strictures: Survival benefit perspective. Dig. Endosc. 2023, 35, 584–591. [Google Scholar] [CrossRef]
- Coucke, E.M.; Akbar, H.; Kahloon, A.; Lopez, P.P. Biliary Obstruction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Shaib, Y.; El-Serag, H.B. The epidemiology of cholangiocarcinoma. Semin. Liver Dis. 2004, 24, 115–125. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Qureshi, K.; Jesudoss, R.; Al-Osaimi, A.M. The treatment of cholangiocarcinoma: A hepatologist’s perspective. Curr. Gastroenterol. Rep. 2014, 16, 412. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.J.; Kawaguchi, Y.; Wang, H.; Jiang, X.Q.; Hasegawa, K. Update on the Diagnosis and Treatment of Combined Hepatocellular Cholangiocarcinoma. J. Clin. Transl. Hepatol. 2024, 12, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.T.; Li, W.M.; Li, H.C.; Ao, G.K.; Zheng, F.; Lin, H. Percutaneous Intraductal Radiofrequency Ablation for Extrahepatic Distal Cholangiocarcinoma: A Method for Prolonging Stent Patency and Achieving Better Functional Status and Quality of Life. Cardiovasc. Interv. Radiol. 2017, 40, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Barojas, P.; Bakhru, M.R.; Habib, N.A.; Ellen, K.; Millman, J.; Jamal-Kabani, A.; Gaidhane, M.; Kahaleh, M. Safety and efficacy of radiofrequency ablation in the management of unresectable bile duct and pancreatic cancer: A novel palliation technique. J. Oncol. 2013, 2013, 910897. [Google Scholar] [CrossRef] [PubMed]
- Dolak, W.; Schreiber, F.; Schwaighofer, H.; Gschwantler, M.; Plieschnegger, W.; Ziachehabi, A.; Mayer, A.; Kramer, L.; Kopecky, A.; Schrutka-Kolbl, C.; et al. Endoscopic radiofrequency ablation for malignant biliary obstruction: A nationwide retrospective study of 84 consecutive applications. Surg. Endosc. 2014, 28, 854–860. [Google Scholar] [CrossRef]
- Laleman, W.; van der Merwe, S.; Verbeke, L.; Vanbeckevoort, D.; Aerts, R.; Prenen, H.; Van Cutsem, E.; Verslype, C. A new intraductal radiofrequency ablation device for inoperable biliopancreatic tumors complicated by obstructive jaundice: The IGNITE-1 study. Endoscopy 2017, 49, 977–982. [Google Scholar] [CrossRef]
- Lee, Y.N.; Jeong, S.; Choi, H.J.; Cho, J.H.; Cheon, Y.K.; Park, S.W.; Kim, Y.S.; Lee, D.H.; Moon, J.H. The safety of newly developed automatic temperature-controlled endobiliary radiofrequency ablation system for malignant biliary strictures: A prospective multicenter study. J. Gastroenterol. Hepatol. 2019, 34, 1454–1459. [Google Scholar] [CrossRef]
- Kallis, Y.; Phillips, N.; Steel, A.; Kaltsidis, H.; Vlavianos, P.; Habib, N.; Westaby, D. Analysis of Endoscopic Radiofrequency Ablation of Biliary Malignant Strictures in Pancreatic Cancer Suggests Potential Survival Benefit. Dig. Dis. Sci. 2015, 60, 3449–3455. [Google Scholar] [CrossRef]
- Liang, H.; Peng, Z.; Cao, L.; Qian, S.; Shao, Z. Metal Stenting with or without Endobiliary Radiofrequency Ablation for Unresectable Extrahepatic Cholangiocarcinoma. J. Cancer Ther. 2015, 6, 981–992. [Google Scholar] [CrossRef]
- Shin, I.S.; Moon, J.H.; Lee, Y.N.; Myeong, J.H.; Lee, T.H.; Yang, J.K.; Cho, Y.D.; Park, S.H. Impact of temperature-controlled endobiliary radiofrequency ablation for inoperable hilar cholangiocarcinoma: A propensity score-matched analysis. Endosc. Int. Open 2024, 12, E535–E544. [Google Scholar] [CrossRef]
- Kang, H.; Chung, M.J.; Cho, I.R.; Jo, J.H.; Lee, H.S.; Park, J.Y.; Park, S.W.; Song, S.Y.; Bang, S. Efficacy and safety of palliative endobiliary radiofrequency ablation using a novel temperature-controlled catheter for malignant biliary stricture: A single-center prospective randomized phase II TRIAL. Surg. Endosc. 2021, 35, 63–73. [Google Scholar] [CrossRef]
- Bokemeyer, A.; Matern, P.; Bettenworth, D.; Cordes, F.; Nowacki, T.M.; Heinzow, H.; Kabar, I.; Schmidt, H.; Ullerich, H.; Lenze, F. Endoscopic Radiofrequency Ablation Prolongs Survival of Patients with Unresectable Hilar Cholangiocellular Carcinoma—A Case-Control Study. Sci. Rep. 2019, 9, 13685. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Kondo, Y.; Miyazaki, M.; Okui, K. A histopathologic study of 102 cases of intrahepatic cholangiocarcinoma: Histologic classification and modes of spreading. Hum. Pathol. 1988, 19, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, D.J.; Okamoto, K.; White, S.L. Intraductal papillary mucinous neoplasm of the biliary tract: A precursor lesion to cholangiocarcinoma. Radiol. Case Rep. 2019, 14, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Rocha, F.G.; Lee, H.; Katabi, N.; DeMatteo, R.P.; Fong, Y.; D’Angelica, M.I.; Allen, P.J.; Klimstra, D.S.; Jarnagin, W.R. Intraductal papillary neoplasm of the bile duct: A biliary equivalent to intraductal papillary mucinous neoplasm of the pancreas? Hepatology 2012, 56, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Kim, M.H.; Lee, S.K.; Jang, S.J.; Song, M.H.; Kim, K.P.; Kim, H.J.; Seo, D.W.; Song, D.E.; Yu, E.; et al. Clinicopathologic review of 58 patients with biliary papillomatosis. Cancer 2004, 100, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Yeung, Y.P.; AhChong, K.; Chung, C.K.; Chun, A.Y. Biliary papillomatosis: Report of seven cases and review of English literature. J. Hepatobiliary Pancreat. Surg. 2003, 10, 390–395. [Google Scholar] [CrossRef]
- Natov, N.S.; Horton, L.C.; Hegde, S.R. Successful endoscopic treatment of an intraductal papillary neoplasm of the bile duct. World J. Gastrointest. Endosc. 2017, 9, 238–242. [Google Scholar] [CrossRef]
- Delaney, S.; Zhou, Y.; Pawa, S.; Pawa, R. Intraductal papillary neoplasm of the left hepatic duct treated with endoscopic retrograde cholangiopancreatography guided radiofrequency ablation. Clin. J. Gastroenterol. 2021, 14, 346–350. [Google Scholar] [CrossRef]
- Tang, W.; Qiu, J.G.; Wei, X.F.; Xiao, H.; Deng, X.; Wang, S.D.; Du, C.Y.; Wu, Q. Endoscopic Endoluminal Radiofrequency Ablation and Single-Operator Peroral Cholangioscopy System (SpyGlass) in the Diagnosis and Treatment of Intraductal Papillary Neoplasm of the Bile Duct: A Case Report and Literature Review. Front. Med. 2021, 8, 675720. [Google Scholar] [CrossRef]
- ASGE Standards of Practice Committee; Chathadi, K.V.; Khashab, M.A.; Acosta, R.D.; Chandrasekhara, V.; Eloubeidi, M.A.; Faulx, A.L.; Fonkalsrud, L.; Lightdale, J.R.; Salztman, J.R.; et al. The role of endoscopy in ampullary and duodenal adenomas. Gastrointest. Endosc. 2015, 82, 773–781. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, K.H.; Kim, T.N.; Jung, M.K.; Cho, C.M.; Cho, K.B.; Han, J.M.; Kim, H.G.; Kim, H.S. Therapeutic outcomes of endoscopic papillectomy for ampullary neoplasms: Retrospective analysis of a multicenter study. BMC Gastroenterol. 2017, 17, 69. [Google Scholar] [CrossRef]
- Haraldsson, E.; Swahn, F.; Verbeke, C.; Mattsson, J.S.; Enochsson, L.; Ung, K.A.; Lundell, L.; Heuchel, R.; Lohr, J.M.; Arnelo, U. Endoscopic papillectomy and KRAS expression in the treatment of adenoma in the major duodenal papilla. Scand. J. Gastroenterol. 2015, 50, 1419–1427. [Google Scholar] [CrossRef]
- Bohnacker, S.; Seitz, U.; Nguyen, D.; Thonke, F.; Seewald, S.; deWeerth, A.; Ponnudurai, R.; Omar, S.; Soehendra, N. Endoscopic resection of benign tumors of the duodenal papilla without and with intraductal growth. Gastrointest. Endosc. 2005, 62, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Ceppa, E.P.; Burbridge, R.A.; Rialon, K.L.; Omotosho, P.A.; Emick, D.; Jowell, P.S.; Branch, M.S.; Pappas, T.N. Endoscopic versus surgical ampullectomy: An algorithm to treat disease of the ampulla of Vater. Ann. Surg. 2013, 257, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Jordan, P.H., Jr.; Ayala, G.; Rosenberg, W.R.; Kinner, B.M. Treatment of ampullary villous adenomas that may harbor carcinoma. J. Gastrointest. Surg. 2002, 6, 770–775. [Google Scholar] [CrossRef]
- Tran, T.C.; Vitale, G.C. Ampullary tumors: Endoscopic versus operative management. Surg. Innov. 2004, 11, 255–263. [Google Scholar] [CrossRef]
- Mehendiratta, V.; Desilets, D.J. Use of radiofrequency ablation probe for eradication of residual adenoma after ampullectomy. Gastrointest. Endosc. 2015, 81, 1055–1056. [Google Scholar] [CrossRef]
- Valente, R.; Urban, O.; Del Chiaro, M.; Capurso, G.; Blomberg, J.; Lohr, J.M.; Arnelo, U. ERCP-directed radiofrequency ablation of ampullary adenomas: A knife-sparing alternative in patients unfit for surgery. Endoscopy 2015, 47 (Suppl. S1), E515–E516. [Google Scholar] [CrossRef]
- Suarez, A.L.; Cote, G.A.; Elmunzer, B.J. Adjunctive radiofrequency ablation for the endoscopic treatment of ampullary lesions with intraductal extension (with video). Endosc. Int. Open 2016, 4, E748–E751. [Google Scholar] [CrossRef]
- Rustagi, T.; Irani, S.; Reddy, D.N.; Abu Dayyeh, B.K.; Baron, T.H.; Gostout, C.J.; Levy, M.J.; Martin, J.; Petersen, B.T.; Ross, A.; et al. Radiofrequency ablation for intraductal extension of ampullary neoplasms. Gastrointest. Endosc. 2017, 86, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Camus, M.; Napoleon, B.; Vienne, A.; Le Rhun, M.; Leblanc, S.; Barret, M.; Chaussade, S.; Robin, F.; Kaddour, N.; Prat, F. Efficacy and safety of endobiliary radiofrequency ablation for the eradication of residual neoplasia after endoscopic papillectomy: A multicenter prospective study. Gastrointest. Endosc. 2018, 88, 511–518. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yoon, S.B.; Chang, J.H.; Lee, I.S. The Safety of Radiofrequency Ablation Using a Novel Temperature-Controlled Probe for the Treatment of Residual Intraductal Lesions after Endoscopic Papillectomy. Gut Liver 2021, 15, 307–314. [Google Scholar] [CrossRef]
- Tringali, A.; Matteo, M.V.; Orlandini, B.; Barbaro, F.; Perri, V.; Zhang, Q.; Ricci, R.; Costamagna, G. Radiofrequency ablation for intraductal extension of ampullary adenomatous lesions: Proposal for a standardized protocol. Endosc. Int. Open 2021, 9, E749–E755. [Google Scholar] [CrossRef] [PubMed]
- Dahel, Y.; Caillol, F.; Ratone, J.P.; Zemmour, C.; Palen, A.; Garnier, J.; Ewald, J.; Turrini, O.; Hoibian, S.; Giovannini, M. Safety of intrabiliary radiofrequency ablation in cases of residual and recurrent neoplasia after endoscopic papillectomy. Endosc. Int. Open 2025, 13, a24872598. [Google Scholar] [CrossRef]
- Kadayifci, A.; Atar, M.; Forcione, D.G.; Casey, B.W.; Kelsey, P.B.; Brugge, W.R. Radiofrequency ablation for the management of occluded biliary metal stents. Endoscopy 2016, 48, 1096–1101. [Google Scholar] [CrossRef]
- Nayar, M.K.; Oppong, K.W.; Bekkali, N.L.H.; Leeds, J.S. Novel temperature-controlled RFA probe for treatment of blocked metal biliary stents in patients with pancreaticobiliary cancers: Initial experience. Endosc. Int. Open 2018, 6, E513–E517. [Google Scholar] [CrossRef]
- Ma, M.X.; Jayasekeran, V.; Chong, A.K. Benign biliary strictures: Prevalence, impact, and management strategies. Clin. Exp. Gastroenterol. 2019, 12, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.; Saxena, P.; Kaffes, A.J. Benign Biliary Strictures: A Systematic Review on Endoscopic Treatment Options. Diagnostics 2020, 10, 221. [Google Scholar] [CrossRef]
- Obuch, J.C.; Wagh, M.S. Endoscopic therapy for benign biliary strictures: Evaluation of metal vs. plastic biliary stents. Hepatobiliary Surg. Nutr. 2017, 6, 268–271. [Google Scholar] [CrossRef]
- Ni, D.J.; Yang, Q.F.; Nie, L.; Xu, J.; He, S.Z.; Yao, J. The past, present, and future of endoscopic management for biliary strictures: Technological innovations and stent advancements. Front. Med. 2024, 11, 1334154. [Google Scholar] [CrossRef] [PubMed]
- Mallette, K.; Hawel, J.; Elnahas, A.; Alkhamesi, N.A.; Schlachta, C.M.; Tang, E.S. The utility of self-expanding metal stents in benign biliary strictures—A retrospective case series. BMC Gastroenterol. 2023, 23, 361. [Google Scholar] [CrossRef]
- Hu, B.; Gao, D.J.; Wu, J.; Wang, T.T.; Yang, X.M.; Ye, X. Intraductal radiofrequency ablation for refractory benign biliary stricture: Pilot feasibility study. Dig. Endosc. 2014, 26, 581–585. [Google Scholar] [CrossRef]
- Ozdemir, M.; Kucukay, F.; Ozdemir, F.A.E.; Acu, R.; Tola, M.; Yurdakul, M. Percutaneous endobiliary radiofrequency ablation for refractory benign hepaticojejunostomy and biliary strictures. Diagn. Interv. Imaging 2018, 99, 555–560. [Google Scholar] [CrossRef]
- Cha, B.H.; Jang, M.J.; Lee, S.H. Survival Benefit of Intraductal Radiofrequency Ablation for Malignant Biliary Obstruction: A Systematic Review with Meta-Analysis. Clin. Endosc. 2021, 54, 100–106. [Google Scholar] [CrossRef]
- de Jong, D.M.; Fritzsche, J.A.; Audhoe, A.S.; Yi, S.S.L.; Bruno, M.J.; Voermans, R.P.; van Driel, L. Comparison of Intraductal RFA Plus Stent versus Stent-Only Treatment for Unresectable Perihilar Cholangiocarcinoma—A Systematic Review and Meta-Analysis. Cancers 2022, 14, 2079. [Google Scholar] [CrossRef]
- Zheng, X.; Bo, Z.Y.; Wan, W.; Wu, Y.C.; Wang, T.T.; Wu, J.; Gao, D.J.; Hu, B. Endoscopic radiofrequency ablation may be preferable in the management of malignant biliary obstruction: A systematic review and meta-analysis. J. Dig. Dis. 2016, 17, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Laquiere, A.; Boustiere, C.; Leblanc, S.; Penaranda, G.; Desilets, E.; Prat, F. Safety and feasibility of endoscopic biliary radiofrequency ablation treatment of extrahepatic cholangiocarcinoma. Surg. Endosc. 2016, 30, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Q.; Wang, Z.X.; Deng, Y.N.; Yang, Y.; Wang, G.Y.; Chen, G.H. Efficacy of Hepatic Resection vs. Radiofrequency Ablation for Patients with Very-Early-Stage or Early-Stage Hepatocellular Carcinoma: A Population-Based Study with Stratification by Age and Tumor Size. Front. Oncol. 2019, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.C.; Navarra, G.; Jiao, L.R.; Nicholls, J.P.; Jensen, S.L.; Habib, N.A. New technique for liver resection using heat coagulative necrosis. Ann. Surg. 2002, 236, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Koda, M.; Ueki, M.; Maeda, Y.; Mimura, K.I.; Okamoto, K.; Matsunaga, Y.; Kawakami, M.; Hosho, K.; Murawaki, Y. The influence on liver parenchymal function and complications of radiofrequency ablation or the combination with transcatheter arterial embolization for hepatocellular carcinoma. Hepatol. Res. 2004, 29, 18–23. [Google Scholar] [CrossRef]
- Livraghi, T.; Meloni, F.; Di Stasi, M.; Rolle, E.; Solbiati, L.; Tinelli, C.; Rossi, S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology 2008, 47, 82–89. [Google Scholar] [CrossRef]
Reference | Patients Number | Cause of MBO | Type of Study | RFA Device | Technical Success (%) | Stent Patency (Days) | Survival (Days) |
---|---|---|---|---|---|---|---|
Steel et al. [43] | 22 | CCA (n = 6) PC (n = 16) | Prospective | Habib™ | 95.5 | 85.7% at 90 d | NR |
Figueroa-Barojas et al. [52] | 20 | CCA (n = 11) PC (n = 7) IPMN (n = 1) GC (n = 1) | Prospective | Habib™ | 100 | 100% at 30 d | NR |
Dolak et al. [53] | 58 | MBO (causes not detailed) | Retrospective | Habib™ | 100 | 170 | 318 |
Sharaiha et al. [36] | 69 | CCA (n = 45) PC (n = 19) GBC (n = 2) GC (n = 1) LM (n = 3) | Retrospective | Habib™ | 100 | 95.65% at 30 d | 343.8 |
Laleman et al. [54] | 18 | CCA (n = 11) PC (n = 7) | Prospective | ERLA™ | 100 | 110 | 227 |
Lee et al. [55] | 30 | CCA (n = 19) PC (n = 9) GC (n = 2) | Prospective | ERLA™ | 100 | 236 | 383 |
Reference | Patient Number (RFA + Stent) | Cause of MBO (RFA + Stent) | Patient Number (Stent) | Cause of MBO (Stent) | Median Survival (Days, RFA + Stent) | Median Survival (Days, Stent) | Stent Patency (Days, RFA + Stent) | Stent Patency (Days, Stent) |
---|---|---|---|---|---|---|---|---|
Sharaiha et al. [41] | 26 | CCA (n = 18); PC (n = 6) | 40 | CCA (n = 19); PC (n = 21) | 177 | 177 | 100% at 30 d | 100% at 30 d |
Kallis et al. [56] | 23 | PC (n = 23) | 46 | PC (n = 46) | 226 | 123.5 | 472 | 324 |
Liang et al. [57] | 34 | CCA (n = 34) | 42 | CCA (n = 42) | 570 | 480 | 285 | 250.5 |
Bokemayer et al. [60] | 32 | CCA (n = 32) | 22 | CCA (n = 22) | 342 | 221 | NR | NR |
Yang et al. [21] | 32 | CCA (n = 32) | 33 | CCA (n = 33) | 396 | 349 | 204 | 102 |
Shin et al. [58] | 32 | CCA (n = 32) | 32 | CCA (n = 32) | 337 | 296 | 242 | 168 |
Kang et al. [59] | 24 | CCA (n = 18), PC (n = 4), and others (n = 2) | 24 | CCA (n = 12), PC (n = 10), and others (n = 2) | 244 | 180 | 132 | 116 |
Reference | Mehendiratta et al. [76] * | Valente et al. [77] * | Suarez et al. [78] * | Rustagi et al. [79] ** | Camus et al. [80] *** | Choi et al. [81] ** | Tringali et al. [82] *** | Dahel et al. [83] ** |
---|---|---|---|---|---|---|---|---|
Patient number | 1 | 3 | 4 | 14 | 20 | 10 | 9 | 25 |
Intraductal extension, N (%) | 0 | 2 (66.7) | NR | 14 (100) | 20 (100) | 10 (100) | 9 (100) | 11 (44) |
Histology of ampullary adenoma, N | LGD and HGD | LGD (2) HGD (1) | LGD (3) HGD (1) | LGD (6) HGD (6) AC (2) | LGD (15) HGD (5) | LGD (8) HGD (2) | LGD (5) HDG (3) IMC (1) | LGD (10) HGD (7) IMC (1) AC (1) NET (1) |
RFA probe | Habib™ | NR | Habib™ | Habib™ | Habib™ | ELRA™ | ELRA™ | ELRA™ |
Setting | NR | |||||||
| 7 | 10 | 7–10 | 10 | 7 | 10 | 10 | |
| 90 | 60–90 | 90 (60–140) | 30 | 15–90 | 120 | 120 | |
Pre-RFA pancreatic stenting, N (%) | 1 (100) | 3 (100) | 4 (100) | 12 (85.7) | 5 (25) | 9 (90) | 9 (100) | 20 (77.5) |
Post-RFA biliary stenting, N (%) | 1 (100) | 3 (100) | 4 (100) | 12 (85.7) | 20 (100) | 10 (100) | 9 (100) | 25 (100) |
Technical success, N (%) | 1 (100) | 3 (100) | 4 (100) | 14 (100) | 20 (100) | 10 (100) | 9 (100) | 25 (100) |
Clinical success (no recurrence) | 1 (100) | 3 (100) | 3 (75) | 12 (85.7) | 14 (70) | 9 (90) | 6 (67) | 22 (92) |
Additional modalities, N (%) | 0 | 0 | 0 | 0 | ||||
APC | 4 (100) | 6 (42.8) | 2 (10) | 5 (56) | ||||
Thermal probes | 0 | 2 (14.3) | 0 | 0 | ||||
PDT | 0 | 0 | 0 | 0 | ||||
Adverse events, N (%) | 0 | NR | 1 (25) | 6 (43) | 8 (40) | 3 (30) | 1 (11) | 14 (56) |
Median follow-up (months) | NR | 24 | 2 | 10.9 | 12 | 9.5 | 21 | 37 |
Reference | Acute Cholangitis (N) | Acute Pancreatitis (N) | Acute Cholecystitis (N) | Liver Infarction (N) | Hemobilia (N) | Abdominal Pain (N) | Others (N) |
---|---|---|---|---|---|---|---|
Steel et al. [43] RFA + stent (22 pts) | 0 | 1 (4.5) | 2 (9.1) | 0 | 0 | 0 | 0 |
Figueroa-Barojas et al. [52] RFA + stent (20 pts) | 0 | 1 (5) | 1 (5) | 0 | 0 | 0 | 0 |
Dolak et al. [53] RFA + stent (58 pts) | 7 | 0 | 0 | 1 | 2 | 0 | 2 |
Sharaiha et al. [36] RFA + stent (69 pts) | 0 | 1 | 2 | 0 | 1 | 3 | 0 |
Laleman et al. [54] RFA + stent (18 pts) | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
Lee et al. [55] RFA + stent (30 pts) | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
Controlled studies | |||||||
Sharaiha et al. [18] RFA + stent (26 pts)/stent alone (40 pts) | 0/0 | 1/1 | 1/17 | 0/0 | 0/0 | 3/3 | 0/0 |
Kallis et al. [56] RFA + stent (23 pts)/stent alone (46 pts) | 1/1 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 1/1 |
Liang et al. [57] RFA + stent (34 pts)/stent alone (42 pts) | 1/2 | 2/1 | 1/0 | 0/0 | 0/0 | 5/7 | 0/0 |
Bokemayer et al. [60] RFA + stent (32 pts)/stent alone (22 pts) | 6/NR | 2/NR | 0/NR | 0/NR | 0/NR | 0/NR | 2/NR |
Yang et al. [21] RFA + stent (32 pts)/stent alone (33 pts) | 2/1 | 0/1 | 0/0 | 0/0 | 0/1 | 0/0 | 0/0 |
Shin et al. [58] RFA + stent (32 pts)/stent alone (32 pts) | 3/2 | 0/0 | 0/1 | 0/0 | 1/0 | 0/0 | 0/0 |
Kang et al. [59] RFA + stent (24 pts)/stent alone (24 pts) | 1/0 | 0/3 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoury, T.; Sbeit, W.; Lisotti, A.; Napoléon, B. Endobiliary Radiofrequency Ablation for Hepato-Biliary Diseases: A Narrative Review. Diseases 2025, 13, 273. https://doi.org/10.3390/diseases13080273
Khoury T, Sbeit W, Lisotti A, Napoléon B. Endobiliary Radiofrequency Ablation for Hepato-Biliary Diseases: A Narrative Review. Diseases. 2025; 13(8):273. https://doi.org/10.3390/diseases13080273
Chicago/Turabian StyleKhoury, Tawfik, Wisam Sbeit, Andrea Lisotti, and Bertrand Napoléon. 2025. "Endobiliary Radiofrequency Ablation for Hepato-Biliary Diseases: A Narrative Review" Diseases 13, no. 8: 273. https://doi.org/10.3390/diseases13080273
APA StyleKhoury, T., Sbeit, W., Lisotti, A., & Napoléon, B. (2025). Endobiliary Radiofrequency Ablation for Hepato-Biliary Diseases: A Narrative Review. Diseases, 13(8), 273. https://doi.org/10.3390/diseases13080273