Host–Microbiome Interaction in the Intensive Care Unit
Abstract
1. Introduction
2. The Microbiota—Pathways and Composition
2.1. Microbiome Composition: The Bacterial Taxa Abundance and Their Roles
2.2. Current Methods to Identify and Quantify the Microbiome
- 16S rRNA Gene Sequencing
- Shotgun Metagenomic Sequencing
- Metatranscriptomics
- Quantitative PCR (qPCR) and Digital Droplet PCR (ddPCR)
- Flow Cytometry
- Culture-Based Methods
- Chemical Analysis
- Multi-Omics Integration
2.3. The Microbiota-Involved Pathways and Axis
3. Microbiota Alterations in the ICU Patient
3.1. Particularity of the ICU Patient
3.2. Critical Illness and Organ Dysfunction
3.3. Patient-Specific Factors
3.4. Antibiotic Use
3.5. ICU-Specific Medications
3.6. Nutrition and Feeding Practices
3.7. Mechanical Ventilation, Invasive Monitoring, and ICU Environment
4. Microbiota Targeted Therapies
4.1. Probiotics
4.2. Prebiotics
4.3. Downsides of Microbiota Targeted Therapies in ICU Patients
4.4. Conflicting Conclusions Regarding the Efficacy and Safety of Probiotics
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
AhR | Aryl hydrocarbon receptor |
ARDS | Acute respiratory distress syndrome |
BA | Bile acids |
CDI | Clostridoides difficile infection |
CFU | Colony forming unit |
EHEC | Enterohemorrhagic E. coli |
EN | Enteral nutrition |
END | Enteral nutrition-related diarrhea |
ETEC | Enterotoxigenic E. coli |
FGF | Fibroblast growth factor |
FXR | Farnesoid X receptor |
GCS | Glasgow coma scale |
GI | Gastrointestinal |
GPBAR1 | G-protein-coupled bile receptor 1 |
HAI | Hospital-acquired infections |
ICU | Intensive Care Unit |
IgA | Immunoglobulin A |
KP | Kynurenine |
LPS | Lipopolysaccharide |
MLCK | Myosin light chain kinase |
NAFLD | Non-alcoholic fatty liver disease |
NF-kB | Nuclear factor kappa B |
NGS | Next-generation sequencing |
NMR | Nuclear magnetic resonance |
NSAIDs | Non-steroidal anti-inflammatory drugs |
References
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s Role in Health and Diseases. Environ. Sci. Pollut. Res. 2021, 28, 36967–36983. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Sun, T.; Wang, L.; Zhang, H. Intestinal Microbiota in Sepsis. Intensive Care Res. 2022, 2, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Li, L.; Mo, X.; Li, S.; Xie, M.; Zhan, Y.; Lin, Y.; Li, Z.; Xie, M.; et al. Alteration of the Respiratory Microbiome in COVID-19 Patients with Different Severities. J. Genet. Genomics Yi Chuan Xue Bao 2022, 49, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell. Infect. Microbiol. 2020, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, H.; Jin, M.; Feng, G.; Wang, S. The Gut-Heart Axis: Unveiling the Roles of Gut Microbiota in Cardiovascular Diseases. Front. Cardiovasc. Med. 2025, 12, 1572948. [Google Scholar] [CrossRef]
- You, M.; Chen, N.; Yang, Y.; Cheng, L.; He, H.; Cai, Y.; Liu, Y.; Liu, H.; Hong, G. The Gut Microbiota-Brain Axis in Neurological Disorders. MedComm 2024, 5, e656. [Google Scholar] [CrossRef]
- Yekani, M.; Baghi, H.B.; Naghili, B.; Vahed, S.Z.; Sóki, J.; Memar, M.Y. To Resist and Persist: Important Factors in the Pathogenesis of Bacteroides Fragilis. Microb. Pathog. 2020, 149, 104506. [Google Scholar] [CrossRef]
- Wexler, A.G.; Goodman, A.L. An Insider’s Perspective: Bacteroides as a Window into the Microbiome. Nat. Microbiol. 2017, 2, 17026. [Google Scholar] [CrossRef]
- Reynoso-García, J.; Miranda-Santiago, A.E.; Meléndez-Vázquez, N.M.; Acosta-Pagán, K.; Sánchez-Rosado, M.; Díaz-Rivera, J.; Rosado-Quiñones, A.M.; Acevedo-Márquez, L.; Cruz-Roldán, L.; Tosado-Rodríguez, E.L.; et al. A Complete Guide to Human Microbiomes: Body Niches, Transmission, Development, Dysbiosis, and Restoration. Front. Syst. Biol. 2022, 2, 951403. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Nie, Q.; He, H.; Tan, H.; Geng, F.; Ji, H.; Hu, J.; Nie, S. Gut Firmicutes: Relationship with Dietary Fiber and Role in Host Homeostasis. Crit. Rev. Food Sci. Nutr. 2023, 63, 12073–12088. [Google Scholar] [CrossRef]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017, 5, 1–19. [Google Scholar] [CrossRef]
- Han, G.; Vaishnava, S. Microbial Underdogs: Exploring the Significance of Low-Abundance Commensals in Host-Microbe Interactions. Exp. Mol. Med. 2023, 55, 2498–2507. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.; Hanson, B. Tools for Analysis of the Microbiome. Dig. Dis. Sci. 2020, 65, 674–685. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- 16S rRNA Gene Sequencing vs. Shotgun Metagenomic Sequencing. Available online: https://blog.microbiomeinsights.com/16s-rrna-sequencing-vs-shotgun-metagenomic-sequencing (accessed on 25 June 2025).
- Sharpton, T.J. An Introduction to the Analysis of Shotgun Metagenomic Data. Front. Plant Sci. 2014, 5, 209. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; Hao, W.; Duan, C.; Wang, S.; Wei, J.; Liu, G. Metatranscriptomics Unravel Composition, Drivers, and Functions of the Active Microorganisms in Light-Flavor Liquor Fermentation. Microbiol. Spectr. 2022, 10, e02151-21. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Pulido, V.; Huang, W.; Suarez-Ulloa, V.; Cickovski, T.; Mathee, K.; Narasimhan, G. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis: Supplementary Issue: Bioinformatics Methods and Applications for Big Metagenomics Data. Evol. Bioinforma. 2016, 12, EBO–S36436. [Google Scholar] [CrossRef] [PubMed]
- Galazzo, G.; Van Best, N.; Benedikter, B.J.; Janssen, K.; Bervoets, L.; Driessen, C.; Oomen, M.; Lucchesi, M.; Van Eijck, P.H.; Becker, H.E.F.; et al. How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches. Front. Cell. Infect. Microbiol. 2020, 10, 403. [Google Scholar] [CrossRef]
- Roach, J.; Mital, R.; Haffner, J.J.; Colwell, N.; Coats, R.; Palacios, H.M.; Liu, Z.; Godinho, J.L.P.; Ness, M.; Peramuna, T.; et al. Microbiome Metabolite Quantification Methods Enabling Insights into Human Health and Disease. Methods 2024, 222, 81–99. [Google Scholar] [CrossRef]
- Muller, E.; Shiryan, I.; Borenstein, E. Multi-Omic Integration of Microbiome Data for Identifying Disease-Associated Modules. Nat. Commun. 2024, 15, 2621. [Google Scholar] [CrossRef]
- Lo, B.C.; Chen, G.Y.; Núñez, G.; Caruso, R. Gut Microbiota and Systemic Immunity in Health and Disease. Int. Immunol. 2020, 33, 197–209. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the Gut Microbiota in Nutrition and Health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
- Gu, T.; Kong, M.; Duan, M.; Chen, L.; Tian, Y.; Xu, W.; Zeng, T.; Lu, L. Cu Exposure Induces Liver Inflammation via Regulating Gut Microbiota/LPS/Liver TLR4 Signaling Axis. Ecotoxicol. Environ. Saf. 2024, 278, 116430. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of Fecal Microbial Communities in Patients with Liver Cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Muñoz, L.; Borrero, M.J.; Úbeda, M.; Conde, E.; Del Campo, R.; Rodríguez-Serrano, M.; Lario, M.; Sánchez-Díaz, A.M.; Pastor, O.; Díaz, D.; et al. Intestinal Immune Dysregulation Driven by Dysbiosis Promotes Barrier Disruption and Bacterial Translocation in Rats With Cirrhosis. Hepatology 2019, 70, 925–938. [Google Scholar] [CrossRef]
- Corriero, A.; Gadaleta, R.M.; Puntillo, F.; Inchingolo, F.; Moschetta, A.; Brienza, N. The Central Role of the Gut in Intensive Care. Crit. Care 2022, 26, 379. [Google Scholar] [CrossRef]
- Chiang, J.Y.L. Bile Acid Metabolism and Signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L.; Ferrell, J.M. Discovery of Farnesoid X Receptor and Its Role in Bile Acid Metabolism. Mol. Cell. Endocrinol. 2022, 548, 111618. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L.; Ferrell, J.M. Bile Acid Receptors FXR and TGR5 Signaling in Fatty Liver Diseases and Therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G554–G573. [Google Scholar] [CrossRef] [PubMed]
- Katafuchi, T.; Makishima, M. Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int. J. Mol. Sci. 2022, 23, 6046. [Google Scholar] [CrossRef]
- Matsukuma, K.E.; Bennett, M.K.; Huang, J.; Wang, L.; Gil, G.; Osborne, T.F. Coordinated Control of Bile Acids and Lipogenesis through FXR-Dependent Regulation of Fatty Acid Synthase. J. Lipid Res. 2006, 47, 2754–2761. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, F.Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F.J.; Willson, T.M.; Edwards, P.A. Activation of the Nuclear Receptor FXR Improves Hyperglycemia and Hyperlipidemia in Diabetic Mice. Proc. Natl. Acad. Sci. USA 2006, 103, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Caron, S.; Huaman Samanez, C.; Dehondt, H.; Ploton, M.; Briand, O.; Lien, F.; Dorchies, E.; Dumont, J.; Postic, C.; Cariou, B.; et al. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Mol. Cell. Biol. 2013, 33, 2202–2211. [Google Scholar] [CrossRef]
- Prawitt, J.; Abdelkarim, M.; Stroeve, J.H.M.; Popescu, I.; Duez, H.; Velagapudi, V.R.; Dumont, J.; Bouchaert, E.; van Dijk, T.H.; Lucas, A.; et al. Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes 2011, 60, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jiang, C.; Krausz, K.W.; Li, Y.; Albert, I.; Hao, H.; Fabre, K.M.; Mitchell, J.B.; Patterson, A.D.; Gonzalez, F.J. Microbiome Remodelling Leads to Inhibition of Intestinal Farnesoid X Receptor Signalling and Decreased Obesity. Nat. Commun. 2013, 4, 2384. [Google Scholar] [CrossRef]
- Jiang, C.; Xie, C.; Li, F.; Zhang, L.; Nichols, R.G.; Krausz, K.W.; Cai, J.; Qi, Y.; Fang, Z.Z.; Takahashi, S.; et al. Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease. J. Clin. Investig. 2015, 125, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Marzano, M.; Fosso, B.; Colliva, C.; Notario, E.; Passeri, D.; Intranuovo, M.; Gioiello, A.; Adorini, L.; Pesole, G.; Pellicciari, R.; et al. Farnesoid X Receptor Activation by the Novel Agonist TC-100 (3α, 7α, 11β-Trihydroxy-6α-Ethyl-5β-Cholan-24-Oic Acid) Preserves the Intestinal Barrier Integrity and Promotes Intestinal Microbial Reshaping in a Mouse Model of Obstructed Bile Acid Flow. Biomed. Pharmacother. 2022, 153, 113380. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Damron, H.A.; Hillgartner, F.B. Fibroblast Growth Factor-19, a Novel Factor That Inhibits Hepatic Fatty Acid Synthesis. J. Biol. Chem. 2009, 284, 10023–10033. [Google Scholar] [CrossRef]
- Akalestou, E.; Miras, A.D.; Rutter, G.A.; le Roux, C.W. Mechanisms of Weight Loss After Obesity Surgery. Endocr. Rev. 2022, 43, 19–34. [Google Scholar] [CrossRef]
- Kuribayashi, H.; Miyata, M.; Yamakawa, H.; Yoshinari, K.; Yamazoe, Y. Enterobacteria-Mediated Deconjugation of Taurocholic Acid Enhances Ileal Farnesoid X Receptor Signaling. Eur. J. Pharmacol. 2012, 697, 132–138. [Google Scholar] [CrossRef]
- Miyata, M.; Takamatsu, Y.; Kuribayashi, H.; Yamazoe, Y. Administration of Ampicillin Elevates Hepatic Primary Bile Acid Synthesis through Suppression of Ileal Fibroblast Growth Factor 15 Expression. J. Pharmacol. Exp. Ther. 2009, 331, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Sorribas, M.; Jakob, M.O.; Yilmaz, B.; Li, H.; Stutz, D.; Noser, Y.; de Gottardi, A.; Moghadamrad, S.; Hassan, M.; Albillos, A.; et al. FXR Modulates the Gut-Vascular Barrier by Regulating the Entry Sites for Bacterial Translocation in Experimental Cirrhosis. J. Hepatol. 2019, 71, 1126–1140. [Google Scholar] [CrossRef]
- Benoit, B.; Meugnier, E.; Castelli, M.; Chanon, S.; Vieille-Marchiset, A.; Durand, C.; Bendridi, N.; Pesenti, S.; Monternier, P.A.; Durieux, A.C.; et al. Fibroblast Growth Factor 19 Regulates Skeletal Muscle Mass and Ameliorates Muscle Wasting in Mice. Nat. Med. 2017, 23, 990–996. [Google Scholar] [CrossRef]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef]
- Lou, G.; Ma, X.; Fu, X.; Meng, Z.; Zhang, W.; Wang, Y.D.; Van Ness, C.; Yu, D.; Xu, R.; Huang, W. GPBAR1/TGR5 Mediates Bile Acid-Induced Cytokine Expression in Murine Kupffer Cells. PLoS ONE 2014, 9, e93567. [Google Scholar] [CrossRef] [PubMed]
- Högenauer, K.; Arista, L.; Schmiedeberg, N.; Werner, G.; Jaksche, H.; Bouhelal, R.; Nguyen, D.G.; Bhat, B.G.; Raad, L.; Rauld, C.; et al. G-Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5) Agonists Reduce the Production of Proinflammatory Cytokines and Stabilize the Alternative Macrophage Phenotype. J. Med. Chem. 2014, 57, 10343–10354. [Google Scholar] [CrossRef]
- Münte, E.; Hartmann, P. The Role of Short-Chain Fatty Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease and Other Metabolic Diseases. Biomolecules 2025, 15, 469. [Google Scholar] [CrossRef] [PubMed]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- Tian, P.; Yang, W.; Guo, X.; Wang, T.; Tan, S.; Sun, R.; Xiao, R.; Wang, Y.; Jiao, D.; Xu, Y.; et al. Early Life Gut Microbiota Sustains Liver-Resident Natural Killer Cells Maturation via the Butyrate-IL-18 Axis. Nat. Commun. 2023, 14, 1710. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Zhu, H.; Zhao, T.; Tu, J.; Yin, X.; Yang, S.; Zhang, W.; Zhang, F.; Zhang, M.; et al. Gut Microbiota Promotes Macrophage M1 Polarization in Hepatic Sinusoidal Obstruction Syndrome via Regulating Intestinal Barrier Function Mediated by Butyrate. Gut Microbes 2024, 16, 2377567. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, M.; Wang, H.; Liu, H.; Wei, Y.; Wang, X.; Mackay, C.R.; Wang, Q. A Butyrate-Yielding Dietary Supplement Prevents Acute Alcoholic Liver Injury by Modulating Nrf2-Mediated Hepatic Oxidative Stress and Gut Microbiota. Int. J. Mol. Sci. 2024, 25, 9420. [Google Scholar] [CrossRef] [PubMed]
- Vinolo, M.A.R.; Rodrigues, H.G.; Hatanaka, E.; Sato, F.T.; Sampaio, S.C.; Curi, R. Suppressive Effect of Short-Chain Fatty Acids on Production of Proinflammatory Mediators by Neutrophils. J. Nutr. Biochem. 2011, 22, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, J.; Wu, Q.; Fang, H.; Shao, X.; Ouyang, X.; He, Z.; Deng, Y.; Chen, C. Gut Microbiota Mediates the Susceptibility of Mice to Sepsis-Associated Encephalopathy by Butyric Acid. J. Inflamm. Res. 2022, 15, 2103–2119. [Google Scholar] [CrossRef] [PubMed]
- Alkhalaf, L.M.; Ryan, K.S. Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chem. Biol. 2015, 22, 317–328. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Z.; Li, L. Gut Microbiota Regulation of AHR Signaling in Liver Disease. Biomolecules 2022, 12, 1244. [Google Scholar] [CrossRef]
- Sun, M.; Ma, N.; He, T.; Johnston, L.J.; Ma, X. Tryptophan (Trp) Modulates Gut Homeostasis via Aryl Hydrocarbon Receptor (AhR). Crit. Rev. Food Sci. Nutr. 2020, 60, 1760–1768. [Google Scholar] [CrossRef]
- Schiering, C.; Wincent, E.; Metidji, A.; Iseppon, A.; Li, Y.; Potocnik, A.J.; Omenetti, S.; Henderson, C.J.; Wolf, C.R.; Nebert, D.W.; et al. Feedback Control of AHR Signaling Regulates Intestinal Immunity. Nature 2017, 542, 242–245. [Google Scholar] [CrossRef]
- Beaumont, M.; Neyrinck, A.M.; Olivares, M.; Rodriguez, J.; de Rocca Serra, A.; Roumain, M.; Bindels, L.B.; Cani, P.D.; Evenepoel, P.; Muccioli, G.G.; et al. The Gut Microbiota Metabolite Indole Alleviates Liver Inflammation in Mice. FASEB J. 2018, 32, 6681–6693. [Google Scholar] [CrossRef]
- D’Onofrio, F.; Renga, G.; Puccetti, M.; Pariano, M.; Bellet, M.M.; Santarelli, I.; Stincardini, C.; Mosci, P.; Ricci, M.; Giovagnoli, S.; et al. Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells 2021, 10, 1622. [Google Scholar] [CrossRef]
- Krishnan, S.; Ding, Y.; Saedi, N.; Choi, M.; Sridharan, G.V.; Sherr, D.H.; Yarmush, M.L.; Alaniz, R.C.; Jayaraman, A.; Lee, K. Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages. Cell Rep. 2018, 23, 1099–1111. [Google Scholar] [CrossRef]
- Dong, H.; Hao, L.; Zhang, W.; Zhong, W.; Guo, W.; Yue, R.; Sun, X.; Zhou, Z. Activation of AhR-NQO1 Signaling Pathway Protects Against Alcohol-Induced Liver Injury by Improving Redox Balance. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 793–811. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Ye, T.; Duan, C.; Lv, P.; Wu, X.; Liu, J.; Jiang, K.; Lu, H.; Yang, H.; et al. AhR Activation Attenuates Calcium Oxalate Nephrocalcinosis by Diminishing M1 Macrophage Polarization and Promoting M2 Macrophage Polarization. Theranostics 2020, 10, 12011–12025. [Google Scholar] [CrossRef]
- Major, J.; Crotta, S.; Finsterbusch, K.; Chakravarty, P.; Shah, K.; Frederico, B.; D’Antuono, R.; Green, M.; Meader, L.; Suarez-Bonnet, A.; et al. Endothelial AHR Activity Prevents Lung Barrier Disruption in Viral Infection. Nature 2023, 621, 813–820. [Google Scholar] [CrossRef]
- Zhou, M.; Fan, Y.; Xu, L.; Yu, Z.; Wang, S.; Xu, H.; Zhang, J.; Zhang, L.; Liu, W.; Wu, L.; et al. Microbiome and Tryptophan Metabolomics Analysis in Adolescent Depression: Roles of the Gut Microbiota in the Regulation of Tryptophan-Derived Neurotransmitters and Behaviors in Human and Mice. Microbiome 2023, 11, 145. [Google Scholar] [CrossRef]
- Tang, J.; Xu, L.; Zeng, Y.; Gong, F. Effect of Gut Microbiota on LPS-Induced Acute Lung Injury by Regulating the TLR4/NF-kB Signaling Pathway. Int. Immunopharmacol. 2021, 91, 107272. [Google Scholar] [CrossRef]
- Ziaka, M.; Exadaktylos, A. Gut-Derived Immune Cells and the Gut-Lung Axis in ARDS. Crit. Care 2024, 28, 220. [Google Scholar] [CrossRef]
- Chou, Y.T.; Kan, W.C.; Shiao, C.C. Acute Kidney Injury and Gut Dysbiosis: A Narrative Review Focus on Pathophysiology and Treatment. Int. J. Mol. Sci. 2022, 23, 3658. [Google Scholar] [CrossRef] [PubMed]
- Quirk, A.R.; Schifferer, J.K.; Maki, K.A.; Robinson, A.T.; Keirns, B.H. Biomarkers of Intestinal Permeability Are Linked to Incident Cardiovascular Diseases and Cardiovascular Events: A Review of Prospective Studies. Am. J. Physiol.-Gastrointest. Liver Physiol. 2025, 329, G79–G87. [Google Scholar] [CrossRef] [PubMed]
- Kochkarian, T.; Nagy, H.I.; Li, Q. Gut-Heart Axis: Cardiac Remodeling and Heart Failure in the Context of Inflammatory Bowel Disease and Dysbiosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2025, 329, G122–G137. [Google Scholar] [CrossRef] [PubMed]
- Josefsdottir, K.S.; Baldridge, M.T.; Kadmon, C.S.; King, K.Y. Antibiotics Impair Murine Hematopoiesis by Depleting the Intestinal Microbiota. Blood 2017, 129, 729–739. [Google Scholar] [CrossRef]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 2016, 1, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Kitsios, G.D.; Sayed, K.; Fitch, A.; Yang, H.; Britton, N.; Shah, F.; Bain, W.; Evankovich, J.W.; Qin, S.; Wang, X.; et al. Prognostic Insights from Longitudinal Multicompartment Study of Host-Microbiota Interactions in Critically Ill Patients. MedRxiv Prepr. Serv. Health Sci. 2023. [Google Scholar] [CrossRef]
- Meng, M.; Klingensmith, N.J.; Coopersmith, C.M. New Insights into the Gut as the Driver of Critical Illness and Organ Failure. Curr. Opin. Crit. Care 2017, 23, 143–148. [Google Scholar] [CrossRef]
- He, S.; Lin, F.; Hu, X.; Pan, P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients—A Narrative Review. Nutrients 2023, 15, 4734. [Google Scholar] [CrossRef]
- Dickson, R.P. The Microbiome and Critical Illness. Lancet Respir. Med. 2016, 4, 59–72. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Khan, B.A.; Hou, K. Role of gut microbiota in diabetes mellitus and tumor immunity. Front. Immunol. 2023, 14, 1185080. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, M.; Li, J.; Zhang, P.; Fan, H.; Hu, Q.; Han, M.; Su, L.; He, H.; Tong, Y.; et al. Classification of the Gut Microbiota of Patients in Intensive Care Units During Development of Sepsis and Septic Shock. Genom. Proteom. Bioinform. 2021, 18, 696. [Google Scholar] [CrossRef]
- Elfiky, S.A.; Ahmed, S.M.; Elmenshawy, A.M.; Sultan, G.M.; Asser, S.L. Study of the Gut Microbiome as a Novel Target for Prevention of Hospital-Associated Infections in Intensive Care Unit Patients. Acute Crit. Care 2023, 38, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Inayat, N.; Zahir, A.; Hashmat, A.J.; Khan, A.; Ahmad, A.; Sikander, M.; Zakir, S.; Ahmad, S.; Awan, S.K.; Raza, S.S.; et al. Gut Microbiota as a Key Modulator of Chronic Disease: Implications for Diabetes, Autoimmunity, and Cancer. Cureus 2025, 17, e84687. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.M.; Kim, J. The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. J. Microbiol. Biotechnol. 2022, 32, 1086–1097. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Mei, J.X.; Yu, G.; Lei, L.; Zhang, W.H.; Liu, K.; Chen, X.L.; Kołat, D.; Yang, K.; Hu, J.K. Role of the Gut Microbiota in Anticancer Therapy: From Molecular Mechanisms to Clinical Applications. Signal Transduct. Target. Ther. 2023, 8, 201. [Google Scholar] [CrossRef]
- Clavijo-Salomon, M.A.; Trinchieri, G. Unlocking the Power of the Microbiome for Successful Cancer Immunotherapy. J. Immunother. Cancer 2025, 13, e011281. [Google Scholar] [CrossRef]
- Denny, K.J.; De Wale, J.; Laupland, K.B.; Harris, P.N.A.; Lipman, J. When Not to Start Antibiotics: Avoiding Antibiotic Overuse in the Intensive Care Unit. Clin. Microbiol. Infect. 2020, 26, 35–40. [Google Scholar] [CrossRef]
- Szychowiak, P.; Villageois-Tran, K.; Patrier, J.; Timsit, J.F.; Ruppé, É. The Role of the Microbiota in the Management of Intensive Care Patients. Ann. Intensive Care 2022, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Azamfirei, L. The Human Microbiome in Intensive Care-A Journey Forward? J. Crit. Care Med. 2023, 9, 205–207. [Google Scholar] [CrossRef]
- Xie, B.; Dong, C.; Zhao, X.; Qu, L.; Lv, Y.; Liu, H.; Xu, J.; Yu, Z.; Shen, H.; Shang, Y.; et al. Structural and Functional Alteration of the Gut Microbiomes in ICU Staff: A Cross-Sectional Analysis. Crit. Care 2025, 29, 141. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.J. Antibiotic Use and Its Consequences for the Normal Microbiome. Science 2016, 352, 544–545. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.; Goemans, C.V.; Wirbel, J.; Kuhn, M.; Eberl, C.; Pruteanu, M.; Müller, P.; Garcia-Santamarina, S.; Cacace, E.; Zhang, B.; et al. Unravelling the Collateral Damage of Antibiotics on Gut Bacteria. Nature 2021, 599, 120–124. [Google Scholar] [CrossRef]
- Aardema, H.; Lisotto, P.; Kurilshikov, A.; Diepeveen, J.R.J.; Friedrich, A.W.; Sinha, B.; de Smet, A.M.G.A.; Harmsen, H.J.M. Marked Changes in Gut Microbiota in Cardio-Surgical Intensive Care Patients: A Longitudinal Cohort Study. Front. Cell. Infect. Microbiol. 2019, 9, 467. [Google Scholar] [CrossRef]
- Bruno, G.; Zaccari, P.; Rocco, G.; Scalese, G.; Panetta, C.; Porowska, B.; Pontone, S.; Severi, C. Proton Pump Inhibitors and Dysbiosis: Current Knowledge and Aspects to Be Clarified. World J. Gastroenterol. 2019, 25, 2706–2719. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vila, A.V.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; et al. Proton Pump Inhibitors Affect the Gut Microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Xue, Q.; Luo, Y.; Yu, B.; Hua, B.; Liu, Z. The Interplay between the Microbiota and Opioid in the Treatment of Neuropathic Pain. Front. Microbiol. 2024, 15, 1390046. [Google Scholar] [CrossRef]
- Lyte, M.; Ernst, S. Catecholamine Induced Growth of Gram Negative Bacteria. Life Sci. 1992, 50, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, E.K.; Zhou, S.; Baidoo, S.A.; Chu, W. Influences of Stress Hormones on Microbial Infections. Microb. Pathog. 2019, 131, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.; Mittal, J.; Yan, D.; Eshraghi, A.A.; et al. Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef]
- Niu, L.; Gao, M.; Li, Y.; Wang, C.; Zhang, C.; Duan, H.; Li, H.; Wang, F.; Ge, J. Effects of the Stress Hormone Norepinephrine on the Probiotic Properties of Levilactobacillus: Antibacterial Colonization, Anti-Inflammation, and Antioxidation. Front. Microbiol. 2025, 16, 1526362. [Google Scholar] [CrossRef]
- Niu, L.; Gao, M.; Wen, S.; Wang, F.; Shangguan, H.; Guo, Z.; Zhang, R.; Ge, J. Effects of Catecholamine Stress Hormones Norepinephrine and Epinephrine on Growth, Antimicrobial Susceptibility, Biofilm Formation, and Gene Expressions of Enterotoxigenic Escherichia Coli. Int. J. Mol. Sci. 2023, 24, 15646. [Google Scholar] [CrossRef]
- Rogers, M.A.M.; Aronoff, D.M. The Influence of Nonsteroidal Anti-Inflammatory Drugs on the Gut Microbiome. Clin. Microbiol. Infect. 2016, 22, 178.e1–178.e9. [Google Scholar] [CrossRef]
- Salvadori, M.; Rosso, G. Update on the Reciprocal Interference between Immunosuppressive Therapy and Gut Microbiota after Kidney Transplantation. World J. Transplant. 2024, 14, 90194. [Google Scholar] [CrossRef]
- Couch, C.E.; Neal, W.T.; Herron, C.L.; Kent, M.L.; Schreck, C.B.; Peterson, J.T. Gut Microbiome Composition Associates with Corticosteroid Treatment, Morbidity, and Senescence in Chinook Salmon (Oncorhynchus tshawytscha). Sci. Rep. 2023, 13, 2567. [Google Scholar] [CrossRef]
- Seron-Arbeloa, C.; Zamora-Elson, M.; Labarta-Monzon, L.; Mallor-Bonet, T. Enteral Nutrition in Critical Care. J. Clin. Med. Res. 2013, 5, 1. [Google Scholar] [CrossRef]
- Kreymann, K.G.; Berger, M.M.; Deutz, N.E.; Hiesmayr, M.; Jolliet, P.; Kazandjiev, G.; Nitenberg, G.; Van den Berghe, G.; Wernerman, J.D.G.E.M.; Ebner, C.; et al. ESPEN Guidelines on Enteral Nutrition: Intensive Care. Clin. Nutr. Edinb. Scotl. 2006, 25, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.; Worthley, L.I.G. Nutrition in the Critically Ill Patient: Part III. Enteral Nutrition. Crit. Care Resusc. 2003, 5, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Lee, J.H. Enteral Feeding and the Microbiome in Critically Ill Children: A Narrative Review. Transl. Pediatr. 2021, 10, 2778. [Google Scholar] [CrossRef] [PubMed]
- van Eck, E.B.; Hofman, Z.; van Eijnatten, E.J.M.; Knol, J.; Renes, I.B.; Abrahamse, E. Plant Protein Dominant Enteral Nutrition, Containing Soy and Pea, Is Non-Coagulating after Gastric Digestion in Contrast to Casein Dominant Enteral Nutrition. Food Res. Int. 2024, 197, 115162. [Google Scholar] [CrossRef]
- Chatrizeh, M.; Tian, J.; Rogers, M.; Feturi, F.; Wu, G.; Firek, B.; Nikonov, R.; Cass, L.; Sheppeck, A.; Ramos-Jiménez, R.G.; et al. Plant Based Enteral Nutrition Outperforms Artificial Nutrition in Mitigating Consequences of Antibiotic-Induced Dysbiosis in Mice and Humans. MedRxiv 2025. [Google Scholar] [CrossRef]
- Shabanpur, M.; Nachvak, S.M.; Moradi, S.; Hedayati, S.; Hosseinikia, M.; Pasdar, Y.; Gholizadeh, S.; Samadi, M. Nutritional Care in Iranian Intensive Care Units. Clin. Nutr. Res. 2018, 7, 136–145. [Google Scholar] [CrossRef]
- Gershengorn, H.B.; Kahn, J.M.; Wunsch, H. Temporal Trends in the Use of Parenteral Nutrition in Critically Ill Patients. Chest 2014, 145, 508–517. [Google Scholar] [CrossRef]
- Ni, W.; Jiao, X.; Zou, H.; Jing, M.; Xia, M.; Zhu, S.; Li, L. Gut Microbiome Alterations in ICU Patients with Enteral Nutrition-Related Diarrhea. Front. Microbiol. 2022, 13, 1051687. [Google Scholar] [CrossRef] [PubMed]
- Moron, R.; Galvez, J.; Colmenero, M.; Anderson, P.; Cabeza, J.; Rodriguez-Cabezas, M.E. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 2019, 11, 3002. [Google Scholar] [CrossRef]
- Sung, J.; Rajendraprasad, S.S.; Philbrick, K.L.; Bauer, B.A.; Gajic, O.; Shah, A.; Laudanski, K.; Bakken, J.S.; Skalski, J.; Karnatovskaia, L.V. The Human Gut Microbiome in Critical Illness: Disruptions, Consequences, and Therapeutic Frontiers. J. Crit. Care 2024, 79, 154436. [Google Scholar] [CrossRef]
- Schlechte, J.; Zucoloto, A.Z.; Yu, I.; Doig, C.J.; Dunbar, M.J.; McCoy, K.D.; McDonald, B. Dysbiosis of a Microbiota–Immune Metasystem in Critical Illness Is Associated with Nosocomial Infections. Nat. Med. 2023, 29, 1017. [Google Scholar] [CrossRef]
- Kritikos, A.; Bernasconi, E.; Choi, Y.; Scherz, V.; Pagani, J.L.; Greub, G.; Bertelli, C.; Guery, B. Lung and Gut Microbiota Profiling in Intensive Care Unit Patients: A Prospective Pilot Study. BMC Infect. Dis. 2025, 25, 468. [Google Scholar] [CrossRef] [PubMed]
- Orieux, A.; Enaud, R.; Imbert, S.; Boyer, P.; Begot, E.; Camino, A.; Boyer, A.; Berger, P.; Gruson, D.; Delhaes, L.; et al. The Gut Microbiota Composition Is Linked to Subsequent Occurrence of Ventilator-Associated Pneumonia in Critically Ill Patients. Microbiol. Spectr. 2023, 11, e00641-23. [Google Scholar] [CrossRef]
- Choy, A.; Freedberg, D.E. Impact of Microbiome-Based Interventions on Gastrointestinal Pathogen Colonization in the Intensive Care Unit. Ther. Adv. Gastroenterol. 2020, 13, 1756284820939447. [Google Scholar] [CrossRef]
- Nye, T.M.; Zou, Z.; Obernuefemann, C.L.P.; Pinkner, J.S.; Lowry, E.; Kleinschmidt, K.; Bergeron, K.; Klim, A.; Dodson, K.W.; Flores-Mireles, A.L.; et al. Microbial Co-Occurrences on Catheters from Long-Term Catheterized Patients. Nat. Commun. 2024, 15, 61. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human Gut Microbiota in Health and Disease: Unveiling the Relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Sorbara, M.T.; Pamer, E.G. Microbiome-Based Therapeutics. Nat. Rev. Microbiol. 2022, 20, 365–380. [Google Scholar] [CrossRef]
- Laudes, M.; Geisler, C.; Rohmann, N.; Bouwman, J.; Pischon, T.; Schlicht, K. Microbiota in Health and Disease—Potential Clinical Applications. Nutrients 2021, 13, 3866. [Google Scholar] [CrossRef]
- Maftei, N.M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef]
- Roberfroid, M. Prebiotics: The Concept Revisited1,2. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef]
- Dasriya, V.L.; Samtiya, M.; Ranveer, S.; Dhillon, H.S.; Devi, N.; Sharma, V.; Nikam, P.; Puniya, M.; Chaudhary, P.; Chaudhary, V.; et al. Modulation of Gut-microbiota through Probiotics and Dietary Interventions to Improve Host Health. J. Sci. Food Agric. 2024, 104, 6359–6375. [Google Scholar] [CrossRef]
- Kober, A.K.M.H.; Riaz Rajoka, M.S.; Mehwish, H.M.; Villena, J.; Kitazawa, H. Immunomodulation Potential of Probiotics: A Novel Strategy for Improving Livestock Health, Immunity, and Productivity. Microorganisms 2022, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Tenorio-Jiménez, C.; Martínez-Ramírez, M.J.; Gil, Á.; Gómez-Llorente, C. Effects of Probiotics on Metabolic Syndrome: A Systematic Review of Randomized Clinical Trials. Nutrients 2020, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.P.; Natraj, B.H. Next-Generation Probiotics: A Promising Approach towards Designing Personalized Medicine. Crit. Rev. Microbiol. 2021, 47, 479–498. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zhu, H.; Bao, Z.; Han, D.; Du, J.; Zhao, M.; Feng, F.; He, G.; Mo, Q. Lactiplantibacillus Plantarum T34 Alleviates Constipation by Enhancing Intestinal Barrier and Modulating Gut Homeostasis. Food Biosci. 2025, 66, 106195. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Park, S.; Park, G.; Shin, H.; Park, M.S.; Kim, J. Administration of Bifidobacterium Bifidum BGN4 and Bifidobacterium Longum BORI Improves Cognitive and Memory Function in the Mouse Model of Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 709091. [Google Scholar] [CrossRef]
- Nian, F.; Wu, L.; Xia, Q.; Tian, P.; Ding, C.; Lu, X. Akkermansia Muciniphila and Bifidobacterium Bifidum Prevent NAFLD by Regulating FXR Expression and Gut Microbiota. J. Clin. Transl. Hepatol. 2023, 11, 763–776. [Google Scholar] [CrossRef]
- Salem, M.B.; El-Lakkany, N.M.; Hammam, O.A.; Seif el-Din, S.H. Bacillus clausii Spores Maintain Gut Homeostasis in Murine Ulcerative Colitis via Modulating Microbiota, Apoptosis, and the TXNIP/NLRP3 Inflammasome Cascade. Toxicol. Rep. 2025, 14, 101858. [Google Scholar] [CrossRef]
- He, S.; Xiong, Q.; Tian, C.; Li, L.; Zhao, J.; Lin, X.; Guo, X.; He, Y.; Liang, W.; Zuo, X.; et al. Inulin-Type Prebiotics Reduce Serum Uric Acid Levels via Gut Microbiota Modulation: A Randomized, Controlled Crossover Trial in Peritoneal Dialysis Patients. Eur. J. Nutr. 2022, 61, 665–677. [Google Scholar] [CrossRef]
- Beisner, J.; Filipe Rosa, L.; Kaden-Volynets, V.; Stolzer, I.; Günther, C.; Bischoff, S.C. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front. Immunol. 2021, 12, 678360. [Google Scholar] [CrossRef]
- de Paiva, I.H.R.; da Silva, R.S.; Mendonça, I.P.; Duarte-Silva, E.; Botelho de Souza, J.R.; Peixoto, C.A. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Improve Neuroinflammation and Cognition By Up-Regulating IRS/PI3K/AKT Signaling Pathway in Diet-Induced Obese Mice. J. Neuroimmune Pharmacol. 2023, 18, 427–447. [Google Scholar] [CrossRef]
- Kei, N.; Cheung, K.K.; Ma, K.L.; Yau, T.K.; Lauw, S.; Wong, V.W.S.; You, L.; Cheung, P.C.K. Effects of Oat β-Glucan and Inulin on Alleviation of Nonalcoholic Steatohepatitis Aggravated by Circadian Disruption in C57BL/6J Mice. J. Agric. Food Chem. 2024, 72, 3520–3535. [Google Scholar] [CrossRef]
- Johnstone, J.; Meade, M.; Lauzier, F.; Marshall, J.; Duan, E.; Dionne, J.; Arabi, Y.M.; Heels-Ansdell, D.; Thabane, L.; Lamarche, D.; et al. Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA 2021, 326, 1024–1033. [Google Scholar] [CrossRef]
- Li, C.; Lu, F.; Chen, J.; Ma, J.; Xu, N. Probiotic Supplementation Prevents the Development of Ventilator-Associated Pneumonia for Mechanically Ventilated ICU Patients: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 919156. [Google Scholar] [CrossRef]
- Sakurai, Y.; Watanabe, T.; Miura, Y.; Uchida, T.; Suda, N.; Yoshida, M.; Nawa, T. Clinical and Bacteriologic Characteristics of Six Cases of Bifidobacterium Breve Bacteremia Due to Probiotic Administration in the Neonatal Intensive Care Unit. Pediatr. Infect. Dis. J. 2022, 41, 62. [Google Scholar] [CrossRef]
- Darbandi, A.; Banar, M.; Koupaei, M.; Afifirad, R.; Asadollahi, P.; Bafandeh, E.; Rasooli, I.; Emamie, A.; Navidifar, T.; Owlia, P. Clinical Efficacy of Probiotics in Prevention of Infectious Diseases among Hospitalized Patients in ICU and Non-ICU Wards in Clinical Randomized Trials: A Systematic Review. Health Sci. Rep. 2023, 6, e1469. [Google Scholar] [CrossRef]
- Asaadi, H.; Narouiepour, A.; Haji, A.; Keikha, M.; Karbalaei, M. Probiotic-Based Therapy as a New Useful Strategy for the Treatment of Patients with Traumatic Brain Injury. BMC Infect. Dis. 2024, 24, 1240. [Google Scholar] [CrossRef]
- Farella, I.; Fortunato, M.; Martinelli, D.; De Carlo, C.; Sparapano, E.; Stolfa, S.; Romanelli, F.; De Laurentiis, V.; Martinotti, S.; Capozzi, L.; et al. Lactobacillus Rhamnosus Sepsis in a Preterm Infant Following Probiotic Administration: Challenges in Diagnosis. Microorganisms 2025, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.; Lima, L.; Pedra, T.; Assumpção, A.; Morgado, S.; Mascarenhas, L. Bloodstream Infection by Saccharomyces Cerevisiae in a COVID-19 Patient Receiving Probiotic Supplementation in the ICU in Brazil. Access Microbiol. 2021, 3, 000250. [Google Scholar] [CrossRef]
- Mikucka, A.; Deptuła, A.; Bogiel, T.; Chmielarczyk, A.; Nurczyńska, E.; Gospodarek-Komkowska, E. Bacteraemia Caused by Probiotic Strains of Lacticaseibacillus Rhamnosus—Case Studies Highlighting the Need for Careful Thought before Using Microbes for Health Benefits. Pathogens 2022, 11, 977. [Google Scholar] [CrossRef]
- Alsuwaylihi, A.S.; McCullough, F. The Safety and Efficacy of Probiotic Supplementation for Critically Ill Adult Patients: A Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 81, 322–332. [Google Scholar] [CrossRef]
- Konsta, O.; Linardatou, V.; Papachatzakis, Y.; Karatzanos, E.; Philippou, A.; Vasileiadis, I.; Manios, Y.; Nanas, S. The Effects of Probiotics, Prebiotics and Synbiotics on Infections and Clinical Outcomes in Critical Illness: A Systematic Review. Health Res. J. 2025, 11, 167–187. [Google Scholar] [CrossRef]
- Schuurman, A.R.; Kullberg, R.F.J.; Wiersinga, W.J. Probiotics in the Intensive Care Unit. Antibiotics 2022, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Greer, A.; Skorupski, C.; Hao, Q.; Johnstone, J.; Dionne, J.C.; Lau, V.; Manzanares, W.; Eltorki, M.; Duan, E.; et al. Probiotics in Critical Illness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Care Med. 2022, 50, 1175–1186. [Google Scholar] [CrossRef]
- Ojima, M.; Shimizu, K.; Motooka, D.; Ishihara, T.; Nakamura, S.; Shintani, A.; Ogura, H.; Iida, T.; Yoshiya, K.; Shimazu, T. Gut Dysbiosis Associated with Antibiotics and Disease Severity and Its Relation to Mortality in Critically Ill Patients. Dig. Dis. Sci. 2022, 67, 2420–2432. [Google Scholar] [CrossRef]
- Sakagianni, A.; Koufopoulou, C.; Koufopoulos, P.; Feretzakis, G.; Anastasiou, A.; Theodorakis, N.; Myrianthefs, P. Influence of Microbiome Interactions on Antibiotic Resistance Development in the ICU Environment: Insights and Opportunities with Machine Learning. Acta Microbiol. Hell. 2025, 70, 14. [Google Scholar] [CrossRef]
- Ye, F.; Li, L.; Wang, J.; Yang, H. Advances in Gut-Lung Axis Research: Clinical Perspectives on Pneumonia Prevention and Treatment. Front. Immunol. 2025, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.; Zhang, Q.; He, C.; Fu, C.; Wei, Q. The Role of the Gut Microbiota in Health and Cardiovascular Diseases. Mol. Biomed. 2022, 3, 30. [Google Scholar] [CrossRef] [PubMed]
Nutraceutical Composition | Role | References | |
---|---|---|---|
Probiotics | Lactobacillus rhamnosus GG | -regulate the composition of the gut microbiota -improve epithelial barrier function -synergistically combined benefits with drugs -promising candidate management of ulcerative colitis | [126,127,128,129] |
Lactiplantibacillus plantarum | -reduces constipation -strengthens the mucosal-intestinal barrier -increases serotonin production -reduces intestinal oxidative stress | [130] | |
Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI | -increased brain-derived neurotrophic factor -improves cognition and memory in the mouse model of Alzheimer’s disease -decreased neuroinflammatory response | [131] | |
Akkermansia muciniphila and Bifidobacterium bifidum | -suppressed intestinal FXR expression -modulated the gut microbiota -improved intestinal mucosal permeability -protected against high-fat diets-induced non-alcoholic fatty liver disease formation | [132] | |
Bacillus clausii spores | -inhibited the TXNIP/NLPR3 cascade and alleviated inflammation in colitis -influenced the Nrf2/HO-1 pathway and reduced oxidative stress in colitis -decreased the abundance of Firmicutes and Bacteroidetes in colitis -regulated caspase-3, Bax, and Bcl-2 levels and decreased colonic apoptosis | [133] | |
Prebiotics | Inulin | -shows potential as a treatment to decrease serum uric acid in renal failure patients, possibly through the microbial degradation of uric acid in the gut -reduces diet-induced barrier dysfunction and stimulates the expression of Paneth cell antimicrobial peptides | [134,135] |
Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) | -modulated the gut microbiota -modulated IRS/PI3K/AKT signaling pathway -reduced neuroinflammation facilitated neuroplasticity, resulting in better spatial learning and memory | [136] | |
Oat β-glucan | -significantly alleviated metabolic dysfunction-associated steatohepatitis -increased Akkermansia, Ileibacterium, and Muribaculaceae -decreased Romboutsia and Enterococcus | [137] |
Probiotics | Clinical Use | Complications | References |
---|---|---|---|
Lactobacillus rhamnosus and Bifidobacterium infantis | To prevent necrotizing enterocolitis | Sepsis with Lactobacillus rhamnosus | [143] |
Saccharomyces cerevisiae | Adjunctive therapy in COVID-19, respiratory failure, ARDS and renal failure ICU admitted patients, treated with antibiotics and vasoactive amines | Bloodstream infection with Saccharomyces | [144] |
Lactobacillus spp. | Adjunctive therapy in acute respiratory and haemorrhagic shock patients admitted to the ICU | Bloodstream infection with Lactobacillus spp., identified as L. rhamnosus | [145] |
Adjunctive therapy for acute respiratory failure ICU patients | Bloodstream infection with Lactobacillus spp., identified as L. rhamnosus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neag, M.A.; Mitre, A.O.; Pomana, I.G.; Velescu, M.A.; Militaru, C.; Nagy, G.; Melincovici, C.S. Host–Microbiome Interaction in the Intensive Care Unit. Diseases 2025, 13, 250. https://doi.org/10.3390/diseases13080250
Neag MA, Mitre AO, Pomana IG, Velescu MA, Militaru C, Nagy G, Melincovici CS. Host–Microbiome Interaction in the Intensive Care Unit. Diseases. 2025; 13(8):250. https://doi.org/10.3390/diseases13080250
Chicago/Turabian StyleNeag, Maria Adriana, Andrei Otto Mitre, Irina Georgiana Pomana, Maria Amalia Velescu, Claudia Militaru, Georgiana Nagy, and Carmen Stanca Melincovici. 2025. "Host–Microbiome Interaction in the Intensive Care Unit" Diseases 13, no. 8: 250. https://doi.org/10.3390/diseases13080250
APA StyleNeag, M. A., Mitre, A. O., Pomana, I. G., Velescu, M. A., Militaru, C., Nagy, G., & Melincovici, C. S. (2025). Host–Microbiome Interaction in the Intensive Care Unit. Diseases, 13(8), 250. https://doi.org/10.3390/diseases13080250