Pancreatic Stone Protein as a Versatile Biomarker: Current Evidence and Clinical Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results: The Discovery of Pancreatic Stone Protein
3.1. Significance of Pancreatic Stone Protein as a Biomarker
3.2. PSP as a Diagnostic Biomarker in Sepsis
3.3. PSP in Pediatric Patients
3.4. PSP in Burns Patients
3.5. PSP in COVID-19 Infection
3.6. PSP in Ventilator-Associated Pneumonia (VAP)
3.7. PSP and Intra-Abdominal Infections
3.8. PSP and Surgery
Study (Year) | Clinical Condition | Sample Type | Method | Participants (Cases/ Controls) | Biomarker(s) Evaluated | Timing of Elevation | AUC (Statistical Model) | Prognostic Value | Key Findings |
---|---|---|---|---|---|---|---|---|---|
Pugin et al. [16] | Sepsis | Plasma | POC Immunoassay0 | 243/NA | PSP, CRP, PCT | PSP: day 5; CRP/PCT: day 2–3 | PSP: 0.87 (ROC); CRP: 0.75; PCT: 0.78 | High correlation with severity and organ failure | PSP rises earlier; combination improves accuracy |
Permana et al. [17] | Sepsis | / | ELISA | 258/NA | PSP, CRP, PCT | Pre-symptomatic | PSP: 0.89 (ROC); CRP: 0.78; PCT: 0.81 | PSP associated with mortality | Early elevation aids risk stratification |
Que et al. [20] | Septic shock | Plasma | Elisa | 104/NA | PSP, CRP, PCT | Not reported | PSP: 0.85 (ROC); CRP: 0.76; PCT: 0.79 | PSP only reliable mortality predictor | Stronger correlation with outcome |
Melegari et al. [35] (2023) | COVID-19 | Plasma | POC Immunoassay | 21/NA | PSP, CRP, PCT | Early phase of symptoms | PSP: 0.83 (ROC); CRP: 0.79; PCT: 0.81 | Higher PSP = increased mortality | PSP correlates with severity |
Van Singer et al. [36] (2021) | COVID-19 | Plasma | POC Immunoassay | 141/NA | PSP, CRP, PCT | Early after admission | PSP: 0.69 (ROC); CRP: 0.67; PCT: 0.69 | Early mortality predictor | PSP improves CRB-65 score (AUC 0.95) |
Scherr et al. [42] | COPD exacerbation (CAP) | Serum | ELISA | 39/NA | PSP | On admission | Not reported | Not applicable | PSP > 33.9 ng/mL = bacterial CAP |
Ventura et al. [46] | Intra- abdominal infection | Plasma | POC Immunoassay | 42/NA | PSP | Early postsurgical | PSP: 0.89 (ROC) | Predicts septic complications | PSP rise precedes peritonitis symptoms |
4. Other Applications of PSP
4.1. PSP in Renal Diseases
4.2. PSP in Type 1 Diabetes
4.3. PSP in Type 2 Diabetes
4.4. PSP in Gastrointestinal Cancer
4.5. PSP in Other Forms of Cancer
4.6. PSP in Liver Failure
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- The inhibition of calcium carbonate crystallization, particularly in the pancreas and kidney;
- The promotion of epithelial regeneration, through anti-apoptotic and mitogenic effects;
- The modulation of innate immune responses, including neutrophil activation and migration;
- Involvement in tumorigenesis, via pro-proliferative signaling in certain cancer types;
- Emerging data suggest that PSP also exerts cytokine-like activity, although a specific receptor has not yet been identified.
Appendix B
Appendix B.1. Scale for the Assessment of Narrative Review Articles (SANRA)
Appendix B.1.1. Justification of the Article’s Importance for the Readership
Appendix B.1.2. Statement of Concrete Aims or Formulation of Questions
Appendix B.1.3. Description of the Literature Search
Appendix B.1.4. Referencing
Appendix B.1.5. Scientific Reasoning
References
- Mishina, E.; Agyeman, A.; Amur, S.; Bouri, K.; Canos, D.; Chakravarty, A.; Fitzpatrick, S.; Irony, I.; Kraniak, D.; Kunkoski, E.; et al. BEST (Biomarkers, End-PointS, and Other Tools) Resource. Chapter Response Biomarker; Food and Drug Administration: Silver Spring, MD, USA, 2021.
- U.S. Food and Drug Administration. Fast Track, Breakthrough Therapy, Accelerated Approval, Priority Review. Updated 14 September 2015. Available online: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/fast-track-breakthrough-therapy-accelerated-approval-priority-review (accessed on 23 June 2025).
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Sarles, H. Chronic Calcifying Pancreatitis—Chronic Alcoholic Pancreatitis. Gastroenterology 1974, 66, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Guy, O.; Robles-Diaz, G.; Adrich, Z.; Sahel, J.; Sarles, H. Protein content of precipitates present in pancreatic juice of alcoholic subjects and patients with chronic calcifying pancreatitis. Gastroenterology 1983, 84, 102–107. [Google Scholar] [CrossRef]
- De Caro, A.; Lohse, J.; Sarles, H. Characterization of a protein isolated from pancreatic calculi of men suffering from chronic calcifying pancreatitis. Biochem. Biophys. Res. Commun. 1979, 87, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Multigner, L.; De Caro, A.; Lombardo, D.; Campese, D.; Sarles, H. Pancreatic stone protein, a phosphoprotein which inhibits calcium carbonate precipitation from human pancreatic juice. Biochem. Biophys. Res. Commun. 1983, 110, 69–74. [Google Scholar] [CrossRef] [PubMed]
- De Caro, A.; Multigner, L.; Lafont, H.; Lombardo, D.; Sarles, H. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth. Biochem. J. 1984, 222, 669–677. [Google Scholar] [CrossRef]
- Multigner, L.; Sarles, H.; Lombardo, D.; De Caro, A. Pancreatic stone protein. II. Implication in stone formation during the course of chronic calcifying pancreatitis. Gastroenterology 1985, 89, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.X.; Hayakawa, T.; Ko, S.B.; Ishiguro, H.; Kitagawa, M. Pancreatic stone protein/regenerating protein family in pancreatic and gastrointestinal diseases. Intern. Med. 2011, 50, 1507–1516. [Google Scholar] [CrossRef]
- Michailides, C.; Paraskevas, T.; Demiri, S.; Chourpiliadi, C.; Papantoniou, K.; Aggeletopoulou, I.; Velissari, E.K.; Lagadinou, M.; Triantos, C.; Velissaris, D. Diagnostic and Prognostic Ability of Pancreatic Stone Protein: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 6046. [Google Scholar] [CrossRef]
- Hayakawa, T.; Kondo, T.; Shibata, T.; Kitagawa, M.; Sakai, Y.; Sobajima, H.; Tanikawa, M.; Nakae, Y.; Hayakawa, S.; Katsuzaki, T.; et al. Serum pancreatic stone protein in pancreatic diseases. Int. J. Pancreatol. 1993, 13, 97–103. [Google Scholar] [CrossRef]
- Eggimann, P.; Que, Y.A.; Rebeaud, F. Measurement of pancreatic stone protein in the identification and management of sepsis. Biomark. Med. 2019, 13, 135–145. [Google Scholar] [CrossRef]
- Prazak, J.; Irincheeva, I.; Llewelyn, M.J.; Stolz, D.; García de Guadiana Romualdo, L.; Graf, R.; Reding, T.; Klein, H.J.; Eggimann, P.; Que, Y.A. Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: A systematic review and individual patient level meta-analysis. Crit. Care 2021, 25, 182. [Google Scholar] [CrossRef] [PubMed]
- Pugin, J.; Daix, T.; Pagani, J.L.; Morri, D.; Giacomucci, A.; Dequin, P.F.; Guitton, C.; Que, Y.A.; Zani, G.; Brealey, D.; et al. Serial measurement of pancreatic stone protein for the early detection of sepsis in intensive care unit patients: A prospective multicentric study. Crit. Care 2021, 25, 151. [Google Scholar] [CrossRef] [PubMed]
- Permana, S.A.; Purwoko Hartono, E.J. Measurement of Pancreatic Stone Protein Compared with C-Reactive Protein and Procalcitonin in the Diagnosis of Sepsis in an Intensive Care Unit: A Systematic Review. Malays. J. Med. Sci. 2024, 31, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Lu, Y.H.; Deng, W.; Li, Q.; Zhao, N.; Shao, Q.; Wu, L.; Wang, X.Z.; Qian, K.J.; Liu, F. The critical role of pancreatic stone protein/regenerating protein in sepsis-related multiorgan failure. Front. Med. 2023, 10, 1172529. [Google Scholar] [CrossRef]
- Ventura, F.; Tissières, P. The possible pathophysiological role of pancreatic stone protein in sepsis and its potential thera-peutic implication. Biomedicines 2024, 12, 1790. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.A.; Delodder, F.; Guessous, I.; Graf, R.; Bain, M.; Calandra, T.; Liaudet, L.; Eggimann, P. Pancreatic stone protein as an early biomarker pre-dicting mortality in a prospective cohort of patients with sepsis requiring ICU management. Crit. Care 2012, 16, R114. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.A.; Guessous, I.; Dupuis-Lozeron, E.; de Oliveira, C.R.A.; Oliveira, C.F.; Graf, R.; Seematter, G.; Revelly, J.-P.; Pagani, J.-L.; Liaudet, L.; et al. Prognostication of mortality in crit-ically ill patients with severe infections. Chest 2015, 148, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.E.; Dick, K.; Cooper, J.T.; Chami, N. Pancreatic stone protein point-of-care testing can reduce healthcare ex-penditure in sepsis. Health Econ. Rev. 2022, 12, 39. [Google Scholar] [CrossRef]
- Boeddha, N.P.; Schlapbach, L.J.; Driessen, G.J.; Herberg, J.A.; Rivero-Calle, I.; Cebey-López, M.; Klobassa, D.S.; Philipsen, R.; de Groot, R.; Inwald, D.P.; et al. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: A prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Crit. Care 2018, 22, 143. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.L.; Carcillo, J.A.; Aneja, R.K.; Deymann, A.J.; Lin, J.C.; Nguyen, T.C.; Okhuysen-Cawley, R.S.; Relvas, M.S.; Rozenfeld, R.A.; Skippen, P.W.; et al. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit. Care Med. 2017, 45, 1061–1093. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.Y.; Aboelghar, H.M.; Garib, M.I.; Rizk, M.S.; Mahmoud, A.A. Pediatric sepsis diagnostic and prognostic biomarkers: Pancreatic stone protein, copeptin, and apolipoprotein A-V. Pediatr. Res. 2023, 94, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Bottari, G.; Caruso, M.; Paionni, E.; De Luca, M.; Romani, L.; Pisani, M.; Grandin, A.; Gargiullo, L.; Zampini, G.; Gagliardi, C.; et al. Accuracy of pancreatic stone protein for diagnosis of sepsis in children admitted to pediatric intensive care or high-dependency care: A pilot study. Ital. J. Pediatr. 2023, 49, 134. [Google Scholar] [CrossRef] [PubMed]
- Dündar, M.A.; Ceran, E.; Akyildiz, B.N. Prognostic and diagnostic utility of pancreatic stone protein in pediatric sepsis and mortality. Turk. J. Med. Sci. 2024, 54, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Antari, V.; Skoura, L.; Tragiannidis, A.; Hatzipantelis, E.; Tsinopoulou, V.-R.; Papakonstantinou, K.; Protonotariou, E.; Galli-Tsinopoulou, A. Kinetics and role of pancreatic stone protein and midregional proadrenomedullin as predictors of sepsis and bacteremia in children with hema-tological malignancies. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023065. [Google Scholar] [CrossRef] [PubMed]
- Klein, H.J.; Buehler, P.K.; Niggemann, P.; Rittirsch, D.; Schweizer, R.; Waldner, M.; Giovanoli, P.; Cinelli, P.; Reding, T.; Graf, R.; et al. Expression of pancreatic stone protein is unaffected by trauma and subsequent surgery in burn patients. World J. Surg. 2020, 44, 3000–3009. [Google Scholar] [CrossRef]
- Klein, H.J.; Niggemann, P.; Buehler, P.K.; Lehner, F.; Schweizer, R.; Rittirsch, D.; Fuchs, N.; Waldner, M.; Steiger, P.; Giovanoli, P.; et al. Pancreatic stone protein predicts sepsis in severely burned patients irrespective of trauma severity: A monocentric observational study. Ann. Surg. 2021, 274, e1179–e1186. [Google Scholar] [CrossRef]
- Walker, P.F.; Buehner, M.F.; Wood, L.A.; Boyer, N.L.; Driscoll, I.R.; Lundy, J.B.; Cancio, L.C.; Chung, K.K. Diagnosis and management of inhalation injury: An updated review. Crit Care 2015, 19, 351. [Google Scholar] [CrossRef]
- de Carvalho, F.O.; Felipe, F.A.; Costa, A.C.S.d.M.; Teixeira, L.G.B.; Silva, É.R.; Nunes, P.S.; Shanmugam, S.; Junior, W.d.L.; Quintans, J.S.S.; Araújo, A.A.d.S. Inflammatory mediators and oxi-dative stress in animals subjected to smoke inhalation: A systematic review. Lung 2016, 194, 487–499. [Google Scholar] [CrossRef]
- Klein, H.J.; Rittirsch, D.; Buehler, P.K.; Schweizer, R.; Giovanoli, P.; Cinelli, P.; Plock, J.A.; Reding, T.; Graf, R. Response of routine inflammatory biomarkers and novel pancreatic stone protein to inhalation injury and its interference with sepsis detection in severely burned patients. Burns 2021, 47, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Melegari, G.; Giuliani, E.; Di Pietro, G.; Alberti, F.; Campitiello, M.; Bertellini, E.; Consortium; Rosa, A.; Pioda, A.; Battaglia, P.; et al. Point-of-care pancreatic stone protein measurement in critically ill COVID-19 patients. BMC Anesthesiol. 2023, 23, 226. [Google Scholar] [CrossRef] [PubMed]
- Van Singer, M.; Brahier, T.; Brochu Vez, M.J.; Donnet, H.G.; Hugli, O.; Boillat-Blanco, N. Pancreatic stone protein for early mortality prediction in COVID-19 patients. Crit. Care 2021, 25, 267. [Google Scholar] [CrossRef] [PubMed]
- Lagadinou, M.; Paraskevas, T.; Velissaris, D.; Michailides, C.; Eleftherakis, G.; Sampsonas, F.; Siakallis, G.; Assimakopoulos, S.F.; Marangos, M. The role of pancreatic stone protein as a prognostic factor for COVID-19 patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6391–6395. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Bassi, G.L.; Luna, C.M.; Martin-Loeches, I.; et al. International guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- Coelho, L.; Rabello, L.; Salluh, J.; Martin-Loeches, I.; Rodriguez, A.; Nseir, S.; Gomes, J.A.; Povoa, P. C-reactive protein and procalcitonin profile in ventilator-associated lower respiratory infections. J Crit Care 2018, 48, 385–389. [Google Scholar] [CrossRef]
- Ceccato, A.; Camprubí-Rimblas, M.; Bos, L.D.J.; Povoa, P.; Martin-Loeches, I.; Forné, C.; Areny-Balagueró, A.; Campaña-Duel, E.; Morales-Quinteros, L.; Quero, S.; et al. Evaluation of the kinetics of pancreatic stone protein as a predictor of ventilator-associated pneumonia. Biomedicines 2023, 11, 2676. [Google Scholar] [CrossRef]
- Boeck, L.; Graf, R.; Eggimann, P.; Pargger, H.; Raptis, D.A.; Smyrnios, N.; Thakkar, N.; Siegemund, M.; Rakic, J.; Tamm, M.; et al. Pancreatic stone protein: A marker of organ failure and outcome in ventilator-associated pneumonia. Chest 2011, 140, 925–932. [Google Scholar] [CrossRef]
- Scherr, A.; Graf, R.; Bain, M.; Christ-Crain, M.; Müller, B.; Tamm, M.; Stolz, D. Pancreatic stone protein predicts positive sputum bacteriology in exacerbations of COPD. Chest 2013, 143, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Eckmann, C.; Giacobbe, D.R.; Sartelli, M.; Montravers, P. Post-operative abdominal infections: Epidemiology, operational definitions, and outcomes. Intensive Care Med. 2020, 46, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Antonelli, M.; Arvaniti, K.; Blot, K.; Creagh-Brown, B.; de Lange, D.; De Waele, J.; Deschepper, M.; Dikmen, Y.; Dimopoulos, G.; et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study. Intensive Care Med. 2019, 45, 1703–1717. [Google Scholar] [CrossRef] [PubMed]
- Ventura, F.; Gasche, Y.; Ben Rached, A.K.; Pugin, D.; Mollard, F.; Vora, S.; Charbonnet, P.; Bühler, L. Pancreatic stone protein as a biomarker for the early diagnosis of post-operative peritonitis, intra-abdominal infection and sepsis. J. Surg. Case Rep. 2022, 2022, rjac497. [Google Scholar] [CrossRef] [PubMed]
- Michailides, C.; Lagadinou, M.; Paraskevas, T.; Papantoniou, K.; Kavvousanos, M.; Vasileiou, A.; Thomopoulos, K.; Velissaris, D.; Marangos, M. The Role of the pancreatic stone protein in predicting intra-abdominal infection-related complications: A prospective observational single-center cohort study. Microorganisms 2023, 11, 2579. [Google Scholar] [CrossRef]
- Gukasjan, R.; Raptis, D.A.; Schulz, H.U.; Halangk, W.; Graf, R. Pancreatic stone protein predicts outcome in patients with peritonitis in the ICU. Crit. Care Med. 2013, 41, 1027–1036. [Google Scholar] [CrossRef]
- Filippidis, P.; Hovius, L.; Tissot, F.; Orasch, C.; Flückiger, U.; Siegemund, M.; Pagani, J.-L.; Eggimann, P.; Marchetti, O.; Lamoth, F. Serial monitoring of pancreatic stone protein for the detection of sepsis in intensive care unit patients with complicated abdominal surgery: A prospective, longitudinal cohort study. J. Crit. Care 2024, 82, 154772. [Google Scholar] [CrossRef]
- Klein, H.J.; Csordas, A.; Falk, V.; Slankamenac, K.; Rudiger, A.; Schönrath, F.; Biefer, H.R.C.; Starck, C.T.; Graf, R.; Cavarretta, E. Pancreatic stone protein predicts postoperative infection in cardiac surgery patients irrespective of cardiopulmonary bypass or surgical technique. PLoS ONE 2015, 10, e0120276. [Google Scholar] [CrossRef]
- Verdier, J.M.; Dussol, B.; Casanova, P.; Daudon, M.; Dupuy, P.; Berthezene, P.; Boistelle, R.; Berland, Y.; Dagorn, J.C. Evidence that human kidney produces a protein similar to lithostathine, the pancreatic inhibitor of CaCO3 crystal growth. Eur. J. Clin. Invest. 1992, 22, 469–474. [Google Scholar] [CrossRef]
- Concannon, P.; Rich, S.S.; Nepom, G.T. Genetics of type 1A diabetes. N. Engl. J. Med. 2009, 360, 1646–1654. [Google Scholar] [CrossRef]
- Daneman, D. Type 1 diabetes. Lancet 2006, 367, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Bell, G.I. Noninvasive monitoring of changes in pancreatic beta-cell mass by bioluminescent imaging in MIP-luc transgenic mice. Horm. Metab. Res. 2009, 41, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lonyai, A.; Kodama, S.; Burger, D.; Davis, M.; Faustman, D.L. The promise of Hox11+ stem cells of the spleen for treating autoimmune diseases. Horm. Metab. Res. 2008, 40, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yonemura, Y.; Yonekura, H.; Suzuki, Y.; Miyashita, H.; Sugiyama, K.; Moriizumi, S.; Unno, M.; Tanaka, O.; Kondo, H. Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein. Proc. Natl. Acad. Sci. USA 1994, 91, 3589–3592. [Google Scholar] [CrossRef]
- Okamoto, H. The Reg gene family and Reg proteins: With special attention to the regeneration of pancreatic beta-cells. J. Hepatobiliary Pancreat. Surg. 1999, 6, 254–262. [Google Scholar] [CrossRef]
- Rouquier, S.; Giorgi, S.; Iovanna, J.; Dagorn, J.C. Sequence similarity between the reg transcript and pancreatic stone protein mRNA. Biochem. J. 1989, 264, 621–622. [Google Scholar] [CrossRef]
- Astorri, E.; Guglielmi, C.; Bombardieri, M.; Alessandri, C.; Buzzetti, R.; Maggi, D.; Valesini, G.; Pitzalis, C.; Pozzilli, P. Circulating Reg1α proteins and autoantibodies to Reg1α proteins as biomarkers of β-cell regeneration and damage in type 1 diabetes. Horm. Metab. Res. 2010, 42, 955–960. [Google Scholar] [CrossRef]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef]
- Jones, L.C.; Clark, A. Beta-cell neogenesis in type 2 diabetes. Diabetes 2001, 50 (Suppl. 1), S186–S187. [Google Scholar] [CrossRef]
- American Diabetes Association. Executive summary: Standards of medical care in diabetes—2014. Diabetes Care 2014, 37 (Suppl. 1), S5–S13. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2012. Diabetes Care 2012, 35 (Suppl. 1), S11–S63. [Google Scholar] [CrossRef]
- Qaseem, A.; Barry, M.J.; Humphrey, L.L.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians; Fitterman, N.; Horwitch, C.; Kansagara, D.; McLean, R.M.; Wilt, T.J. Oral pharmacologic treatment of type 2 diabetes mellitus: A clinical practice guideline update from the American College of Physicians. Ann. Intern. Med. 2017, 166, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, L.; Raptis, D.; Li, X.; Li, F.; Chen, B.; He, J.; Graf, R.; Sun, Z. Pancreatic stone protein/regenerating protein (PSP/reg): A novel secreted protein up-regulated in type 2 diabetes mellitus. Endocrine 2015, 48, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yonekura, H.; Terazono, K.; Yamamoto, H.; Okamoto, H. Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues. J. Biol. Chem. 1990, 265, 7432–7439. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Motoyama, S.; Koyota, S.; Koizumi, Y.; Wang, J.; Takasawa, S.; Itaya-Hironaka, A.; Sakuramoto-Tsuchida, S.; Maruyama, K.; Saito, H.; et al. REG I enhances chemo- and radiosensitivity in squamous cell esophageal cancer cells. Cancer Sci. 2008, 99, 2491–2495. [Google Scholar] [CrossRef] [PubMed]
- Fukui, H.; Kinoshita, Y.; Maekawa, T.; Okada, A.; Waki, S.; Hassan, S.; Okamoto, H.; Chiba, T. Regenerating gene protein may mediate gastric mucosal proliferation induced by hypergastrinemia in rats. Gastroenterology 1998, 115, 1483–1493. [Google Scholar] [CrossRef]
- Higham, A.D.; Bishop, L.A.; Dimaline, R.; Blackmore, C.G.; Dobbins, A.C.; Varro, A.; Thompson, D.G.; Dockray, G.J. Mutations of RegIalpha are associated with enterochromaffin-like cell tumor development in patients with hypergastrinemia. Gastroenterology 1999, 116, 1310–1318. [Google Scholar] [CrossRef]
- Sekikawa, A.; Fukui, H.; Fujii, S.; Takeda, J.; Nanakin, A.; Hisatsune, H.; Seno, H.; Takasawa, S.; Okamoto, H.; Fujimori, T.; et al. REG Ialpha protein may function as a trophic and/or anti-apoptotic factor in the development of gastric cancer. Gastroenterology 2005, 128, 642–653. [Google Scholar] [CrossRef]
- Yamagishi, H.; Fukui, H.; Sekikawa, A.; Kono, T.; Fujii, S.; Ichikawa, K.; Tomita, S.; Imura, J.; Hiraishi, H.; Chiba, T.; et al. Expression profile of REG family proteins REG Ialpha and REG IV in advanced gastric cancer: Comparison with mucin phenotype and prognostic markers. Mod. Pathol. 2009, 22, 906–913. [Google Scholar] [CrossRef]
- Kuniyasu, H.; Oue, N.; Sasahira, T.; Yi, L.; Moriwaka, Y.; Shimomoto, T.; Fujii, K.; Ohmori, H.; Yasui, W. Reg IV enhances peritoneal metastasis in gastric carcinomas. Cell Prolif. 2009, 42, 110–121. [Google Scholar] [CrossRef]
- Bernard-Perrone, F.R.; Renaud, W.P.; Guy-Crotte, O.M.; Bernard, P.; Figarella, C.G.; Okamoto, H.; Balas, D.C.; Senegas-Balas, F.O. Expression of REG protein during cell growth and differentiation of two human colon carcinoma cell lines. J. Histochem. Cytochem. 1999, 47, 863–870. [Google Scholar] [CrossRef]
- Zenilman, M.E.; Kim, S.; Levine, B.A.; Lee, C.; Steinberg, J.J. Ectopic expression of reg protein: A marker of colorectal mucosa at risk for neoplasia. J. Gastrointest. Surg. 1997, 1, 194–202. [Google Scholar] [CrossRef]
- Astrosini, C.; Roeefzaad, C.; Dai, Y.Y.; Dieckgraefe, B.K.; Jöns, T.; Kemmner, W. expression is a prognostic marker in colorectal cancer and associated with peritoneal carcinomatosis. Int. J. Cancer 2008, 123, 409–413. [Google Scholar] [CrossRef]
- Macadam, R.C.; Sarela, A.I.; Farmery, S.M.; Robinson, P.A.; Markham, A.F.; Guillou, P.J. Death from early colorectal cancer is predicted by the presence of transcripts of the REG gene family. Br. J. Cancer 2000, 83, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Y.; Ren, X.B.; Xu, E.P.; Huang, Q.; Sheng, H.Q.; Lv, B.J.; Lai, M.D. RegIV expression showing specificity to gastrointestinal tract and its potential role in diagnosing digestive tract neuroendocrine tumor. J. Zhejiang Univ. Sci. B 2010, 11, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Zen, Y.; Kanemori, Y.; Chen, T.-C.; Chen, M.-F.; Yeh, T.-S.; Jan, Y.-Y.; Masuda, S.; Nimura, Y.; Takasawa, S.; et al. Human REG I gene is up-regulated in intrahepatic cholangiocarcinoma and its precursor lesions. Hepatology 2001, 33, 1036–1042. [Google Scholar] [CrossRef]
- Yuan, R.-H.; Jeng, Y.-M.; Chen, H.-L.; Hsieh, F.-J.; Yang, C.-Y.; Lee, P.-H.; Hsu, H.-C. Opposite roles of human pancreatitis-associated protein and expression in hepatocellular carcinoma. Clin. Cancer Res. 2005, 11, 2568–2575. [Google Scholar] [CrossRef]
- Tamura, H.; Ohtsuka, M.; Washiro, M.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Kato, A.; Seki, N.; Miyazaki, M. Reg IV expression and clinicopathologic features of gallbladder carcinoma. Hum. Pathol. 2009, 40, 1686–1692. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, R.; Wang, L.; Shen, S.; Okamoto, H.; Sugawara, A.; Xia, L.; Wang, X.; Noguchi, N.; Yoshikawa, T.; et al. Upregulation of REG Ialpha accelerates tumor progression in pancreatic cancer with diabetes. Int. J. Cancer 2010, 127, 1795–1803. [Google Scholar] [CrossRef]
- O’Neill, R.S.; Stoita, A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J. Gastroenterol. 2021, 27, 4045–4087. [Google Scholar] [CrossRef]
- Gu, Z.; Rubin, M.A.; Yang, Y.; Deprimo, S.E.; Zhao, H.; Horvath, S.; Brooks, J.D.; Loda, M.; Reiter, R.E. Reg IV: A promising marker of hormone refractory metastatic prostate cancer. Clin. Cancer Res. 2005, 11, 2237–2243. [Google Scholar] [CrossRef]
- Wang, Q.; Deng, J.; Yuan, J.; Wang, L.; Zhao, Z.; He, S.; Zhang, Y.; Tu, Y. Oncogenic reg IV is a novel prognostic marker for glioma patient survival. Diagn. Pathol. 2012, 7, 69. [Google Scholar] [CrossRef]
- Knight, T.; Ahn, S.; Rice, T.W.; Cooksley, T. Acute Oncology Care: A narrative review of the acute management of neutropenic sepsis and immune-related toxicities of checkpoint inhibitors. Eur. J. Intern. Med. 2017, 45, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Dale, D.C.; Crawford, J.; Cosler, L.E.; Lyman, G.H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006, 106, 2258–2266. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, E.; Bahel-Bell, E.; Vekemans, M.; Georgala, A.; Al-Hakak, L.; Paesmans, M.; Aoun, M. Causes of fever in cancer patients (prospective study over 477 episodes). Support Care Cancer 2006, 14, 763–769. [Google Scholar] [CrossRef] [PubMed]
- García de Guadiana-Romualdo, L.; Jiménez-Santos, E.; Cerezuela-Fuentes, P.; Español-Morales, I.; Berger, M.; Esteban-Torrella, P.; Hernando-Holgado, A.; Albaladejo-Otón, M.D. Analyzing the capability of PSP, PCT and sCD25 to support the diagnosis of infection in cancer patients with febrile neutropenia. Clin. Chem. Lab. Med. 2019, 57, 540–548. [Google Scholar] [CrossRef]
- Shingina, A.; Mukhtar, N.; Wakim-Fleming, J.; Alqahtani, S.; Wong, R.J.; Limketkai, B.N.; Larson, A.M.; Grant, L. Acute Liver Failure Guidelines. Am. J. Gastroenterol. 2023, 118, 1128–1153. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); Wendon, J.; Cordoba, J.; Dhawan, A.; Larsen, F.S.; Manns, M.; Samuel, D.; Simpson, K.J.; Yaron, I.; EASL Governing Board representative; et al. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 2017, 66, 1047–1081. [Google Scholar] [CrossRef]
- Papp, M.; Vitalis, Z.; Altorjay, I.; Tornai, I.; Udvardy, M.; Harsfalvi, J.; Vida, A.; Kappelmayer, J.; Lakatos, P.L.; Antal-Szalmas, P. Acute phase proteins in the diagnosis and prediction of cirrhosis associated bacterial infections. Liver Int. 2012, 32, 603–611. [Google Scholar] [CrossRef]
- Rule, J.A.; Hynan, L.S.; Attar, N.; Sanders, C.; Korzun, W.J.; Lee, W.M.; Acute Liver Failure Study Group; Bruns, H. Procalcitonin identifies cell injury, not bacterial infection, in acute liver failure. PLoS ONE 2015, 10, e0138566. [Google Scholar] [CrossRef]
- Lopes, D.; Bandovas, J.P.; Chumbinho, B.; Santo, C.E.; Sousa, M.; Ferreira, B.; Val-Flores, L.; Germano, N.; Pereira, R.; Cardoso, F.S.; et al. Pancreatic Stone Protein in patients with liver failure: A prospective pilot cohort study. Anaesth. Crit. Care Pain Med. 2025. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arturi, F.; Melegari, G.; Mancano, R.; Gazzotti, F.; Bertellini, E.; Barbieri, A. Pancreatic Stone Protein as a Versatile Biomarker: Current Evidence and Clinical Applications. Diseases 2025, 13, 240. https://doi.org/10.3390/diseases13080240
Arturi F, Melegari G, Mancano R, Gazzotti F, Bertellini E, Barbieri A. Pancreatic Stone Protein as a Versatile Biomarker: Current Evidence and Clinical Applications. Diseases. 2025; 13(8):240. https://doi.org/10.3390/diseases13080240
Chicago/Turabian StyleArturi, Federica, Gabriele Melegari, Riccardo Mancano, Fabio Gazzotti, Elisabetta Bertellini, and Alberto Barbieri. 2025. "Pancreatic Stone Protein as a Versatile Biomarker: Current Evidence and Clinical Applications" Diseases 13, no. 8: 240. https://doi.org/10.3390/diseases13080240
APA StyleArturi, F., Melegari, G., Mancano, R., Gazzotti, F., Bertellini, E., & Barbieri, A. (2025). Pancreatic Stone Protein as a Versatile Biomarker: Current Evidence and Clinical Applications. Diseases, 13(8), 240. https://doi.org/10.3390/diseases13080240