An Application for Spatial Frailty Models: An Exploration with Data on Fungal Sepsis in Neonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Setting and Study Design
2.3. Ethics Approval
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Details for the NFS Data
3.2. Posterior Estimates of Spatial Frailty in the Three PH Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NFS | Neonatal Fungal Sepsis |
NS | Neonatal Sepsis |
PH | Proportional Hazard |
NFHS-5 | National Family Health Survey—5 |
NNMR | Neonatal Mortality Rate |
NICU | Neonatal Intensive Care Units |
PT | Prothrombin Time |
aPTT | activated Partial Thromboplastin Clotting Time |
PT_APTT | Levels of Activated Thromboplastin Level |
ICH | Intracranial Hemorrhage |
TB | Tuberculosis |
MCMC | Markov chain Monte Carlo |
GA_weeks | Gestational Age in Weeks |
B_Weight | Neonates Birth Weight |
LPML | Log Pseudo Marginal Likelihood |
DIC | Deviance Information Criterion |
WAIC | Watanabe Akaike Information Criterion |
QGIS | Quantum Geographic Information System |
CI | Credible Intervals |
HR | Hazard Ratio |
LOS | Late-Onset Sepsis |
References
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-Onset Sepsis in Very Low Birth Weight Neonates: The Experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef]
- WHO Sepsis Technical Expert Meeting, 16–17 January 2018. Available online: https://www.who.int/publications/m/item/who-sepsis-technical-expert-meeting-16-17-january-2018 (accessed on 9 January 2025).
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global Incidence and Mortality of Neonatal Sepsis: A Systematic Review and Meta-Analysis. Arch. Dis. Child 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Newborn Mortality. Available online: https://www.who.int/news-room/fact-sheets/detail/newborn-mortality (accessed on 10 January 2025).
- NFHS; International Institute for Population Sciences. National Family Health Survey (NFHS-5), 20019–20021. Available online: https://mohfw.gov.in/sites/default/files/NFHS-5_Phase-II_0.pdf (accessed on 10 January 2025).
- Adams-Chapman, I.; Stoll, B.J. Neonatal Infection and Long-Term Neurodevelopmental Outcome in the Preterm Infant. Curr. Opin. Infect. Dis. 2006, 19, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.; Higgins, R.D.; National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental and Growth Impairment among Extremely Low-Birth-Weight Infants with Neonatal Infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef]
- National Neonatal-Perinatal Database 2002—NNPD Nodal Center AIIMS Delhi. New Delhi; 2005. Available online: https://www.newbornwhocc.org/pdf/nnpd_report_2002-03.PDF (accessed on 10 August 2019).
- Adalarasan, N.; Stalin, S.; Venkatasamy, S.; Sridevi, S.; Padmanaban, S.; Chinnaiyan, P. Association and Outcome of Intracranial Haemorrhage in Newborn with Fungal Sepsis—A Prospective Cohort Study. Indian J. Neonatal Med. Res. 2022, 10, PO27–PO31. [Google Scholar] [CrossRef]
- Aswi, A.; Cramb, S.; Duncan, E.; Hu, W.; White, G.; Mengersen, K. Bayesian Spatial Survival Models for Hospitalisation of Dengue: A Case Study of Wahidin Hospital in Makassar, Indonesia. Int. J. Environ. Res. Public Health 2020, 17, 878. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Wall, M.M.; Carlin, B.P. Frailty Modeling for Spatially Correlated Survival Data, with Application to Infant Mortality in Minnesota. Biostatistics 2003, 4, 123–142. [Google Scholar] [CrossRef] [PubMed]
- Balan, T.A.; Putter, H. A Tutorial on Frailty Models. Stat. Methods Med. Res. 2020, 29, 3424–3454. [Google Scholar] [CrossRef] [PubMed]
- Motarjem, K.; Mohammadzadeh, M.; Abyar, A. Geostatistical Survival Model with Gaussian Random Effect. Stat. Pap. 2020, 61, 85–107. [Google Scholar] [CrossRef]
- Thamrin, S.A.; Jaya, A.K.; Mengersen, K. Bayesian Spatial Survival Modelling for Dengue Fever in Makassar, Indonesia. Gac. Sanit. 2021, 35 (Suppl. S1), S59–S63. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castro, E.; Guzmán-Martínez, M.; Godínez-Jaimes, F.; Reyes-Carreto, R.; Vargas-de-León, C.; Aguirre-Salado, A.I. Spatial Survival Model for COVID-19 in México. Healthcare 2024, 12, 306. [Google Scholar] [CrossRef]
- Egbon, O.A.; Bogoni, M.A.; Babalola, B.T.; Louzada, F. Under Age Five Children Survival Times in Nigeria: A Bayesian Spatial Modeling Approach. BMC Public Health 2022, 22, 2207. [Google Scholar] [CrossRef] [PubMed]
- Migamba, S.M.; Kisaakye, E.; Komakech, A.; Nakanwagi, M.; Nakamya, P.; Mutumba, R.; Migadde, D.; Kwesiga, B.; Bulage, L.; Kadobera, D.; et al. Trends and Spatial Distribution of Neonatal Sepsis, Uganda, 2016-2020. BMC Pregnancy Childbirth 2023, 23, 770. [Google Scholar] [CrossRef]
- Kibret, G.D.; Demant, D.; Hayen, A. Bayesian Spatial Analysis of Factors Influencing Neonatal Mortality and Its Geographic Variation in Ethiopia. PLoS ONE 2022, 17, e0270879. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.; Taylor, B.M. Modelling the Time to Detection of Urban Tuberculosis in Two Big Cities in Portugal: A Spatial Survival Analysis. Int. J. Tuberc. Lung Dis. 2016, 20, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Nazar, E.; Baghishani, H.; Doosti, H.; Ghavami, V.; Aryan, E.; Nasehi, M.; Sharafi, S.; Esmaily, H.; Yazdani Charati, J. Bayesian Spatial Survival Analysis of Duration to Cure among New Smear-Positive Pulmonary Tuberculosis (PTB) Patients in Iran, during 2011–2018. Int. J. Environ. Res. Public Health 2021, 18, 54. [Google Scholar] [CrossRef]
- Su, P.-F.; Sie, F.-C.; Yang, C.-T.; Mau, Y.-L.; Kuo, S.; Ou, H.-T. Association of Ambient Air Pollution with Cardiovascular Disease Risks in People with Type 2 Diabetes: A Bayesian Spatial Survival Analysis. Environ. Health 2020, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.; Shimakura, S.; Gorst, D. Modeling Spatial Variation in Leukemia Survival Data. J. Am. Stat. Assoc. 2002, 97, 965–972. [Google Scholar] [CrossRef]
- Srinivasan, R.; Ponnuraja, C.; Moeng, S.R.T.; Venkatesan, P. Bayesian Spatial Cox Proportional Hazard Model For HIV Infected Tuberculosis Cases In Chennai. Glob. J. Pure Appl. Math. 2019, 15, 971–980, ISSN 0973-1768. Available online: https://www.ripublication.com/gjpam19/gjpamv15n6_12.pdf (accessed on 5 September 2024).
- Besag, J.; Green, P.J. Spatial Statistics and Bayesian Computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 1993, 55, 25–37. [Google Scholar] [CrossRef]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E.; Banerjee, S. Hierarchical Modeling and Analysis for Spatial Data; Chapman and Hall/CRC: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Kau, J.B.; Keenan, D.C.; Li, X. An Analysis of Mortgage Termination Risks: A Shared Frailty Approach with MSA-Level Random Effects. J. Real Estate Finan. Econ. 2011, 42, 51–67. [Google Scholar] [CrossRef]
- Royston, P.; Parmar, M.K.B. Flexible Parametric Proportional-Hazards and Proportional-Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects. Stat. Med. 2002, 21, 2175–2197. [Google Scholar] [CrossRef]
- Al-Aziz, S.N.; Hassan Muse, A.; Jawa, T.M.; Sayed-Ahmed, N.; Aldallal, R.; Yusuf, M. Bayesian Inference in a Generalized Log-Logistic Proportional Hazards Model for the Analysis of Competing Risk Data: An Application to Stem-Cell Transplanted Patients Data. Alex. Eng. J. 2022, 61, 13035–13050. [Google Scholar] [CrossRef]
- Khan, S.A.; Khosa, S.K. Generalized Log-Logistic Proportional Hazard Model with Applications in Survival Analysis. J. Stat. Distrib. App. 2016, 3, 16. [Google Scholar] [CrossRef]
- Pourhoseingholi, M.A.; Moghimi-Dehkordi, B.; Safaee, A.; Hajizadeh, E.; Solhpour, A.; Zali, M.R. Prognostic Factors in Gastric Cancer Using Log-Normal Censored Regression Model. Indian J. Med. Res. 2009, 129, 262–267. [Google Scholar]
- Khan, S.A. Exponentiated Weibull Regression for Time-to-Event Data. Lifetime Data Anal. 2018, 24, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Parametric Regression Model for Survival Data: Weibull Regression Model as an Example. Ann. Transl. Med. 2016, 4, 484. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Dey, D.K.; Aslanidou, H.; Sinha, D. A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data. Lifetime Data Anal. 1997, 3, 123–137. [Google Scholar] [CrossRef]
- Robert, C.P.; Elvira, V.; Tawn, N.; Wu, C. Accelerating MCMC Algorithms. Wiley Interdiscip. Rev. Comput. Stat. 2018, 10, e1435. [Google Scholar] [CrossRef] [PubMed]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images*. J. Appl. Stat. 1993, 20, 25–62. [Google Scholar] [CrossRef]
- Gallagher, K.; Charvin, K.; Nielsen, S.; Sambridge, M.; Stephenson, J. Markov Chain Monte Carlo (MCMC) Sampling Methods to Determine Optimal Models, Model Resolution and Model Choice for Earth Science Problems. Mar. Pet. Geol. 2009, 26, 525–535. [Google Scholar] [CrossRef]
- Musa, G.K.; Chaku, S.E.; Nwaze, N.O.; Adehi, M.U.; Omaku, P.E. Bayesian Accelerated Failure Time Model With Spatial Dependency: Application To Under Five Mortality Rate. Glob. J. Pure Appl. Sci. 2024, 30, 537–549. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Lawson, A.B. A Bayesian Normal Mixture Accelerated Failure Time Spatial Model and Its Application to Prostate Cancer. Stat. Methods Med. Res. 2016, 25, 793–806. [Google Scholar] [CrossRef]
- Zhou, H.; Hanson, T. A Unified Framework for Fitting Bayesian Semiparametric Models to Arbitrarily Censored Survival Data, Including Spatially Referenced Data. J. Am. Stat. Assoc. 2018, 113, 571–581. [Google Scholar] [CrossRef]
- Mardhiah, K.; Wan-Arfah, N.; Naing, N.N.; Hassan, M.R.A.; Chan, H.-K. Comparison of Cox Proportional Hazards Model, Cox Proportional Hazards with Time-Varying Coefficients Model, and Lognormal Accelerated Failure Time Model: Application in Time to Event Analysis of Melioidosis Patients. Asian Pac. J. Trop. Med. 2022, 15, 128. [Google Scholar] [CrossRef]
- Daniel, K.; Onyango, N.O.; Sarguta, R.J. A Spatial Survival Model for Risk Factors of Under-Five Child Mortality in Kenya. Int. J. Environ. Res. Public Health 2022, 19, 399. [Google Scholar] [CrossRef]
- Mahanta, K.K.; Hazarika, J.; Barman, M.P.; Rahman, T. An Application of Spatial Frailty Models to Recovery Times of COVID-19 Patients in India under Bayesian Approach. J. Sci. Res. 2021, 65, 150–155. [Google Scholar] [CrossRef]
- Teshnizi, S.H.; Ayatollahi, S.M.T. Comparison of Cox Regression and Parametric Models: Application for Assessment of Survival of Pediatric Cases of Acute Leukemia in Southern Iran. Asian Pac. J. Cancer Prev. 2017, 18, 981–985. [Google Scholar] [CrossRef]
- Gemechu, L.L.; Debusho, L.K. Bayesian Spatial Modelling of Tuberculosis-HIV Co-Infection in Ethiopia. PLoS ONE 2023, 18, e0283334. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Tikmani, S.S.; Goudar, S.S.; Hwang, K.; Dhaded, S.; Guruprasad, G.; Nadig, N.G.; Kusagur, V.B.; Patil, L.G.C.; Siddartha, E.S.; et al. Neonatal Mortality among Preterm Infants Admitted to Neonatal Intensive Care Units in India and Pakistan: A Prospective Study. BJOG Int. J. Obstet. Gynaecol. 2023, 130, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Mihatov Stefanovic, I. Neonatal Sepsis. Biochem. Medica 2011, 21, 276–281. [Google Scholar] [CrossRef] [PubMed]
Parameters | Min | Q1 | Median | Mean | Q3 | Max | SD | |
---|---|---|---|---|---|---|---|---|
Survived (N = 30) | GA_weeks | 28 | 32 | 36.5 | 35.47 | 38 | 42 | 3.69 |
B_WEIGHT | 1 | 1.49 | 2.25 | 2.11 | 2.46 | 3.3 | 0.62 | |
Platelet | 2 | 14 | 31 | 56.4 | 62.75 | 252 | 67.31 | |
Hemorrhage | 0 | 0 | 0 | 0.27 | 0 | 2 | 0.69 | |
PT_APTT | 0 | 0 | 0 | 0.1 | 0 | 1 | 0.31 | |
Died (N = 50) | GA_weeks | 26 | 31 | 35.5 | 34.5 | 38 | 40 | 4.24 |
B_WEIGHT | 0.76 | 1.47 | 2.1 | 2.06 | 2.73 | 3.96 | 0.77 | |
Platelet | 3 | 8.75 | 24.5 | 47 | 64 | 232 | 50.98 | |
Hemorrhage | 0 | 0 | 1 | 0.86 | 2 | 2 | 0.9 | |
PT_APTT | 0 | 1 | 1 | 0.96 | 1 | 1 | 0.2 | |
Total (N = 80) | GA_weeks | 26 | 32 | 36 | 34.86 | 38 | 42 | 4.05 |
B_WEIGHT | 0.76 | 1.49 | 2.2 | 2.08 | 2.72 | 3.96 | 0.72 | |
Platelet | 2 | 11 | 25.5 | 50.53 | 61.75 | 252 | 57.41 | |
Hemorrhage | 0 | 0 | 0 | 0.64 | 2 | 2 | 0.88 | |
PT_APTT | 0 | 0 | 1 | 0.64 | 1 | 1 | 0.48 |
Model | Parameters | Mean | Hazard Ratio (HR) | Median | SD | 95% CI (Mean) | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Log-logistic | GA_Weeks | 0.02 | 1.02 | 0.02 | 0.07 | −0.12 | 0.16 |
B_WEIGHT | 0.12 | 1.12 | 0.13 | 0.36 | −0.59 | 0.81 | |
Platelet | 0 | 1 | 0 | 0 | −0.01 | 0.01 | |
Hemorrhage | 0.56 | 1.75 | 0.58 | 0.3 | −0.02 | 1.16 | |
PT_APTT ** | 3.1 | 22.12 | 3.03 | 0.84 | 1.69 | 5.34 | |
Log-normal | GA_Weeks | 0.03 | 1.03 | 0.03 | 0.07 | −0.1 | 0.16 |
B_WEIGHT | 0.06 | 1.06 | 0.07 | 0.34 | −0.64 | 0.67 | |
Platelet | 0 | 1 | 0 | 0 | −0.01 | 0.01 | |
Hemorrhage ** | 0.5 | 1.65 | 0.5 | 0.26 | 0.05 | 1.01 | |
PT_APTT ** | 3.04 | 20.87 | 2.98 | 0.79 | 1.67 | 4.81 | |
Weibull | GA_Weeks | 0.01 | 1.01 | 0.01 | 0.07 | −0.14 | 0.15 |
B_WEIGHT | 0.18 | 1.2 | 0.2 | 0.33 | −0.48 | 0.78 | |
Platelet | 0 | 1 | 0 | 0 | −0.01 | 0.01 | |
Hemorrhage ** | 0.56 | 1.75 | 0.56 | 0.27 | 0.07 | 1.14 | |
PT_APTT ** | 2.92 | 18.49 | 2.87 | 0.74 | 1.72 | 4.54 |
Model | LPML | DIC | WAIC |
---|---|---|---|
Log-logistic PH Model | 221.65 | 441.33 | 442.83 |
Log-normal PH Model | 221.89 | 442.05 | 443.51 |
Weibull PH Model | 220.68 | 439.64 | 440.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramasivam, P.; Jaganathasamy, N.; Ramalingam, S.; Mahalingam, V.; Nagarajan, S.; Shaik, F.A.; Karuppasamy, S.; Bhaskar, A.; Srinivasan, P.; Manoharan, T.; et al. An Application for Spatial Frailty Models: An Exploration with Data on Fungal Sepsis in Neonates. Diseases 2025, 13, 83. https://doi.org/10.3390/diseases13030083
Paramasivam P, Jaganathasamy N, Ramalingam S, Mahalingam V, Nagarajan S, Shaik FA, Karuppasamy S, Bhaskar A, Srinivasan P, Manoharan T, et al. An Application for Spatial Frailty Models: An Exploration with Data on Fungal Sepsis in Neonates. Diseases. 2025; 13(3):83. https://doi.org/10.3390/diseases13030083
Chicago/Turabian StyleParamasivam, Palaniyandi, Nagaraj Jaganathasamy, Srinivasan Ramalingam, Vasantha Mahalingam, Selvam Nagarajan, Fayaz Ahamed Shaik, Sundarakumar Karuppasamy, Adhin Bhaskar, Padmanaban Srinivasan, Tamizhselvan Manoharan, and et al. 2025. "An Application for Spatial Frailty Models: An Exploration with Data on Fungal Sepsis in Neonates" Diseases 13, no. 3: 83. https://doi.org/10.3390/diseases13030083
APA StyleParamasivam, P., Jaganathasamy, N., Ramalingam, S., Mahalingam, V., Nagarajan, S., Shaik, F. A., Karuppasamy, S., Bhaskar, A., Srinivasan, P., Manoharan, T., Natesan, A., & Chinnaiyan, P. (2025). An Application for Spatial Frailty Models: An Exploration with Data on Fungal Sepsis in Neonates. Diseases, 13(3), 83. https://doi.org/10.3390/diseases13030083