Serum α1-AT Levels and SERPINA1 Molecular Analysis in Breast Cancer: An Experimental and Computational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Identification of Molecular Subtypes and Clinical Stage
2.3. Quantification of Soluble Levels of α1-AT
2.4. Computational Analysis
Analysis of SERPINA1 mRNA Expression in Breast Cancer
2.5. Statistical Analysis
3. Results
3.1. Soluble Levels of α1-AT in Women with BC and HW
3.2. Overview of SERPINA1 in BC
4. Discussion
Computational Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast Cancer: Biology, Biomarkers, and Treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical Implications of the Intrinsic Molecular Subtypes of Breast Cancer. Breast 2015, 24, S26–S35. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadi, Z.; Lianos, G.D.; Ignatiadou, E.; Harissis, H.V.; Mitsis, M. Breast Cancer in Young Women: An Overview. Updates Surg. 2017, 69, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Xia, K.R.; Li, C.Y.; Wei, B.L.; Zhang, B. Review of Breast Cancer Pathologigcal Image Processing. BioMed Res. Int. 2021, 2021, 1994764. [Google Scholar] [CrossRef]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and Current Knowledge of Breast Cancer. Biol. Res. 2017, 50, 33. [Google Scholar] [CrossRef]
- Eroles, P.; Bosch, A.; Alejandro Pérez-Fidalgo, J.; Lluch, A. Molecular Biology in Breast Cancer: Intrinsic Subtypes and Signaling Pathways. Cancer Treat. Rev. 2012, 38, 698–707. [Google Scholar] [CrossRef]
- Merino Bonilla, J.A.; Torres Tabanera, M.; Ros Mendoza, L.H. Breast Cancer in the 21st Century: From Early Detection to New Therapies. Radiologia 2017, 59, 368–379. [Google Scholar] [CrossRef]
- Lukong, K.E. Understanding Breast Cancer—The Long and Winding Road. BBA Clin. 2017, 7, 64–77. [Google Scholar] [CrossRef]
- Roy, M.; Fowler, A.M.; Ulaner, G.A.; Mahajan, A. Molecular Classification of Breast Cancer. PET Clin. 2023, 18, 441–458. [Google Scholar] [CrossRef]
- Alves, L.N.R.; Meira, D.D.; Merigueti, L.P.; Casotti, M.C.; Ventorim, D.d.P.; Almeida, J.F.F.; Sousa, V.P.D.; Sant’Ana, M.C.; Gonçalves Coutinho da Cruz, R.; Louro, L.S.; et al. Biomarkers in Breast Cancer: An Old Story with a New End. Genes 2023, 14, 1364. [Google Scholar] [CrossRef]
- El-Akawi, Z.J.; Abu-Awad, A.M.; Khouri, N.A. Alpha-1 Antitrypsin Blood Levels as Indicator for the Efficacy of Cancer Treatment. World J. Oncol. 2013, 4, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Topic, A.; Ljujic, M.; Petrovic-Stanojevic, N.; Dopudja-Pantic, V.; Radojkovic, D. Phenotypes and Serum Level of Alpha-1-Antitrypsin in Lung Cancer. J. BUON 2011, 16, 672–676. [Google Scholar]
- Keeratichamroen, S.; Subhasitanont, P.; Chokchaichamnankit, D.; Weeraphan, C.; Saharat, K.; Sritana, N.; Kantathavorn, N.; Wiriyaukaradecha, K.; Sricharunrat, T.; Monique Paricharttanakul, N.; et al. Identification of Potential Cervical Cancer Serum Biomarkers in Thai Patients. Oncol. Lett. 2020, 19, 3815–3826. [Google Scholar] [CrossRef] [PubMed]
- Preethika, A.; Suchetha Kumari, N.; Sandeep, A.; Shetty, J. Alpha1-Antitrypsin Combined Fatty Acids Induced Angiopoietin-like Protein 4, Expression in Breast Cancer: A Pilot Study. Chem. Phys. Lipids 2022, 243, 105175. [Google Scholar] [CrossRef]
- El-Akawi, Z.J.; Sawalha, D.H.; Nusier, M.K. Alpha-1 Antitrypsin Genotypes in Breast Cancer Patients. J. Health Sci. 2008, 54, 493–496. [Google Scholar] [CrossRef]
- Miyake, M.; Ross, S.; Lawton, A.; Chang, M.; Dai, Y.; Mengual, L.; Alcaraz, A.; Giacoia, E.G.; Goodison, S.; Rosser, C.J. Investigation of CCL18 and A1AT as Potential Urinary Biomarkers for Bladder Cancer Detection. BMC Urol. 2013, 13, 1. [Google Scholar] [CrossRef]
- Pérez-Holanda, S.; Blanco, I.; Menéndez, M.; Rodrigo, L. Serum Concentration of Alpha-1 Antitrypsin Is Significantly Higher in Colorectal Cancer Patients than in Healthy Controls. BMC Cancer 2014, 14, 355. [Google Scholar] [CrossRef]
- Capoun, O.; Soukup, V.; Kalousova, M.; Sobotka, R.; Pesl, M.; Zima, T.; Hanus, T. Diagnostic Importance of Selected Protein Serum Markers in the Primary Diagnostics of Prostate Cancer. Urol. Int. 2015, 95, 429–435. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, J.; Mao, Y.; Dong, L.; Li, S.; Zhang, Y. Silence of A1-Antitrypsin Inhibits Migration and Proliferation of Triple Negative Breast Cancer Cells. Med. Sci. Monit. 2018, 24, 6851–6860. [Google Scholar] [CrossRef]
- Buijs, J.T.; van Beijnum, R.; Anijs, R.J.S.; Laghmani, E.H.; Sensuk, L.; Minderhoud, C.; Ünlü, B.; Klok, F.A.; Kuppen, P.J.K.; Cannegieter, S.C.; et al. The Association of Tumor-Expressed REG4, SPINK4 and Alpha-1 Antitrypsin with Cancer-Associated Thrombosis in Colorectal Cancer. J. Thromb. Thrombolysis 2024, 57, 370–380. [Google Scholar] [CrossRef]
- De Serres, F.; Blanco, I. Role of Alpha-1 Antitrypsin in Human Health and Disease. J. Intern. Med. 2014, 276, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Foil, K.E. Variants of SERPINA1 and the Increasing Complexity of Testing for Alpha-1 Antitrypsin Deficiency. Ther. Adv. Chronic Dis. 2021, 12, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Strnad, P.; McElvaney, N.G.; Lomas, D.A. Alpha 1 -Antitrypsin Deficiency. N. Engl. J. Med. 2020, 382, 1443–1455. [Google Scholar] [CrossRef] [PubMed]
- Janciauskiene, S.; Wrenger, S.; Günzel, S.; Gründing, A.R.; Golpon, H.; Welte, T. Potential Roles of Acute Phase Proteins in Cancer: Why Do Cancer Cells Produce or Take Up Exogenous Acute Phase Protein Alpha1-Antitrypsin? Front. Oncol. 2021, 11, 622076. [Google Scholar] [CrossRef] [PubMed]
- Janciauskiene, S.; Ercetin, E.; Richtmann, S.; Delgado, B.M.; Gomez-Mariano, G.; Wrenger, S.; Korenbaum, E.; Liu, B.; Deluca, D.; Kühnel, M.P.; et al. Clinical Significance of Serpina1 Gene and Its Encoded Alpha1-Antitrypsin Protein in Nsclc. Cancers 2019, 11, 1306. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef]
- Yavelow, J.; Tuccillo, A.; Kadner, S.S.; Katz, J.; Finlay, T.H. A1-Antitrypsin Blocks the Release of Transforming Growth Factor-α from MCF-7 Human Breast Cancer Cells. J. Clin. Endocrinol. Metab. 1997, 82, 745–752. [Google Scholar] [CrossRef]
- Wu, D.M.; Liu, T.; Deng, S.H.; Han, R.; Zhang, T.; Li, J.; Xu, Y. Alpha-1 Antitrypsin Induces Epithelial-to-Mesenchymal Transition, Endothelial-to-Mesenchymal Transition, and Drug Resistance in Lung Cancer Cells. OncoTargets Ther. 2020, 13, 3751–3763. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Zhang, W.; Liao, Y.; Chen, J.; Shi, Y.; Luo, S. Serum Cytokine Profile in Patients with Breast Cancer. Cytokine 2017, 89, 173–178. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Suhail, Y.; Cain, M.P.; Vanaja, K.; Kurywchak, P.A.; Levchenko, A.; Kalluri, R. Kshitiz Systems Biology of Cancer Metastasis. Cell Syst. 2019, 9, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Uthamacumaran, A. Cancer: A Turbulence Problem. Neoplasia 2020, 22, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, W.M.; Zhang, X.X.; Zhang, H.X.; Wang, H.C.; Zheng, F.Y.; Zhu, F.F. Overexpression of Salusin-β Is Associated with Poor Prognosis in Ovarian Cancer. Oncol. Rep. 2017, 37, 1826–1832. [Google Scholar] [CrossRef]
- Firouzabadi, N.; Javdani, K.; Dehshahri, A. Interleukin-33 and Soluble ST2 as Potential Biomarkers of Cancer in Opium Users: A Nested Case-Control Study. Iran. J. Med. Sci. 2022, 47, 541–548. [Google Scholar] [CrossRef]
- Malkova, A.M.; Gubal, A.R.; Petrova, A.L.; Voronov, E.; Apte, R.N.; Semenov, K.N.; Sharoyko, V.V. Pathogenetic Role and Clinical Significance of Interleukin-1β in Cancer. Immunology 2023, 168, 203–216. [Google Scholar] [CrossRef]
- Annunziata, A.; Fiorentino, G.; Balestrino, M.; Rega, R.; Spinelli, S.; Atripaldi, L.; Sola, A.; Massaro, F.; Calabrese, C. Alpha-1 Antitrypsin PI M Heterozygotes with Rare Variants: Do They Need a Clinical and Functional Follow-Up? J. Clin. Med. 2024, 13, 1084. [Google Scholar] [CrossRef]
- Marando, M.; Rayroux, C.; Bergeron, A. Alpha-1 Antitrypsin Deficiency. Rev. Medicale Suisse 2022, 18, 2169–2174. [Google Scholar] [CrossRef]
- Dasí, F. Alpha-1 Antitrypsin Deficiency. Med. Clin. 2024, 162, 336–342. [Google Scholar] [CrossRef]
- López-Árias, E.; Aguilar-Lemarroy, A.; Felipe Jave-Suárez, L.; Morgan-Villela, G.; Mariscal-Ramírez, I.; Martínez-Velázquez, M.; Álvarez, Á.H.; Gutiérrez-Ortega, A.; Hernández-Gutiérrez, R. Alpha 1-Antitrypsin: A Novel Tumor-Associated Antigen Identified in Patients with Early-Stage Breast Cancer. Electrophoresis 2012, 33, 2130–2137. [Google Scholar] [CrossRef]
- Daddi, G.; Mancini, P.A.; Parola, D.; Contini, A. Alfa-Antitrypsin Increase in Lung Cancer. Boll. Ist. Sieroter. Milan. 1976, 55, 510–512. [Google Scholar] [PubMed]
- Hernández-álvarez, C.; Romo-aguirre, C.; Iturbide, C.O. Y Características En El Hospital Ángeles Pedregal. Acta Médica Grupo Ángeles 2017, 15, 4–5. [Google Scholar]
- Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.U.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic Behavior of Breast Cancer Subtypes. J. Clin. Oncol. 2010, 28, 3271–3277. [Google Scholar] [CrossRef] [PubMed]
- Cephus, J.; Gandhi, V.D.; Shah, R.; Brooke Davis, J.; Fuseini, H.; Yung, J.A.; Zhang, J.; Kita, H.; Polosukhin, V.V.; Zhou, W.; et al. Estrogen Receptor-α Signaling Increases Allergen-induced IL-33 Release and Airway Inflammation. Allergy 2021, 76, 255–268. [Google Scholar] [CrossRef]
- Li, Y.; Miao, L.; Yu, M.; Shi, M.; Yongsheng, W.; Jun, Y.; Xiao, Y.; Cai, H. A1-Antitrypsin Promotes Lung Adenocarcinoma Metastasis Through Upregulating Fibronectin Expression. Int. J. Oncol. 2017, 50, 1955–1964. [Google Scholar] [CrossRef]
- Alcaide Lucena, M.; Rodríguez González, C.; de Reyes Lartategui, S.; Gallart Aragón, R.; Sánchez Barrón, M.; García Rubio, J.; Torné Poyatos, P. Molecular Classification of Breast Cancer. Treatment and Prognosis Implications. Cirugía Andal. 2021, 32, 155–159. [Google Scholar] [CrossRef]
- Mueller, S.; Grote, I.; Bartels, S.; Kandt, L.; Christgen, H.; Lehmann, U.; Gluz, O.; Graeser, M.; Kates, R.; Harbeck, N.; et al. P53 Expression in Luminal Breast Cancer Correlates With TP53 Mutation and Primary Endocrine Resistance. Mod. Pathol. 2023, 36, 100100. [Google Scholar] [CrossRef]
- Shakya, R.; Tarulli, G.A.; Sheng, L.; Lokman, N.A.; Ricciardelli, C.; Pishas, K.I.; Selinger, C.I.; Kohonen-Corish, M.R.J.; Cooper, W.A.; Turner, A.G.; et al. Mutant P53 Upregulates Alpha-1 Antitrypsin Expression and Promotes Invasion in Lung Cancer. Oncogene 2017, 36, 4469–4480. [Google Scholar] [CrossRef]
- Hamrita, B.; Chahed, K.; Trimeche, M.; Lemaitre, C.; Hammann, P.; Chaïeb, A.; Korbi, S. Clinica Chimica Acta Proteomics-Based Identi Fi Cation of α 1-Antitrypsin and Haptoglobin Precursors as Novel Serum Markers in in Fi Ltrating Ductal Breast Carcinomas. Clin. Chim. Acta 2009, 404, 111–118. [Google Scholar] [CrossRef]
- Thongwatchara, P.; Promwikorn, W.; Srisomsap, C. Differential Protein Expression in Primary Breast Cancer and Matched Axillary Node Metastasis. Oncol. Rep. 2011, 26, 185–191. [Google Scholar] [CrossRef]
- Sciences, M. Extracellular Matrix Alterations in Metastatic Processes. Int. J. Mol. Sci. 2019, 20, 4947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, Q.; Fu, C.; Jiang, C.; Ma, S. Exploration of the Immune-Related Signature and Immune Infiltration Analysis for Breast Ductal and Lobular Carcinoma. Ann. Transl. Med. 2019, 7, 730. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.; Tran, N. miRNA Interplay: Mechanisms and Consequences in Cancer. Dis. Models Mech. 2021, 14, dmm047662. [Google Scholar] [CrossRef] [PubMed]
- Shafran, Y.; Zurgil, N.; Ravid-hermesh, O.; Sobolev, M. Nitric Oxide Is Cytoprotective to Breast Cancer Spheroids Vulnerable to Estrogen-Induced Apoptosis. Oncotarget 2017, 8, 108890–108911. [Google Scholar] [CrossRef]
- Ramírez-patiño, R.; Figuera, L.E.; Puebla-pérez, A.M.; Delgado-saucedo, J.I.; Legazpí-macias, M.M.; Mariaud-schmidt, R.P.; Ramos-silva, A.; Gutiérrez-hurtado, I.A.; Flores-ramos, L.G.; Zúñiga-gonzález, G.M.; et al. Intron 4 VNTR (4a/b) Polymorphism of the Endothelial Nitric Oxide Synthase Gene Is Associated with Breast Cancer in Mexican Women. J. Korean Med. Sci. 2013, 28, 1587–1594. [Google Scholar] [CrossRef]
- Cornillet, M.; Zemack, H.; Jansson, H.; Sparrelid, E.; Ellis, E.; Björkström, N.K. Increased Prevalence of Alpha-1-Antitrypsin Deficiency in Patients with Biliary Tract Cancer and Its Associated Clinicopathological Features. Cells 2023, 12, 1663. [Google Scholar] [CrossRef]
- Urquidi, V.; Goodison, S.; Ross, S.; Chang, M.; Dai, Y.; Rosser, C.J. Diagnostic Potential of Urinary A1-Antitrypsin and Apolipoprotein E in the Detection of Bladder Cancer. J. Urol. 2012, 188, 2377–2383. [Google Scholar] [CrossRef]
- Jaberie, H.; Hosseini, S.V.; Naghibalhossaini, F. Evaluation of Alpha 1-Antitrypsin for the Early Diagnosis of Colorectal Cancer. Pathol. Oncol. Res. 2020, 26, 1165–1173. [Google Scholar] [CrossRef]
- Li, J.; Mo, H.Y.; Xiong, G.; Zhang, L.; He, J.; Huang, Z.F.; Liu, Z.W.; Chen, Q.Y.; Du, Z.M.; Zheng, L.M.; et al. Tumor Microenvironment Macrophage Inhibitory Factor Directs the Accumulation of Interleukin-17-Producing Tumor-Infiltrating Lymphocytes and Predicts Favorable Survival in Nasopharyngeal Carcinoma Patients. J. Biol. Chem. 2012, 287, 35484–35495. [Google Scholar] [CrossRef]
- Thatishetty, A.V.; Agresti, N.; O’Brien, C.B. Chemotherapy-Induced Hepatotoxicity. Clin. Liver Dis. 2013, 17, 671–686. [Google Scholar] [CrossRef]
- Urrutia-Maldonado, E.; Abril-Molina, A.; Alés-Palmer, M.; Gómez-Luque, J.M.; Muñoz de Rueda, P.; Ocete-Hita, E. Chemotherapy-Induced Liver Injury in Children. An. Pediatr. 2019, 91, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Gür, F.M.; Bilgiç, S. Silymarin, an Antioxidant Flavonoid, Protects the Liver from the Toxicity of the Anticancer Drug Paclitaxel. Tissue Cell 2023, 83, 102158. [Google Scholar] [CrossRef] [PubMed]
- Aldecoa, F.; Ávila, J. La Vía Canónica PI3K/AKT/mTOR y Sus Alteraciones En Cáncer. Horiz. Médico 2021, 21, e1547. [Google Scholar] [CrossRef]
- O’brien, M.E.; Murray, G.; Gogoi, D.; Yusuf, A.; McCarthy, C.; Wormald, M.R.; Casey, M.; Gabillard-Lefort, C.; McElvaney, N.G.; Reeves, E.P. A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int. J. Mol. Sci. 2022, 23, 2441. [Google Scholar] [CrossRef]
- Lv, W.; Chen, N.; Lin, Y.; Ma, H.; Ruan, Y.; Li, Z.; Li, X.; Pan, X.; Tian, X. Macrophage Migration Inhibitory Factor Promotes Breast Cancer Metastasis via Activation of HMGB1/TLR4/NF Kappa B Axis. Cancer Lett. 2016, 375, 245–255. [Google Scholar] [CrossRef]
- Avalos, G.; José, N.; Muñoz, F.; Adrian, V.; Navarro, D.; Quintero, A.; Antonio, R.; Topete, F.; Jesus, A.D.; Mendoza, M.; et al. Circulating Soluble Levels of MIF in Women with Breast Cancer in the Molecular Subtypes: Relationship with Th17 Cytokine Profile. Clin. Exp. Med. 2019, 19, 385–391. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Chen, L.; Lai, X.; Qiu, J. A1-Antitrypsin-Primed Tolerogenic Dendritic Cells Prolong Allograft Kidney Transplants Survival in Rats. Int. Immunopharmacol. 2016, 31, 216–221. [Google Scholar] [CrossRef]
- Avalos-Navarro, G.; Ramírez-Patiño, R.; Jave-Suárez, L.F.; Reyes-Uribe, E. La Proteína Alfa-1 Antitrypsin y Su Papel En La Fisiopatología Del Cáncer. Biotecnia 2024, 26, 393–400. [Google Scholar] [CrossRef]
- Avalos-Navarro, G.; Adrián, D.T.; Luis, A.Q.; Ramon, A.B.; Franco, A.; Uriel, B.; Macias, A.; Israel, D.; Castro, J.; Oceguera-villanueva, A.D.J.M.A.; et al. Association of the Genetic Variants (-794 CATT5-8 and -173 G > C) of Macrophage Migration Inhibitory Factor (MIF) with Higher Soluble Levels of MIF and TNF α in Women with Breast Cancer. J. Clin. Lab. Anal. 2020, 34, e23209. [Google Scholar] [CrossRef]
- Hu, F.; Mei, R.; Zhang, H.; Hao, D.; Li, W. Bioinformatics analysis of prognostic value and immune cell infiltration of SERPINA1 gene in cutaneous melanoma. Ann. Transl. Med. 2022, 10, 966. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Wei, X.; Ning, J.; Li, Q.; Jiang, H.; Qin, S.; Lu, J. SERPINA1 promotes the invasion, metastasis, and proliferation of pancreatic ductal adenocarcinoma via the PI3K/Akt/NF-κB pathway. Biochem. Pharmacol. 2024, 230 Pt 2, 116580. [Google Scholar]
- Ma, Y.; Chen, Y.; Zhan, L.; Dong, Q.; Wang, Y.; Li, X.; He, L.; Zhang, J. CEBPB-mediated upregulation of SERPINA1 promotes colorectal cancer progression by enhancing STAT3 signaling. Cell Death Discov. 2024, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.J.; Li, H.; Liu, Z.; Yuan, Y.C.; Mortimer, J.; Chen, S. SERPINA1 is a direct estrogen receptor target gene and a predictor of survival in breast cancer patients. Oncotarget 2015, 6, 25815–25827. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.H.; Park, H.J.; Lee, J.R.; Kim, H.K.; Jeon, T.Y.; Jo, H.J.; Kim, D.H.; Kim, G.H.; Park, D.Y. Serpin peptidase inhibitor clade A member 1 is a biomarker of poor prognosis in gastric cancer. Br. J. Cancer 2014, 111, 1993–2002. [Google Scholar] [CrossRef]
Variable | n | Percentage (%) |
---|---|---|
Mean age at diagnosis (years) | 255 | |
Mean ± SD | 51 ± 13 | |
Minimum | 25 | |
Maximum | 84 | |
Hormone status | ||
Pre-menopausal | 98 | 38.4 |
Post-menopausal | 157 | 61.6 |
Body Mass Index | ||
Normal weight | 64 | 25.1 |
Overweight | 79 | 30.9 |
Obesity | 112 | 44.0 |
TNM clinical stage | ||
I | 19 | 7.5 |
II | 87 | 34.1 |
III | 83 | 32.6 |
IV | 66 | 25.8 |
Molecular subtype | ||
Luminal A | 93 | 36.5 |
Luminal B | 64 | 25.1 |
HER2 | 36 | 14.1 |
Triple Negative (Basal-like) | 62 | 24.3 |
Protein Change | Mutation Type | ClinVar | Subtype |
---|---|---|---|
Y184 * | Nonsense | Pathogenic/Likely pathogenic | Her2 |
X355_splice | Splice | Luminal B | |
P2A | Missense | Luminal A | |
G344R | Missense | Conflicting interpretations | Luminal A |
V326I | Missense | Conflicting interpretations | Her2 |
D280N | Missense | Luminal A | |
Q33Rfs*47 | FS del | Luminal A |
Comparison | Adjusted p-Value * |
---|---|
Basal-like vs. Luminal A | 3.012888 × 10−6 |
Her2 vs. Luminal A | 1.046070 × 10−2 |
Basal-like vs. Normal-like | 2.237449 × 10−4 |
Her2 vs. Normal-like | 4.660713 × 10−3 |
Basal-like vs. Her2 | 1.902457 × 10−1 |
Basal-like vs. Luminal B | 9.243745 × 10−2 |
Luminal A vs. Luminal B | 5.467099 × 10−5 |
Luminal A vs. Normal-like | 7.981116 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávalos-Navarro, G.; Bautista-Herrera, L.A.; Garibaldi-Ríos, A.F.; Ramírez-Patiño, R.; Gutiérrez-García, M.; Briseño-Álvarez, P.; Jave-Suárez, L.F.; Reyes-Uribe, E.; Gallegos-Arreola, M.P. Serum α1-AT Levels and SERPINA1 Molecular Analysis in Breast Cancer: An Experimental and Computational Study. Diseases 2025, 13, 1. https://doi.org/10.3390/diseases13010001
Ávalos-Navarro G, Bautista-Herrera LA, Garibaldi-Ríos AF, Ramírez-Patiño R, Gutiérrez-García M, Briseño-Álvarez P, Jave-Suárez LF, Reyes-Uribe E, Gallegos-Arreola MP. Serum α1-AT Levels and SERPINA1 Molecular Analysis in Breast Cancer: An Experimental and Computational Study. Diseases. 2025; 13(1):1. https://doi.org/10.3390/diseases13010001
Chicago/Turabian StyleÁvalos-Navarro, Guadalupe, Luis A. Bautista-Herrera, Asbiel Felipe Garibaldi-Ríos, Ramiro Ramírez-Patiño, Marisol Gutiérrez-García, Perla Briseño-Álvarez, Luis Felipe Jave-Suárez, Emmanuel Reyes-Uribe, and Martha Patricia Gallegos-Arreola. 2025. "Serum α1-AT Levels and SERPINA1 Molecular Analysis in Breast Cancer: An Experimental and Computational Study" Diseases 13, no. 1: 1. https://doi.org/10.3390/diseases13010001
APA StyleÁvalos-Navarro, G., Bautista-Herrera, L. A., Garibaldi-Ríos, A. F., Ramírez-Patiño, R., Gutiérrez-García, M., Briseño-Álvarez, P., Jave-Suárez, L. F., Reyes-Uribe, E., & Gallegos-Arreola, M. P. (2025). Serum α1-AT Levels and SERPINA1 Molecular Analysis in Breast Cancer: An Experimental and Computational Study. Diseases, 13(1), 1. https://doi.org/10.3390/diseases13010001