The Efficacy and Safety of Ferric Carboxymaltose in Heart Failure with Reduced Ejection Fraction and Iron Deficiency: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Main Outcomes
2.4. Data Extraction
2.5. Risk of Bias
2.6. Data Synthesis and Statistical Analysis
3. Results
3.1. Included Studies
3.2. Characteristics of the Included Studies
3.3. Quality Assessment
3.4. Effect of FCM on Hospitalizations and Death
3.5. Effect of FCM on Functional Capacity and Quality of Life
3.6. Effect of FCM on Serious Adverse Events
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Beverborg, N.G.; van Veldhuisen, D.J.; van der Meer, P. Anemia in Heart Failure: Still Relevant? JACC Heart Fail. 2018, 6, 201–208. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; Banasiak, W.; Polonski, L.; Filippatos, G.; et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010, 31, 1872–1880. [Google Scholar] [CrossRef]
- Klip, I.T.; Comin-Colet, J.; Voors, A.A.; Ponikowski, P.; Enjuanes, C.; Banasiak, W.; Lok, D.J.; Rosentryt, P.; Torrens, A.; Polonski, L.; et al. Iron deficiency in chronic heart failure: An international pooled analysis. Am. Heart J. 2013, 165, 575–582.e3. [Google Scholar] [CrossRef]
- Okonko, D.O.; Mandal, A.K.; Missouris, C.G.; Poole-Wilson, P.A. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J. Am. Coll. Cardiol. 2011, 58, 1241–1251. [Google Scholar] [CrossRef]
- Bolger, A.P.; Bartlett, F.R.; Penston, H.S.; O’leary, J.; Pollock, N.; Kaprielian, R.; Chapman, C.M. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J. Am. Coll. Cardiol. 2006, 48, 1225–1227. [Google Scholar] [CrossRef]
- Okonko, D.O.; Grzeslo, A.; Witkowski, T.; Mandal, A.K.J.; Slater, R.M.; Roughton, M.; Foldes, G.; Thum, T.; Majda, J.; Banasiak, W.; et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: A randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 2008, 51, 103–112. [Google Scholar] [CrossRef]
- Avni, T.; Leibovici, L.; Gafter-Gvili, A. Iron supplementation for the treatment of chronic heart failure and iron deficiency: Systematic review and meta-analysis. Eur. J. Heart Fail. 2012, 14, 423–429. [Google Scholar] [CrossRef]
- Ponikowski, P.; Kirwan, B.-A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet 2020, 396, 1895–1904. [Google Scholar] [CrossRef]
- Mentz, R.J.; Garg, J.; Rockhold, F.W.; Butler, J.; De Pasquale, C.G.; Ezekowitz, J.A.; Lewis, G.D.; O’meara, E.; Ponikowski, P.; Troughton, R.W.; et al. Ferric Carboxymaltose in Heart Failure with Iron Deficiency. N. Engl. J. Med. 2023, 389, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, Version 6.4 (Updated August 2023); Cochrane: London, UK, 2023. Available online: www.training.cochrane.org/handbook (accessed on 20 December 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Review Manager Web (RevMan Web), Version 5.4; The Cochrane Collaboration: London, UK, 2020. Available online: http://revman.cochrane.org (accessed on 20 December 2023).
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G.; on behalf of the Cochrane Statistical Methods Group. Analysing Data and Undertaking Meta-Analyses. Cochrane Training. Available online: https://handbook-5-1.cochrane.org/chapter_9/9_7_sensitivity_analyses.htm (accessed on 26 December 2023).
- Andrade, C. Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis: As Simple as It Gets. J. Clin. Psychiatry 2020, 81, 20f13681. [Google Scholar] [CrossRef]
- Sterne, J.; Egger, M.; Moher, D. Addressing reporting biases. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; John Wiley & Sons: Chichester, UK, 2019; Available online: https://training.cochrane.org/handbook (accessed on 20 December 2024).
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef]
- Van Veldhuisen, D.J.; Ponikowski, P.; Van Der Meer, P.; Metra, M.; Böhm, M.; Doletsky, A.; Voors, A.A.; MacDougall, I.C.; Anker, S.D.; Roubert, B.; et al. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients with Chronic Heart Failure and Iron Deficiency. Circulation 2017, 136, 1374–1383. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Kirwan, B.-A.; Kosiborod, M.; Butler, J.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Filippatos, G.; Keren, A.; et al. The effect of intravenous ferric carboxymaltose on health-related quality of life in iron-deficient patients with acute heart failure: The results of the AFFIRM-AHF study. Eur. Heart J. 2021, 42, 3011–3020. [Google Scholar] [CrossRef]
- Bhatia, K.; Sabharwal, B.; Gupta, K.; Lopez, P.D.; Kaur, A.; Bhatia, H.K.; Gandhi, K.D.; Niroula, S.; Correa, A.; Birati, E.Y.; et al. Clinical outcomes of intravenous iron therapy in patients with heart failure and iron deficiency: Meta-analysis and trial sequential analysis of randomized clinical trials. J. Cardiol. 2024, 83, 105–112. [Google Scholar] [CrossRef]
- Graham, F.J.; Pellicori, P.; Ford, I.; Petrie, M.C.; Kalra, P.R.; Cleland, J.G.F. Intravenous iron for heart failure with evidence of iron deficiency: A meta-analysis of randomised trials. Clin. Res. Cardiol. 2021, 110, 1299–1307. [Google Scholar] [CrossRef]
- Sindone, A.; Doehner, W.; Comin-Colet, J. Systematic review and meta-analysis of intravenous iron-carbohydrate complexes in HFrEF patients with iron deficiency. ESC Heart Fail. 2023, 10, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Usman, M.S.; von Haehling, S.; Doehner, W.; Coats, A.J.S. Ferric carboxymaltose for the treatment of iron-deficient heart failure patients: A systematic review and meta-analysis. ESC Heart Fail. 2020, 7, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, K.T.; Ardehali, H. Ferric derisomaltose therapy and heart failure: Implications and molecular insights. Nat. Cardiovasc. Res. 2023, 2, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 7–23. [Google Scholar] [CrossRef]
- Alnuwaysir, R.I.S.; Hoes, M.F.; van Veldhuisen, D.J.; van der Meer, P.; Beverborg, N.G. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J. Clin. Med. 2021, 11, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singer, C.E.; Vasile, C.M.; Popescu, M.; Popescu, A.I.S.; Marginean, I.C.; Iacob, G.A.; Popescu, M.D.; Marginean, C.M. Role of Iron Deficiency in Heart Failure-Clinical and Treatment Approach: An Overview. Diagnostics 2023, 13, 304. [Google Scholar] [CrossRef]
Characteristics of Included Trials | HEART-FID [11] | AFFIRM-AHF [10] | FAIR-HF [20] | CONFIRM-HF [2] | EFFECT-HF [21] |
---|---|---|---|---|---|
Year | 2023 | 2020 | 2009 | 2015 | 2017 |
Number of study centers and locations | 347 sites in United States, Canada, Europe, Australia, and New Zealand | 121 sites in Europe, South America, and Singapore | 75 sites in Argentina, Europe, and Russia | 41 sites in Europe and Russia | 28 sites across 9 countries (Australia, Belgium, France, Germany, Italy, The Netherlands, Poland, Russia, and Spain) |
Design | Double-blind, placebo-controlled, randomized study | Double-blind, placebo-controlled, randomized study | Double-blind, placebo-controlled, randomized study | Double-blind, placebo-controlled, randomized study | Open-label, SoC-controlled, randomized study |
Sample size (FCM vs. Placebo/SoC) | 3065 (1532/1533) | 1132 (567/565) | 459 (304/155) | 304 (152/152) | 172 (86/86) |
Mean age (years) | 68.6 | 71.2 | 67.8 | 68.8 | 63 |
FCM dosing regimen | Two doses of FCM at 15 mg/kg each, administered intravenously with a maximum individual dose of 750 mg, spaced 7 days apart. Maximum cumulative dose: 1500 mg. Subsequent administrations every 6 months based on iron indices. | 500–1000 mg of FCM at baseline and week 6 for iron repletion. In patients with persistent iron deficiency and Hb levels between 8–15 g/dL, maintenance dose of 500 mg at weeks 12 and 24. | Dose determined by Ganzoni formula. FCM, equivalent to 200 mg of iron per week, initially for iron repletion. Subsequently, administer monthly doses of 200 mg until the 24th week for maintenance. | FCM, equal to 500–3500 mg iron, for iron repletion at baseline and week 6. Provide 500 mg of iron for maintenance at weeks 12, 24, and 36 if iron deficiency persists. | FCM, equal to 500–1000 mg iron, for iron repletion at baseline and week 6 based on screening Hb and weight. If the patient weighs < 70 kg and Hb < 10 g/dL or ≥70 kg and Hb < 14 g/dL, administer FCM only at week 6. For ongoing iron deficiency, provide a maintenance dose of 500 mg iron at week 12. |
Follow-up | 1.9 years | 52 weeks | 24 weeks | 52 weeks | 24 weeks |
End points | Primary outcomes: Death, HF hospitalizations, and change in the 6MWT distance from baseline to 6 months. Secondary outcomes: Composite of cardiovascular death or hospitalization for HF over the duration of follow-up; change in 6-min walk distance from baseline to 12 months; a composite of cardiovascular death or intervention for worsening HF during follow-up; cardiovascular death during follow-up. | Primary outcomes: Total HF hospitalizations and cardiovascular death. Secondary outcomes: Composite of total cardiovascular hospitalizations and cardiovascular death; cardiovascular death; total HF hospitalizations; time to first HF hospitalization or cardiovascular death; and days lost due to HF hospitalizations or cardiovascular death. | Primary outcomes: Self-reported patient global assessment and NYHA Functional Class at week 24. Secondary outcomes: Self-reported Patient Global Assessment and NYHA class at weeks 4 and 12; 6MWT; QoL evaluated by the European Quality of Life 5D (EQ-5D) visual assessment score and the overall KCCQ score, at weeks 4, 12, and 24. | Primary outcomes: Change in 6MWT distance from baseline to week 24. Secondary outcomes: Changes in NYHA class, Patient Global Assessment, 6MWT distance, Fatigue Score and health-related QoL evaluated using KCCQ and EQ-5D questionnaire assessed at weeks 6, 12, 24, 36, and 52; HF hospitalizations. | Primary outcomes: Change in peak oxygen uptake (peak VO2) from baseline to 24 weeks. Secondary outcomes: Effect on hematinic and cardiac biomarkers, change in NYHA functional class, and patient global assessment, and safety. |
Trial | Inclusion Criteria | Exclusion Criteria |
---|---|---|
HEART-FID [11] |
|
|
AFFIRM-AHF [10] |
|
|
FAIR-HF [20] |
|
|
CONFIRM-HF [2] |
|
|
EFFECT-HF [21] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padda, I.; Sebastian, S.A.; Fabian, D.; Sethi, Y.; Johal, G. The Efficacy and Safety of Ferric Carboxymaltose in Heart Failure with Reduced Ejection Fraction and Iron Deficiency: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diseases 2024, 12, 339. https://doi.org/10.3390/diseases12120339
Padda I, Sebastian SA, Fabian D, Sethi Y, Johal G. The Efficacy and Safety of Ferric Carboxymaltose in Heart Failure with Reduced Ejection Fraction and Iron Deficiency: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diseases. 2024; 12(12):339. https://doi.org/10.3390/diseases12120339
Chicago/Turabian StylePadda, Inderbir, Sneha Annie Sebastian, Daniel Fabian, Yashendra Sethi, and Gurpreet Johal. 2024. "The Efficacy and Safety of Ferric Carboxymaltose in Heart Failure with Reduced Ejection Fraction and Iron Deficiency: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials" Diseases 12, no. 12: 339. https://doi.org/10.3390/diseases12120339
APA StylePadda, I., Sebastian, S. A., Fabian, D., Sethi, Y., & Johal, G. (2024). The Efficacy and Safety of Ferric Carboxymaltose in Heart Failure with Reduced Ejection Fraction and Iron Deficiency: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diseases, 12(12), 339. https://doi.org/10.3390/diseases12120339