Factors Associated with Prolonged SARS-CoV-2 Viral Positivity in an Italian Cohort of Hospitalized Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Virological Investigation: Detection of SARS-CoV-2 Genome and Variants
2.3. Outcome: Prolonged Positivity to SARS-CoV-2
2.4. Factors Potentially Associated with Prolonged Positivity to SARS-CoV-2
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Sung, A.; Bailey, A.L.; Stewart, H.B.; McDonald, D.; Wallace, M.A.; Peacock, K.; Miller, C.; Reske, K.A.; O’Neil, C.A.; Fraser, V.J.; et al. Isolation of SARS-CoV-2 in Viral Cell Culture in Immunocompromised Patients with Persistently Positive RT-PCR Results. Front. Cell Infect. Microbiol. 2022, 12, 804175. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.H.; Blebil, A.; Dujaili, J.; Rasool-Hassan, B.A. The Risk and Impact of COVID-19 Pandemic on Immunosuppressed Patients: Cancer, HIV, and Solid Organ Transplant Recipients. AIDS Rev. 2020, 22, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Worldometers.info. COVID-19 Coronavirus Pandemic. 2020. Available online: https://www.worldometers.info/coronavirus/ (accessed on 6 September 2020).
- Van der Valk, J.P.M.; Johannes, C.C.M. SARS-CoV-2: The Relevance and Prevention of Aerosol Transmission. J. Occup. Environ. Med. 2021, 63, e395–e401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect. 2020, 80, e14–e18. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.F.; Sun, Y.C.; Chen, B.H.; Lo, J.F.; Cheng, C.M.; Chen, C.Y.; Wu, C.H.; Kao, S.Y. New COVID-19 saliva-based test: How good is it compared with the current nasopharyngeal or throat swab test? J. Chin. Med. Assoc. 2020, 83, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Izzy, S.; Tahir, Z.; Cote, D.J.; Al Jarrah, A.; Roberts, M.B.; Turbett, S.; Kadar, A.; Smirnakis, S.M.; Feske, S.K.; Zafonte, R.; et al. Characteristics and Outcomes of Latinx Patients with COVID-19 in Comparison with Other Ethnic and Racial Groups. Open Forum Infect. Dis. 2020, 7, ofaa401. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Schönbrunn, A.; Klemm, K.; von Baehr, V.; Krämer, B.K.; Elitok, S.; Hocher, B. Impact of hypertension on long-term humoral and cellular response to SARS-CoV-2 infection. Front. Immunol. 2022, 13, 915001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldhaeefi, M.; Tahir, Z.; Cote, D.J.; Izzy, S.; El Khoury, J. Comorbidities and Age Are Associated with Persistent COVID-19 PCR Positivity. Front. Cell Infect. Microbiol. 2021, 11, 650753. [Google Scholar] [CrossRef] [PubMed]
- Moriconi, D.; Masi, S.; Rebelos, E.; Virdis, A.; Manca, M.L.; De Marco, S.; Taddei, S.; Nannipieri, M. Obesity prolongs the hospital stay in patients affected by COVID-19, and may impact on SARS-COV-2 shedding. Obes. Res. Clin. Pract. 2020, 14, 205–209. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, E.D.; Lees, J.S.; Howie, K.L.; Pugh, D.; Gillis, K.A.; Traynor, J.P.; Macintyre, I.; Mark, P.B. Prolonged SARS-CoV-2 viral shedding in patients with chronic kidney disease. Nephrology 2021, 26, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.M.; Burns, S.O.; Savic, S.; Richter, A.G.; UK PIN COVID-19 Consortium. COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. J. Allergy Clin. Immunol. 2021, 147, 870–875.e1. [Google Scholar] [CrossRef] [PubMed]
- Avanzato, V.A.; Matson, M.J.; Seifert, S.N.; Pryce, R.; Williamson, B.N.; Anzick, S.L.; Barbian, K.; Judson, S.D.; Fischer, E.R.; Martens, C.; et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell 2020, 183, 1901–1912.e9. [Google Scholar] [CrossRef] [PubMed]
- Motoc, N.S.; Ruta, V.M.; Man, M.A.; Ungur, R.A.; Ciortea, V.M.; Irsay, L.; Nicola, A.; Valean, D.; Usatiuc, L.O.; Matei, I.R.; et al. Factors Associated with Prolonged RT-PCR SARS-CoV-2 Positive Testing in Patients with Mild and Moderate Forms of COVID-19: A Retrospective Study. Medicina 2022, 58, 707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giubelan, L.; Stanciu, I.; Ilie, C.; Pădureanu, V. Persistent RNA SARS-CoV-2 Detection in a HIV-Infected Patient. Healthcare 2022, 10, 982. [Google Scholar] [CrossRef] [PubMed]
- Cazeau, N.; Palazzo, M.; Savani, M.; Shroff, R. COVID-19 Vaccines and Immunosuppressed Patients with Cancer: Critical Considerations. Clin. J. Oncol. Nurs. 2022, 26, 367. [Google Scholar]
- Henry, B.M.; Lippi, G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol. 2020, 52, 1193–1194. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Fajnzylber, J.; Regan, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Worrall, D.; Giguel, F.; Piechocka-Trocha, A.; Atyeo, C.; et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 2020, 11, 5493. [Google Scholar] [CrossRef] [PubMed]
- Martín-Díaz, R.M.; Cabrejas-Ugartondo, J.; Iglesias-López, M.; Chulvi-Calvo, B.; Vélez-Rodriguez, D. Persistently positive PCR SARS-CoV-2 at low cycle threshold in an immunosuppressed patient. Braz. J. Infect. Dis. 2022, 26, 102696. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Citarrella, R.; Dominguez, L.; Giannitrapani, L.; Licata, A.; Mansueto, P.; Soresi, M.; Veronese, N. COMEPA (COVID-19 MedicinaPoliclinico Palermo): A study in hospitalized patients. Geriatric Care 2021, 7, 9895. [Google Scholar]
- Chen, B.; Julg, B.; Mohandas, S.; Bradfute, S.B.; RECOVER Mechanistic Pathways Task Force. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023, 12, e86015. [Google Scholar] [CrossRef] [PubMed]
- Dennehy, J.J.; Gupta, R.K.; Hanage, W.P.; Johnson, M.C.; Peacock, T.P. Where is the next SARS-CoV-2 variant of concern? Lancet 2022, 399, 1938–1939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 2021, 592, 277–282, Erratum in Nature 2022, 608, E23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146, Erratum in Nat. Rev. Microbiol. 2023, 21, 408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghafari, M.; Hall, M.; Golubchik, T.; Ayoubkhani, D.; House, T.; MacIntyre-Cockett, G.; Fryer, H.R.; Thomson, L.; Nurtay, A.; Kemp, S.A.; et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 2024, 626, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voinsky, I.; Baristaite, G.; Gurwitz, D. Effects of age and sex on recovery from COVID-19: Analysis of 5769 Israeli patients. J. Infect. 2020, 81, e102–e103. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Han, P.; Zhu, R.; Bai, T.; Yi, J.; Zhao, X.; Tao, M.; Quan, R.; Chen, C.; Zhang, Y.; et al. Risk factors for viral RNA shedding in COVID-19 patients. Eur. Respir. J. 2020, 56, 2001190. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.M.; Kaltsakas, G. Respiratory complications of obesity: From early changes to respiratory failure. Breathe 2023, 19, 220263. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, L.; Balafa, O.; Dounousi, E.; Ekart, R.; Fernandez, B.F.; Mark, P.B.; Sarafidis, P.; Valdivielso, J.M.; Ferro, C.J.; Mallamaci, F. COVID-19 and cardiovascular disease in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2024, 39, 177–189. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan. Chi-na: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yang, M.; Wan, C.; Yi, L.X.; Tang, F.; Zhu, H.Y.; Yi, F.; Yang, H.C.; Fogo, A.B.; Nie, X.; et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Giannis, D.; Ziogas, I.A.; Gianni, P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 2020, 127, 104362. [Google Scholar] [CrossRef] [PubMed]
- Bojkova, D.; Wagner, J.U.; Shumliakivska, M.; Aslan, G.S.; Saleem, U.; Hansen, A.; Luxán, G.; Günther, S.; Pham, M.D.; Krishnan, J.; et al. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc. Res. 2020, 116, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Marchiano, S.; Hsiang, T.Y.; Khanna, A.; Higashi, T.; Whitmore, L.S.; Bargehr, J.; Davaapil, H.; Chang, J.; Smith, E.; Ong, L.P.; et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep. 2021, 16, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Bois, M.C.; Boire, N.A.; Layman, A.J.; Aubry, M.-C.; Alexander, M.P.; Roden, A.C.; Hagen, C.E.; Quinton, R.A.; Larsen, C.; Erben, Y.; et al. COVID-19-associated nonocclusive fibrin microthrombi in the heart. Circulation 2021, 143, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, D.; Kawakami, R.; Guagliumi, G.; Sakamoto, A.; Kawai, K.; Gianatti, A.; Nasr, A.; Kutys, R.; Guo, L.; Cornelissen, A.; et al. Microthrombi as a major cause of cardiac injury in COVID-19: A pathologic study. Circulation 2021, 143, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Arcaini, L.; Rossi, D.; Paulli, M. Splenic marginal zone lymphoma: From genetics to management. Blood 2016, 127, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
- Niyonkuru, M.; Pedersen, R.M.; Assing, K.; Andersen, T.E.; Skov, M.N.; Johansen, I.S.; Madsen, L.W. Prolonged viral shedding of SARS-CoV-2 in two immunocompromised patients, a case report. BMC Infect. Dis. 2021, 21, 743. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dolan, S.A.; Mulcahy Levy, J.; Moss, A.; Pearce, K.; Butler, M.; Jung, S.; Dominguez, S.R.; Mwangi, E.; Maloney, K.; Rao, S. SARS-CoV-2 persistence in immunocompromised children. Pediatr. Blood Cancer 2021, 68, e29277. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heil, E.L.; Kottilil, S. The Goldilocks Time for Remdesivir—Is Any Indication Just Right? N. Engl. J. Med. 2022, 386, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Rondaan, C.; Furer, V.; Heijstek, M.W.; Agmon-Levin, N.; Bijl, M.; Breedveld, F.C.; D’Amelio, R.; Dougados, M.; Kapetanovic, M.C.; van Laar, J.M.; et al. Efficacy, immunogenicity and safety of vaccination in adult patients with autoimmune inflammatory rheumatic diseases: A systematic literature review for the 2019 update of EULAR recommendations. RMD Open 2019, 5, e001035. [Google Scholar] [CrossRef] [PubMed]
- DiIorio, M.; Kennedy, K.; Liew, J.W.; Putman, M.S.; Sirotich, E.; Sattui, S.E.; Foster, G.; Harrison, C.; Larché, M.J.; Levine, M.; et al. Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: Results from the COVID-19 Global Rheumatology Alliance Vaccine Survey. RMD Open 2022, 8, e002587. [Google Scholar] [CrossRef] [PubMed]
- Conway, R.; Grimshaw, A.A.; Konig, M.F.; Putman, M.; Duarte—García, A.; Tseng, L.Y.; Cabrera, D.M.; Chock, Y.P.E.; Degirmenci, H.B.; Duff, E.; et al. SARS-CoV-2 infection and COVID-19 out-comes in rheumatic diseases: A systematic literature review and meta-analysis. Arthritis Rheumatol. 2022, 74, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, J.S.; Kennedy, K.; Simard, J.F.; Liew, J.W.; Sparks, J.A.; Moni, T.T.; Harrison, C.; Larché, M.J.; Levine, M.; Sattui, S.E.; et al. Immediate effect of the COVID-19 pandemic on patient health, health-care use, and behaviours: Results from an international survey of people with rheumatic diseases. Lancet Rheumatol. 2021, 3, e707–e714. [Google Scholar] [CrossRef] [PubMed]
- Grainger, R.; Kim, A.H.; Conway, R.; Yazdany, J.; Robinson, P.C. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat. Rev. Rheumatol. 2022, 18, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Puhach, O.; Meyer, B.; Eckerle, I. SARS-CoV-2 viral load and shedding kinetics. Nat. Rev. Microbiol. 2023, 21, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Sokolovska, L.; Terentjeva-Decuka, A.; Cistjakovs, M.; Nora-Krukle, Z.; Gravelsina, S.; Vilmane, A.; Vecvagare, K.; Murovska, M. The presence of SARS-CoV-2 in multiple clinical specimens of a fatal case of COVID-19: A case report. J. Med. Case Rep. 2022, 16, 484. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Hong, C.M.; Lee, T.H.; Hwang, Y.J.; Kim, D.H.; Lee, J. Factors associated with prolonged viral detection in asymptomatic and mildly symptomatic patients with SARS-CoV-2 infection. J. Infect. Dev. Ctries. 2022, 16, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Taha, Y.; Wardle, H.; Evans, A.B.; Hunter, E.R.; Marr, H.; Osborne, W.; Bashton, M.; Smith, D.; Burton-Fanning, S.; Schmid, M.L.; et al. Persistent SARS-CoV-2 infection in patients with secondary antibody deficiency: Successful clearance following combination casirivimab and imdevimab (REGN-COV2) monoclonal antibody therapy. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 85. [Google Scholar] [CrossRef]
- Ertesvåg, N.U.; Sakkestad, S.T.; Zhou, F.; Hoff, I.; Kristiansen, T.; Jonassen, T.M.; Follesø, E.; Brokstad, K.A.; Dyrhovden, R.; Mohn, K.G. Persistent Fever and Positive PCR 90 Days Post-SARS-CoV-2 Infection in a Rituximab-Treated Patient: A Case of Late Antiviral Treatment. Viruses 2022, 14, 1757. [Google Scholar] [CrossRef] [PubMed]
- Sepulcri, C.; Dentone, C.; Mikulska, M.; Bruzzone, B.; Lai, A.; Fenoglio, D.; Bozzano, F.; Bergna, A.; Parodi, A.; Altosole, T.; et al. The Longest Persistence of Viable SARS-CoV-2 with Recurrence of Viremia and Relapsing Symptomatic COVID-19 in an Immunocompromised Patient-A Case Study. Open Forum Infect. Dis. 2021, 8, ofab217. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.A.; Rassen, J.A.; Kabelac, C.A.; Turenne, W.; Leonard, S.; Klesh, R.; Meyer, W.A., 3rd; Kaufman, H.W.; Anderson, S.; Cohen, O.; et al. Association of SARS-CoV-2 Seropositive Antibody Test with Risk of Future Infection. JAMA Intern. Med. 2021, 181, 672–679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Factor | Cases (n = 65) | Control (n = 156) | p-Value |
---|---|---|---|
Age | 65.0 (16.1) | 63.5 (17.2) | 0.58 |
Female sex | 63.1 | 54.5 | 0.24 |
Pneumonia | 72.3 | 78.8 | 0.30 |
Diabetes mellitus | 40.0 | 25.0 | 0.03 |
Cancer | 13.8 | 9.0 | 0.28 |
Autoimmune diseases | 12.3 | 4.5 | 0.04 |
Chronic kidney disease | 21.5 | 6.4 | 0.001 |
Coronary acute syndrome | 26.2 | 13.5 | 0.02 |
Leukemias/lymphomas | 3.1 | 2.6 | 0.83 |
Medium viral load | 28.6 | 21.4 | 0.02 |
High viral load | 46.4 | 31.1 | <0.0001 |
Factor | Odds Ratio | 95%CI Lower | 95%CI Higher | p-Value |
---|---|---|---|---|
Age | 1.000 | 0.980 | 1.020 | 0.972 |
Female sex | 1.752 | 0.908 | 3.378 | 0.094 |
Pneumonia | 0.727 | 0.357 | 1.481 | 0.379 |
Diabetes mellitus | 1.540 | 0.770 | 3.077 | 0.222 |
Cancer | 1.375 | 0.493 | 3.836 | 0.543 |
Autoimmune diseases | 3.802 | 1.218 | 11.870 | 0.022 |
Chronic kidney disease | 3.138 | 1.231 | 7.997 | 0.017 |
Coronary acute syndrome | 1.704 | 0.750 | 3.870 | 0.203 |
Leukemias/lymphomas | 1.347 | 0.203 | 8.912 | 0.758 |
Medium viral load | 3.280 | 1.184 | 9.089 | 0.022 |
High viral load | 3.631 | 1.451 | 9.087 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Grazia, S.; Pollicino, F.; Giannettino, C.; Errera, C.M.; Veronese, N.; Giammanco, G.M.; Cacioppo, F.; Sanfilippo, G.L.; Barbagallo, M.; COMEPA Study Authors. Factors Associated with Prolonged SARS-CoV-2 Viral Positivity in an Italian Cohort of Hospitalized Patients. Diseases 2024, 12, 138. https://doi.org/10.3390/diseases12070138
De Grazia S, Pollicino F, Giannettino C, Errera CM, Veronese N, Giammanco GM, Cacioppo F, Sanfilippo GL, Barbagallo M, COMEPA Study Authors. Factors Associated with Prolonged SARS-CoV-2 Viral Positivity in an Italian Cohort of Hospitalized Patients. Diseases. 2024; 12(7):138. https://doi.org/10.3390/diseases12070138
Chicago/Turabian StyleDe Grazia, Simona, Francesco Pollicino, Chiara Giannettino, Chiara Maria Errera, Nicola Veronese, Giovanni M. Giammanco, Federica Cacioppo, Giuseppa Luisa Sanfilippo, Mario Barbagallo, and COMEPA Study Authors. 2024. "Factors Associated with Prolonged SARS-CoV-2 Viral Positivity in an Italian Cohort of Hospitalized Patients" Diseases 12, no. 7: 138. https://doi.org/10.3390/diseases12070138
APA StyleDe Grazia, S., Pollicino, F., Giannettino, C., Errera, C. M., Veronese, N., Giammanco, G. M., Cacioppo, F., Sanfilippo, G. L., Barbagallo, M., & COMEPA Study Authors. (2024). Factors Associated with Prolonged SARS-CoV-2 Viral Positivity in an Italian Cohort of Hospitalized Patients. Diseases, 12(7), 138. https://doi.org/10.3390/diseases12070138