Prognostic Role of Lymphocyte-to-Monocyte Ratio (LMR) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (DEM-TACE or cTACE) of the Liver: Exploring the Link between Tumor Microenvironment and Interventional Radiology
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Treatment
2.3. Outcomes and Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
- -
- Based on the ROC curve analysis, a cut-off value of 2.24 was chosen to divide the population into a low LMR group and a high LMR group. An area under the curve of 0.851 highlights good accuracy in predicting 6-month PFS;
- -
- Strong correlations between the LMR and treatment response, progression-free survival, and successful downstaging at 6 months are noted;
- -
- Hepatitis C virus infection, alpha-fetoprotein levels, lymphocyte count, and the LMR emerged as significant predictors affecting objective response occurrence and progression-free survival at 6 months. The LMR, categorized as <2.24 and ≥2.24, proved to be a robust predictor in both analyses (p = 0.001 and p < 0.001, respectively). These results underscore the prognostic role of the LMR in predicting treatment response and short-term outcomes in patients with stage B HCC undergoing TACE.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.E.; de Lope, C.R.; Bruix, J. Current strategy for staging and treatment: The BCLC update and future prospects. Semin. Liver Dis. 2010, 30, 61–74. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Bolondi, L.; Burroughs, A.; Dufour, J.-F.; Galle, P.R.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Sangro, B. Heterogeneity of patients with intermediate (BCLC B) Hepatocellular Carcinoma: Proposal for a subclassification to facilitate treatment decisions. Semin. Liver Dis. 2012, 32, 348–359. [Google Scholar] [CrossRef]
- Kudo, M.; Arizumi, T.; Ueshima, K.; Sakurai, T.; Kitano, M.; Nishida, N. Subclassification of BCLC B Stage Hepatocellular Carcinoma and Treatment Strategies: Proposal of Modified Bolondi’s Subclassification (Kinki Criteria). Dig. Dis. 2015, 33, 751–758. [Google Scholar] [CrossRef]
- Minici, R.; Ammendola, M.; Manti, F.; Siciliano, M.A.; Minici, M.; Komaei, I.; Currò, G.; Laganà, D. Safety and Efficacy of Degradable Starch Microspheres Transcatheter Arterial Chemoembolization (DSM-TACE) in the Downstaging of Intermediate-Stage Hepatocellular Carcinoma (HCC) in Patients With a Child-Pugh Score of 8–9. Front. Pharmacol. 2021, 12, 634087. [Google Scholar] [CrossRef]
- Yao, F.Y.; Mehta, N.; Flemming, J.; Dodge, J.; Hameed, B.; Fix, O.; Hirose, R.; Fidelman, N.; Kerlan, R.K., Jr.; Roberts, J.P. Downstaging of hepatocellular cancer before liver transplant: Long-term outcome compared to tumors within Milan criteria. Hepatology 2015, 61, 1968–1977. [Google Scholar] [CrossRef]
- Su, T.-H.; Hsu, S.-J.; Kao, J.-H. Paradigm shift in the treatment options of hepatocellular carcinoma. Liver Int. 2022, 42, 2067–2079. [Google Scholar] [CrossRef]
- Mazzaferro, V. Squaring the circle of selection and allocation in liver transplantation for HCC: An adaptive approach. Hepatology 2016, 63, 1707–1717. [Google Scholar] [CrossRef]
- Yao, F.Y.; Hirose, R.; LaBerge, J.M.; Davern, T.J.; Bass, N.M.; Kerlan, R.K.; Merriman, R.; Feng, S.; Freise, C.E.; Ascher, N.L.; et al. A prospective study on downstaging of hepatocellular carcinoma prior to liver transplantation. Liver Transpl. 2005, 11, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Sandow, T.A.; Arndt, S.E.; Albar, A.A.; DeVun, D.A.; Kirsch, D.S.; Gimenez, J.M.; Bohorquez, H.E.; Gilbert, P.J.; Thevenot, P.T.; Nunez, K.G.; et al. Assessment of Response to Transcatheter Arterial Chemoembolization with Doxorubicin-eluting Microspheres: Tumor Biology and Hepatocellular Carcinoma Recurrence in a 5-year Transplant Cohort. Radiology 2018, 286, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Minici, R.; Ammendola, M.; Manti, F.; Siciliano, M.A.; Giglio, E.; Minici, M.; Melina, M.; Currò, G.; Laganà, D. Safety and Efficacy of Degradable Starch Microspheres Transcatheter Arterial Chemoembolization as a Bridging Therapy in Patients with Early Stage Hepatocellular Carcinoma and Child-Pugh Stage B Eligible for Liver Transplant. Front. Pharmacol. 2021, 12, 634084. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Rossi, J.-F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front. Immunol. 2021, 12, 595722. [Google Scholar] [CrossRef]
- Mei, J.; Sun, X.-Q.; Lin, W.-P.; Li, S.-H.; Lu, L.-H.; Zou, J.-W.; Wei, W.; Guo, R.-P. Comparison of the Prognostic Value of Inflammation-Based Scores in Patients with Hepatocellular Carcinoma After Anti-PD-1 Therapy. J. Inflamm. Res. 2021, 14, 3879–3890. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Zhang, X.; Zhao, S.; Hu, J.; Han, G.; Liu, L. The neutrophil-to-lymphocyte ratio is a predictive factor for the survival of patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Ann. Transl. Med. 2020, 8, 541. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.-C.; Jia, Q.-A.; Ge, N.-L.; Zhang, B.-H.; Wang, Y.-H.; Ren, Z.-G.; Ye, S.-L. The platelet-to-lymphocyte ratio predicts poor survival in patients with huge hepatocellular carcinoma that received transarterial chemoembolization. Tumour Biol. 2015, 36, 6045–6051. [Google Scholar] [CrossRef]
- Iseda, N.; Itoh, S.; Yoshizumi, T.; Tomiyama, T.; Morinaga, A.; Shimagaki, T.; Wang, H.; Kurihara, T.; Toshima, T.; Nagao, Y.; et al. Lymphocyte-to-C-reactive protein ratio as a prognostic factor for hepatocellular carcinoma. Int. J. Clin. Oncol. 2021, 26, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Ishihara, S.; Kawai, K.; Kazama, S.; Yamaguchi, H.; Sunami, E.; Kitayama, J.; Watanabe, T. Impact of a lymphocyte to monocyte ratio in stage IV colorectal cancer. J. Surg. Res. 2015, 199, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Stotz, M.; Pichler, M.; Absenger, G.; Szkandera, J.; Arminger, F.; Schaberl-Moser, R.; Samonigg, H.; Stojakovic, T.; Gerger, A. The preoperative lymphocyte to monocyte ratio predicts clinical outcome in patients with stage III colon cancer. Br. J. Cancer 2014, 110, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-J.; Lin, Y.-X.; Ye, H.; Li, F.-Y.; Xiong, X.-Z.; Cheng, N.-S. Lymphocyte to monocyte ratio and prognostic nutritional index predict survival outcomes of hepatitis B virus-associated hepatocellular carcinoma patients after curative hepatectomy. J. Surg. Oncol. 2016, 114, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-X.; Ruan, D.-Y.; Li, Y.; Wu, D.-H.; Ma, X.-K.; Chen, J.; Chen, Z.-H.; Li, X.; Wang, T.-T.; Lin, Q.; et al. Lymphocyte-to-monocyte ratio predicts survival of patients with hepatocellular carcinoma after curative resection. World J. Gastroenterol. 2015, 21, 10898–10906. [Google Scholar] [CrossRef] [PubMed]
- Minici, R.; Siciliano, M.A.; Ammendola, M.; Santoro, R.C.; Barbieri, V.; Ranieri, G.; Laganà, D. Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology. Cancers 2022, 15, 257. [Google Scholar] [CrossRef] [PubMed]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Lucatelli, P.; Burrel, M.; Guiu, B.; de Rubeis, G.; van Delden, O.; Helmberger, T. CIRSE Standards of Practice on Hepatic Transarterial Chemoembolisation. Cardiovasc. Interv. Radiol. 2021, 44, 1851–1867. [Google Scholar] [CrossRef]
- Gaba, R.C.; Lokken, R.P.; Hickey, R.M.; Lipnik, A.J.; Lewandowski, R.J.; Salem, R.; Brown, D.B.; Walker, T.G.; Silberzweig, J.E.; Baerlocher, M.O.; et al. Quality Improvement Guidelines for Transarterial Chemoembolization and Embolization of Hepatic Malignancy. J. Vasc. Interv. Radiol. 2017, 28, 1210–1223.e3. [Google Scholar] [CrossRef]
- Lencioni, R.; de Baere, T.; Burrel, M.; Caridi, J.G.; Lammer, J.; Malagari, K.; Martin, R.C.G.; O’Grady, E.; Real, M.I.; Vogl, T.G.; et al. Transcatheter Treatment of Hepatocellular Carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): Technical Recommendations. Cardiovasc. Interv. Radiol. 2012, 35, 980–985. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef]
- Lammer, J.; Malagari, K.; Vogl, T.; Pilleul, F.; Denys, A.; Watkinson, A.; Pitton, M.; Sergent, G.; Pfammatter, T.; Terraz, S.; et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: Results of the PRECISION V study. Cardiovasc. Interv. Radiol. 2010, 33, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, M.; Chen, M.; Mei, J.; Xu, L.; Guo, R.; Lin, X.; Li, J.; Peng, Z. Association of Sustained Response Duration With Survival After Conventional Transarterial Chemoembolization in Patients With Hepatocellular Carcinoma. JAMA Netw. Open 2018, 1, e183213. [Google Scholar] [CrossRef]
- Rossi, R.; Talarico, M.; Pascale, A.; Pascale, V.; Minici, R.; Boriani, G. Low Levels of Vitamin D and Silent Myocardial Ischemia in Type 2 Diabetes: Clinical Correlations and Prognostic Significance. Diagnostics 2022, 12, 2572. [Google Scholar] [CrossRef] [PubMed]
- Minici, R.; Serra, R.; Ierardi, A.M.; Petullà, M.; Bracale, U.M.; Carrafiello, G.; Laganà, D. Thoracic endovascular repair for blunt traumatic thoracic aortic injury: Long-term results. Vascular 2022, 32, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Bracale, U.M.; Peluso, A.; Panagrosso, M.; Cecere, F.; DEL Guercio, L.; Minici, R.; Giannotta, N.; Ielapi, N.; Licastro, N.; Serraino, G.F.; et al. Ankle-Brachial Index evaluation in totally percutaneous approach vs. femoral artery cutdown for endovascular aortic repair of abdominal aortic aneurysms. Chirurgia 2022, 35, 349–354. [Google Scholar] [CrossRef]
- Minici, R.; Serra, R.; Giurdanella, M.; Talarico, M.; Siciliano, M.A.; Carrafiello, G.; Laganà, D. Efficacy and Safety of Distal Radial Access for Transcatheter Arterial Chemoembolization (TACE) of the Liver. J. Pers. Med. 2023, 13, 640. [Google Scholar] [CrossRef]
- Minici, R.; Venturini, M.; Fontana, F.; Guzzardi, G.; Pingitore, A.; Piacentino, F.; Serra, R.; Coppola, A.; Santoro, R.; Laganà, D. Efficacy and Safety of Ethylene-Vinyl Alcohol (EVOH) Copolymer-Based Non-Adhesive Liquid Embolic Agents (NALEAs) in Transcatheter Arterial Embolization (TAE) of Acute Non-Neurovascular Bleeding: A Multicenter Retrospective Cohort Study. Medicina 2023, 59, 710. [Google Scholar] [CrossRef]
- Minici, R.; Fontana, F.; Venturini, M.; Guzzardi, G.; Siciliano, A.; Piacentino, F.; Serra, R.; Coppola, A.; Guerriero, P.; Apollonio, B.; et al. Transcatheter Arterial Embolization (TAE) in the Management of Bleeding in the COVID-19 Patient. Medicina 2023, 59, 1062. [Google Scholar] [CrossRef]
- Zhu, Z.-F.; Zhuang, L.-P.; Zhang, C.-Y.; Ning, Z.-Y.; Wang, D.; Sheng, J.; Hua, Y.-Q.; Xie, J.; Xu, L.-T.; Meng, Z.-Q. Predictive role of the monocyte-to-lymphocyte ratio in advanced hepatocellular carcinoma patients receiving anti-PD-1 therapy. Transl. Cancer Res. 2022, 11, 160–170. [Google Scholar] [CrossRef]
- Minici, R.; Serra, R.; De Rosi, N.; Ciranni, S.; Talarico, M.; Petullà, M.; Guzzardi, G.; Fontana, F.; Laganà, D. Endovascular treatment of femoro-popliteal occlusions with retrograde tibial access after failure of the antegrade approach. Catheter. Cardiovasc. Interv. 2023, 101, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Cernigliaro, M.; Stanca, C.; Galbiati, A.; Spinetta, M.; Coda, C.; Negroni, D.; Laganà, D.; Minici, R.; Airoldi, C.; Carriero, A.; et al. Innovation in Acute Ischemic Stroke Patients over 80 y/o—A Retrospective Monocentric Study on Mechanical Thrombectomy of Consecutive Patients: Is Age an Adequate Selection Criterion? J. Clin. Med. 2023, 12, 3688. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, L.; Chen, G.; Zhang, Y.; Gao, Q. The lymphocyte-to-monocyte ratio could predict the efficacy of PD-1 inhibitors in patients with advanced cancer. Transl. Cancer Res. 2020, 9, 4111–4120. [Google Scholar] [CrossRef] [PubMed]
- Väyrynen, J.P.; Tuomisto, A.; Klintrup, K.; Mäkelä, J.; Karttunen, T.J.; Mäkinen, M.J. Detailed analysis of inflammatory cell infiltration in colorectal cancer. Br. J. Cancer 2013, 109, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, S.; Yasuda, K.; Suzuki, K.; Tahara, K.; Higashi, H.; Era, S. Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncol. Rep. 2005, 14, 425–431. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Itoh, S.; Yugawa, K.; Shimokawa, M.; Yoshiya, S.; Mano, Y.; Takeishi, K.; Toshima, T.; Maehara, Y.; Mori, M.; Yoshizumi, T. Prognostic significance of inflammatory biomarkers in hepatocellular carcinoma following hepatic resection. BJS Open 2019, 3, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qiao, W.; Liu, B.; Li, J.; Yuan, C.; Long, J.; Hu, C.; Zang, C.; Zheng, J.; Zhang, Y. The monocyte to lymphocyte ratio not only at baseline but also at relapse predicts poor outcomes in patients with hepatocellular carcinoma receiving locoregional therapy. BMC Gastroenterol. 2022, 22, 98. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, H.; Chen, X.; Li, W.; Chen, J. Prognostic significance of lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio in patients with hepatocellular carcinoma undergoing transcatheter arterial chemoembolization and radiofrequency ablation. Onco Targets Ther. 2019, 12, 7129–7137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, M.; Chen, S.; Wan, W.; Shen, L.; Shen, B.; Qi, H.; Cao, F.; Wu, Y.; Huang, T.; et al. Intermediate stage hepatocellular carcinoma: Comparison of the value of inflammation-based scores in predicting progression-free survival of patients receiving transarterial chemoembolization. J. Cancer Res. Ther. 2021, 17, 740–748. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Niu, R.; Li, Y.; Zhou, X.; Han, X. A combination of the preoperative neutrophil-to-lymphocyte and lymphocyte-to-monocyte ratios as a useful predictor of survival outcomes following the transarterial chemoembolization of huge hepatocellular carcinoma. Saudi Med. J. 2020, 41, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Unitt, E.; Marshall, A.; Gelson, W.; Rushbrook, S.M.; Davies, S.; Vowler, S.L.; Morris, L.S.; Coleman, N.; Alexander, G.J. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J. Hepatol. 2006, 45, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-D.; Zhang, J.-B.; Zhuang, P.-Y.; Zhu, H.-G.; Zhang, W.; Xiong, Y.-Q.; Wu, W.-Z.; Wang, L.; Tang, Z.-Y.; Sun, H.-C. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J. Clin. Oncol. 2008, 26, 2707–2716. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Jiang, J.-H.; Yang, H.-J.; Wu, Z.; Xiao, Z.-M.; Xiang, B.-D. The lymphocyte-to-monocyte ratio is a superior predictor of overall survival compared to established biomarkers in HCC patients undergoing liver resection. Sci. Rep. 2018, 8, 2535. [Google Scholar] [CrossRef]
Variables | All Patients (n = 109) | |||
---|---|---|---|---|
Group 1 Low LMR (n = 35) | Group 2 High LMR (n = 74) | p Value | ||
Age (years) | 57.1 (±13.7) | 54.4 (±14.2) | 58.4 (±13.4) | 0.124 |
Sex (F) | 32 (29.4%) | 14 (40%) | 18 (24.3%) | 0.093 |
Hepatitis B virus | 15 (13.8%) | 4 (11.4%) | 11 (14.9%) | 0.627 |
Hepatitis C virus | 47 (43.1%) | 7 (20%) | 40 (54.1%) | 0.001 |
Non-alcoholic fatty liver disease | 9 (8.3%) | 5 (14.3%) | 4 (5.4%) | 0.116 |
Alcoholic liver disease | 45 (41.3%) | 18 (51.4%) | 27 (36.5%) | 0.139 |
α-Fetoprotein (ng/mL) | 236.5 (±225.8) | 311.9 (±286.7) | 200.8 (±182.1) | 0.110 |
Carbohydrate antigen 19-9 (U/mL) | 11.4 (±13.6) | 12.3 (±13.7) | 10.9 (±13.6) | 0.803 |
γ-Glutamyltransferase (U/L) | 88.7 (±56.8) | 91.8 (±71.5) | 87.2 (±48.9) | 0.953 |
Alkaline phosphatase (U/L) | 52.4 (±21.9) | 54.3 (±21) | 51.5 (±22.4) | 0.285 |
Aspartate transaminase (U/L) | 64.1 (±28.7) | 57.7 (±29.3) | 67.1 (±28.1) | 0.296 |
Alanine transaminase (U/L) | 68.5 (±25.1) | 70.3 (±25.8) | 67.6 (±24.9) | 0.422 |
Albumin (g/L) | 30.1 (±2.7) | 29.5 (±2.4) | 30.4 (±2.8) | 0.116 |
Total bilirubin (mg/dL) | 1.12 (±0.4) | 1.05 (±0.37) | 1.15 (±0.42) | 0.165 |
Prothrombin time (seconds prolonged) | 6.4 (±1.4) | 6.3 (±1.4) | 6.5 (±1.4) | 0.329 |
Ascites | 0 (0%) | 0 (0%) | 0 (0%) | NA |
Child–Pugh score, A6/B7/B8/B9 | 5 (4.6%)/37 (33.9%)/65 (59.6%)/2 (1.8%) | 0 (0%)/13 (37.1%)/21 (60%)/1 (2.9%) | 5 (6.8%)/24 (32.4%)/44 (59.5%)/1 (1.4%) | 0.421 |
Cirrhosis | 107 (98.2%) | 34 (97.1%) | 73 (98.6%) | 0.584 |
Platelet count (No. ×103/μL) | 135.1 (±51) | 128.5 (±43.2) | 138.2 (±54.3) | 0.597 |
Hemoglobin (g/dL) | 11.5 (±1.43) | 11.8 (±1.48) | 11.4 (±1.40) | 0.241 |
White blood cell count (per μL) | 4642 (±825.6) | 4771 (±722.7) | 4580 (±868) | 0.136 |
Neutrophil count (per μL) | 3332 (±776.2) | 3604.9 (±747.9) | 3203 (±760.7) | 0.011 |
Lymphocyte count (per μL) | 901.8 (±322.4) | 710.8 (±287.6) | 992.2 (±299.1) | <0.001 |
Monocyte count (per μL) | 245.8 (±81.4) | 277.1 (±79.2) | 231.1 (±78.7) | 0.003 |
Lymphocyte-to-monocyte ratio (LMR) | 4.25 (±2.29) | 2.82 (±1.58) | 4.92 (±2.26) | <0.001 |
Number of tumors, 1/2/3 | 42 (38.5%)/34 (31.2%)/33 (30.3%) | 12 (34.3%)/11 (31.4%)/12 (34.3%) | 30 (40.5%)/23 (31.1%)/21 (28.4%) | 0.773 |
Maximum tumour size (cm) | 4.50 (±1.13) | 4.42 (±1.10) | 4.54 (±1.15) | 0.651 |
Bilobar disease | 46 (42.2%) | 15 (42.9%) | 31 (41.9%) | 0.924 |
Capsule | 56 (51.4%) | 20 (57.1%) | 36 (48.6%) | 0.407 |
Variables | All Patients (n = 109) | |||
---|---|---|---|---|
Group 1 Low LMR (n = 35) | Group 2 High LMR (n = 74) | p Value | ||
Technical success | 109 (100%) | 35 (100%) | 74 (100%) | NA |
Tumour response | 0.017 | |||
CR | 11 (10.1%) | 0 (0%) | 11 (14.9%) | |
PR | 26 (23.9%) | 5 (14.3%) | 21 (28.4%) | |
SD | 49 (45%) | 20 (57.1%) | 29 (39.2%) | |
PD | 23 (21.1%) | 10 (28.6%) | 13 (17.6%) | |
Complete response | 11 (10.1%) | 0 (0%) | 11 (14.9%) | 0.016 |
Objective response (CR + PR) | 37 (33.9%) | 5 (14.3%) | 32 (43.2%) | 0.003 |
Sustained response duration ≥ 6 months | 57 (52.3%) | 19 (54.3%) | 38 (51.4%) | 0.775 |
Overall survival at 6 months | 109 (100%) | 35 (100%) | 74 (100%) | NA |
Progression-free survival at 6 months | 72 (66.1%) | 16 (45.7%) | 56 (75.7%) | 0.002 |
Successful downstaging at 6 months | 12 (11%) | 0 (0%) | 12 (16.2%) | 0.012 |
Post-procedural clinical complications (CIRSE classification) | 33 (30.3%) | 12 (34.3%) | 21 (28.4%) | 0.340 |
Grade 1 | 28 (25.7%) | 11 (31.4%) | 17 (23%) | |
Grade 2 | 0 (0%) | 0 (0%) | 0 (0%) | |
Grade 3 | 5 (4.6%) | 1 (2.9%) | 4 (5.4%) | |
Grade ≥ 4 | 0 (0%) | 0 (0%) | 0 (0%) | |
Adverse Events (CTCAE classification) | 50 (45.9%) | 10 (28.6%) | 40 (54.1%) | 0.013 |
Grade 1 | 29 (26.6%) | 3 (8.6%) | 26 (35.1%) | |
Grade 2 | 16 (14.7%) | 6 (17.1%) | 10 (13.5%) | |
Grade 3 | 5 (4.6%) | 1 (2.9%) | 4 (5.4%) | |
Grade 4 | 0 (0%) | 0 (0%) | 0 (0%) |
Predictors | Coeff. | Std. Err. | Wald | p > |z| |
---|---|---|---|---|
Age (years) | 0.530/0.071 | 0.02/0.02 | 9.093/8.653 | 0.003/0.003 |
Sex | −0.172 | 0.45 | 0.147 | 0.702 |
Hepatitis C virus | −0.860/−2.367 | 0.43/0.68 | 4.001/12.086 | 0.045–0.001 |
α-Fetoprotein (ng/mL) | −0.004/−0.004 | <0.01/<0.01 | 7.178/4.833 | 0.007–0.028 |
Albumin (g/L) | 0.047 | 0.74 | 0.404 | 0.525 |
White blood cell count (per μL) | 0 | 0 | 0.112 | 0.738 |
Neutrophil count (per μL) | 0 | 0 | 0.468 | 0.494 |
Lymphocyte count (per μL) | 0.003/0.002 | <0.01/<0.01 | 13.897/4.054 | <0.001/0.044 |
Monocyte count (per μL) | −0.005 | <0.01 | 3.274 | 0.070 |
Lymphocyte-to-monocyte ratio (LMR) | 0.325/0.247 | 0.10/0.18 | 11.283/1.792 | 0.001/0.181 |
LMR Groups (<2.24; ≥2.24) | 1.520/1.578 | 0.54/0.74 | 8.009/4.488 | 0.005–0.034 |
Predictors | Coeff. | Std. Err. | Wald | p > |z| |
---|---|---|---|---|
Age (years) | −0.014 | 0.01 | 0.804 | 0.370 |
Sex | 0.222 | 0.44 | 0.255 | 0.614 |
Hepatitis C virus | −0.174 | 0.41 | 0.182 | 0.669 |
α-Fetoprotein (ng/mL) | −0.002 | <0.01 | 3.305 | 0.069 |
Albumin (g/L) | −0.009 | 0.07 | 0.014 | 0.906 |
White blood cell count (per μL) | 0 | 0 | 2.344 | 0.126 |
Neutrophil count (per μL) | −0.001/0/0 | 0/0/0 | 4.629/0.202/2.393 | 0.031/0.653/0.122 |
Lymphocyte count (per μL) | 0.003/0.003 | <0.01/<0.01 | 15.125/3.431 | <0.001/0.064 |
Monocyte count (per μL) | −0.017/−0.017 | <0.01/<0.01 | 20.299/5.261 | <0.001/0.022 |
Lymphocyte-to-monocyte ratio (LMR) | 0.777/0.200 | 0.17/0.41 | 20.873/0.234 | <0.001/0.629 |
LMR Groups (<2.24; ≥2.24) | 1.307/0.326/1.162 | 0.43/0.58/0.45 | 9.058/0.319/6.798 | 0.003/0.572/0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minici, R.; Venturini, M.; Guzzardi, G.; Fontana, F.; Coppola, A.; Piacentino, F.; Torre, F.; Spinetta, M.; Maglio, P.; Guerriero, P.; et al. Prognostic Role of Lymphocyte-to-Monocyte Ratio (LMR) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (DEM-TACE or cTACE) of the Liver: Exploring the Link between Tumor Microenvironment and Interventional Radiology. Diseases 2024, 12, 137. https://doi.org/10.3390/diseases12070137
Minici R, Venturini M, Guzzardi G, Fontana F, Coppola A, Piacentino F, Torre F, Spinetta M, Maglio P, Guerriero P, et al. Prognostic Role of Lymphocyte-to-Monocyte Ratio (LMR) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (DEM-TACE or cTACE) of the Liver: Exploring the Link between Tumor Microenvironment and Interventional Radiology. Diseases. 2024; 12(7):137. https://doi.org/10.3390/diseases12070137
Chicago/Turabian StyleMinici, Roberto, Massimo Venturini, Giuseppe Guzzardi, Federico Fontana, Andrea Coppola, Filippo Piacentino, Federico Torre, Marco Spinetta, Pietro Maglio, Pasquale Guerriero, and et al. 2024. "Prognostic Role of Lymphocyte-to-Monocyte Ratio (LMR) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (DEM-TACE or cTACE) of the Liver: Exploring the Link between Tumor Microenvironment and Interventional Radiology" Diseases 12, no. 7: 137. https://doi.org/10.3390/diseases12070137
APA StyleMinici, R., Venturini, M., Guzzardi, G., Fontana, F., Coppola, A., Piacentino, F., Torre, F., Spinetta, M., Maglio, P., Guerriero, P., Ammendola, M., MGJR Research Team, Brunese, L., & Laganà, D. (2024). Prognostic Role of Lymphocyte-to-Monocyte Ratio (LMR) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC) Undergoing Chemoembolizations (DEM-TACE or cTACE) of the Liver: Exploring the Link between Tumor Microenvironment and Interventional Radiology. Diseases, 12(7), 137. https://doi.org/10.3390/diseases12070137