Prevalence and Risk Factors of Hypertension in Hargeisa, Somaliland: A Hospital-Based Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling
2.2. Inclusion and Exclusion Criteria
2.3. Data Sources
2.4. Definitions of Variables
2.5. Data Analysis
3. Results
3.1. Study Flow and Participants’ Characteristics
3.2. Prevalence of Hypertension
3.3. Risk Factors Associated with Hypertension
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef]
- Permanent Mission of the Somali Republic to the United Nations. Country Facts: Brief Background on Nation. Available online: https://www.un.int/somalia/somalia/country-facts (accessed on 15 February 2023).
- Central Statistics Department. The Somaliland Health and Demographic Survey 2020; Ministry of Planning and National Development; Somaliland Government: Hargeisa, Somaliland, 2020.
- Ahmed, S.H.; Meyer, H.E.; Kjøllesdal, M.K.; Marjerrison, N.; Mdala, I.; Htet, A.S.; Bjertness, E.; Madar, A.A. The prevalence of selected risk factors for non-communicable diseases in Hargeisa, Somaliland: A cross-sectional study. BMC Public Health 2019, 19, 878. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.H.; Meyer, H.E.; Kjøllesdal, M.K.; Madar, A.A. Prevalence and predictors of overweight and obesity among Somalis in Norway and Somaliland: A comparative study. J. Obes. 2018, 2018, 4539171. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Hitomi, H.; Nishiyama, A. Hypertension with diabetes mellitus complications. Hypertens. Res. 2018, 41, 147–156. [Google Scholar] [CrossRef]
- Hargeisa Group Hospital. A Hospital with History: Overview of Hargeisa Group Hospital. Available online: https://hargeisaghospital.org/ (accessed on 16 December 2020).
- Kirkwood, B.R.; Sterne, J.A. Essential Medical Statistics; Blackwell Science Ltd.: Malden, MA, USA, 2003. [Google Scholar]
- World Health Organization. WHO STEPS Surveillance Manual: The WHO STEPwise Approach to Noncommunicable Disease Risk Factor Surveillance. Available online: https://www.who.int/teams/noncommunicable-diseases/surveillance/systems-tools/steps/manuals#:~:text=The%20STEPS%20Manual%20provides%20a,(NCD)%20risk%20factor%20surveillance (accessed on 14 February 2023).
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Drake, P.H. Khat-chewing in the Near East. Lancet 1988, 331, 532–533. [Google Scholar] [CrossRef] [PubMed]
- R CoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Alici, G.; Genç, Ö. Prevalence and etiologies of pulmonary hypertension at Somalia-Türkiye Training and Research Hospital in Mogadishu. Pan Afr. Med. J. 2021, 40, 215. [Google Scholar] [CrossRef] [PubMed]
- Tesfa, E.; Demeke, D. Prevalence of and risk factors for hypertension in Ethiopia: A systematic review and meta-analysis. Health Sci. Rep. 2021, 4, e372. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.F.; Mutua, M.K.; Wamai, R.; Wekesah, F.; Haregu, T.; Juma, P.; Nyanjau, L.; Kyobutungi, C.; Ogola, E. Prevalence, awareness, treatment and control of hypertension and their determinants: Results from a national survey in Kenya. BMC Public Health 2018, 18, 1219. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Bentham, J.; Di Cesare, M.; Bixby, H.; Danaei, G.; Cowan, M.J.; Paciorek, C.J.; Singh, G.; Hajifathalian, K.; Bennett, J.E.; et al. Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Baksi, A.J.; Treibel, T.A.; Davies, J.E.; Hadjiloizou, N.; Foale, R.A.; Parker, K.H.; Francis, D.P.; Mayet, J.; Hughes, A.D. A meta-analysis of the mechanism of blood pressure change with aging. J. Am. Coll. Cardiol. 2009, 54, 2087–2092. [Google Scholar] [CrossRef] [Green Version]
- Gurven, M.; Blackwell, A.D.; Rodríguez, D.E.; Stieglitz, J.; Kaplan, H. Does blood pressure inevitably rise with age? Hypertension 2012, 60, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z. Aging, arterial stiffness, and hypertension. Hypertension 2015, 65, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, P.F.L.; Schumacher, B. Principles of the molecular and cellular mechanisms of aging. J. Investig. Dermatol. 2021, 141, 951–960. [Google Scholar] [CrossRef]
- Ngaruiya, C.; Abubakar, H.; Kiptui, D.; Kendagor, A.; Ntakuka, M.W.; Nyakundi, P.; Gathecha, G. Tobacco use and its determinants in the 2015 Kenya WHO STEPS survey. BMC Public Health 2018, 18, 1223. [Google Scholar] [CrossRef]
- Wamai, R.G.; Kengne, A.P.; Levitt, N. Non-communicable diseases surveillance: Overview of magnitude and determinants in Kenya from STEPwise approach survey of 2015. BMC Public Health 2018, 18, 1224. [Google Scholar] [CrossRef] [PubMed]
- Nur, M.; Wagialla, N.A.; Eltigany, M.; Elemam, M.; Ibrahim, N.; Ali, N.; Hassan, F.; Hassan, N.; Nurelhuda, N. Determinants of tobacco use in Sudan: Secondary analysis of STEPwise Survey 2016. East. Mediterr. Health J. 2021, 27, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Handebo, S.; Birara, S.; Kassie, A.; Nigusie, A.; Aleminew, W. Smoking intensity and associated factors among male smokers in Ethiopia: Further analysis of 2016 Ethiopian Demographic and Health Survey. Biomed. Res. Int. 2020, 2020, 4141370. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.M.A.; Zhang, X. Knowledge and factors related to smoking among university students at Hodeidah University, Yemen. Tob. Induc. Dis. 2019, 17, 42. [Google Scholar] [CrossRef]
- World Health Organization. Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco#:~:text=Tobacco%20kills%20more%20than%208,%2D%20and%20middle%2Dincome%20countries (accessed on 22 February 2023).
- Doyle, J.T.; Dawber, T.R.; Kannel, W.B.; Heslin, A.S.; Kahn, H.A. Cigarette smoking and coronary heart disease. Combined experience of the Albany and Framingham studies. N. Engl. J. Med. 1962, 266, 796–801. [Google Scholar] [CrossRef]
- Halperin, R.O.; Michael Gaziano, J.; Sesso, H.D. Smoking and the risk of incident hypertension in middle-aged and older men. Am. J. Hypertens. 2008, 21, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Nakagawa, H.; Sakurai, M.; Murakami, Y.; Irie, F.; Fujiyoshi, A.; Okamura, T.; Miura, K.; Ueshima, H. Influence of smoking combined with another risk factor on the risk of mortality from coronary heart disease and stroke: Pooled analysis of 10 Japanese cohort studies. Cerebrovasc. Dis. 2012, 33, 480–491. [Google Scholar] [CrossRef]
- Ohta, Y.; Kawano, Y.; Hayashi, S.; Iwashima, Y.; Yoshihara, F.; Nakamura, S. Effects of cigarette smoking on ambulatory blood pressure, heart rate and heart rate variability in treated hypertensive patients. Clin. Exp. Hypertens. 2016, 38, 510–513. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Huang, J.-F.; Kang, Y.-Y.; Dou, Y.; Su, Y.-L.; Zhang, L.-J.; Cheng, Y.-B.; Guo, Q.-H.; Huang, Q.-F.; Li, Y.; et al. The prevalence of masked hypertension in relation to cigarette smoking in a Chinese male population. J. Hypertens. 2020, 38, 1056–1063. [Google Scholar] [CrossRef]
- Heiss, C.; Amabile, N.; Lee, A.C.; Real, W.M.; Schick, S.F.; Lao, D.; Wong, M.L.; Jahn, S.; Angeli, F.S.; Minasi, P.; et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: Sustained vascular injury and blunted nitric oxide production. J. Am. Coll. Cardiol. 2008, 51, 1760–1771. [Google Scholar] [CrossRef]
- Saladini, F.; Benetti, E.; Fania, C.; Mos, L.; Casiglia, E.; Palatini, P. Effects of smoking on central blood pressure and pressure amplification in hypertension of the young. Vasc. Med. 2016, 21, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Ongeri, L.; Kirui, F.; Muniu, E.; Manduku, V.; Kirumbi, L.; Atwoli, L.; Agure, S.; Wanzala, P.; Kaduka, L.; Karimi, M.; et al. Khat use and psychotic symptoms in a rural Khat growing population in Kenya: A household survey. BMC Psychiatry 2019, 19, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebrie, A.; Alebel, A.; Zegeye, A.; Tesfaye, B. Prevalence and predictors of Khat chewing among Ethiopian university students: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195718. [Google Scholar] [CrossRef] [PubMed]
- Numan, N. Exploration of adverse psychological symptoms in Yemeni khat users by the Symptoms Checklist-90 (SCL-90). Addiction 2004, 99, 61–65. [Google Scholar] [CrossRef]
- Halbach, H. Medical aspects of the chewing of Khat leaves. Bull. World Health Organ. 1972, 47, 21–29. [Google Scholar]
- Hassan, N.A.; Gunaid, A.A.; Abdo-Rabbo, A.A.; Abdel-Kader, Z.Y.; al-Mansoob, M.A.; Awad, A.Y.; Murray-Lyon, I.M. The effect of Qat chewing on blood pressure and heart rate in healthy volunteers. Trop. Doct. 2000, 30, 107–108. [Google Scholar] [CrossRef]
- Al-Mugahed, L. Khat chewing in Yemen: Turning over a new leaf. Bull. World Health Organ. 2008, 86, 741–742. [Google Scholar] [CrossRef]
- Al-Motarreb, A.; Al-Suwaidi, J. Khat chewing and cardiovascular diseases. Heart Views 2022, 23, 103–107. [Google Scholar] [CrossRef]
- Getahun, W.; Gedif, T.; Tesfaye, F. Regular Khat (Catha edulis) chewing is associated with elevated diastolic blood pressure among adults in Butajira, Ethiopia: A comparative study. BMC Public Health 2010, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Schutte, A.E.; Srinivasapura Venkateshmurthy, N.; Mohan, S.; Prabhakaran, D. Hypertension in low- and middle-income countries. Circ. Res. 2021, 128, 808–826. [Google Scholar] [CrossRef]
- van Nunen, E.; Hoek, G.; Tsai, M.Y.; Probst-Hensch, N.; Imboden, M.; Jeong, A.; Naccarati, A.; Tarallo, S.; Raffaele, D.; Nieuwenhuijsen, M.; et al. Short-term personal and outdoor exposure to ultrafine and fine particulate air pollution in association with blood pressure and lung function in healthy adults. Environ. Res. 2021, 194, 110579. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, R.E.; Ruilope, L.M. Blood pressure control in patients with comorbidities. J. Clin. Hypertens. 2008, 10, 624–631. [Google Scholar] [CrossRef]
- Balogun, W.O.; Salako, B.L. Co-occurrence of diabetes and hypertension: Pattern and factors associated with order of diagnosis among nigerians. Ann. Ib. Postgrad. Med. 2011, 9, 89–93. [Google Scholar] [PubMed]
- Tsimihodimos, V.; Gonzalez-Villalpando, C.; Meigs, J.B.; Ferrannini, E. Hypertension and diabetes mellitus. Hypertension 2018, 71, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, T.; Fu, H. Prevalence of diabetes and hypertension and their interaction effects on cardio-cerebrovascular diseases: A cross-sectional study. BMC Public Health 2021, 21, 1224. [Google Scholar] [CrossRef]
- Lindholt, J.S.; Søgaard, R.; Rasmussen, L.M.; Mejldal, A.; Lambrechtsen, J.; Steffensen, F.H.; Frost, L.; Egstrup, K.; Urbonaviciene, G.; Busk, M.; et al. Five-year outcomes of the Danish Cardiovascular Screening (DANCAVAS) Trial. N. Engl. J. Med. 2022, 387, 1385–1394. [Google Scholar] [CrossRef]
- The GRADE Study Research Group. Glycemia reduction in type 2 diabetes—Microvascular and cardiovascular outcomes. N. Engl. J. Med. 2022, 387, 1075–1088. [Google Scholar] [CrossRef]
Characteristic | Females (n = 146) 1 | Males (n = 173) 1 | p-Value |
---|---|---|---|
Age group (years) | 0.585 | ||
18–24 | 5 (3.4%) | 3 (1.7%) | |
25–34 | 55 (37.7%) | 62 (35.8%) | |
35–44 | 40 (27.4%) | 48 (27.7%) | |
45–54 | 18 (12.3%) | 21 (12.1%) | |
55–64 | 19 (13.0%) | 19 (11.0%) | |
≥65 | 9 (6.2%) | 20 (11.6%) | |
Marital status | 0.001 | ||
Single | 29 (19.9%) | 50 (28.9%) | |
Married | 100 (68.5%) | 119 (68.8%) | |
Divorced | 17 (11.6%) | 4 (2.3%) | |
Educational attainment | 0.003 | ||
Primary school or less | 99 (67.8%) | 82 (47.4%) | |
Secondary school | 19 (13.0%) | 32 (18.5%) | |
University/college | 28 (19.2%) | 59 (34.1%) | |
Employment status | <0.001 | ||
Employed | 48 (32.9%) | 115 (66.5%) | |
Unemployed | 97 (66.4%) | 57 (32.9%) | |
Income quantile | <0.001 | ||
Low | 54 (37.0%) | 32 (18.5%) | |
Lower middle | 51 (34.9%) | 60 (34.7%) | |
Upper middle | 32 (21.9%) | 59 (34.1%) | |
High | 3 (2.1%) | 18 (10.4%) | |
Unknown | 6 (4.1%) | 4 (2.3%) | |
Smoking | 0 (0.0%) | 52 (30.1%) | <0.001 |
Khat consumption | 0 | 65 (37.6%) | <0.001 |
Diabetes | 20 (13.7%) | 10 (5.8%) | 0.016 |
Cholesterolaemia | 20 (13.7%) | 23 (13.3%) | 0.916 |
Hypertension | 29 (19.9%) | 43 (24.9%) | 0.288 |
Systolic blood pressure | 121.3 ± 17.3 | 123.0 ± 16.3 | 0.192 |
Diastolic blood pressure | 77.8 ± 14.3 | 79.6 ± 13.1 | 0.062 |
Height (in cm) | 165.5 ± 6.8 | 171.2 ± 6.3 | <0.001 |
Weight (in kg) | 68.7 ± 8.2 | 66.9 ± 6.5 | 0.067 |
Body mass index (BMI) | <0.001 | ||
Underweight | 0 | 2 (1.2%) | |
Optimal weight | 70 (47.9%) | 140 (80.9%) | |
Overweight | 68 (46.6%) | 29 (16.8%) | |
Obese | 8 (5.5%) | 2 (1.2%) |
Characteristic | Normal (n = 251) | High-Normal (n = 11) | Grade 1 Hypertension (n = 43) | Grade 2 Hypertension (n = 14) |
---|---|---|---|---|
Sex | ||||
Female | 116 (46.2%) | 7 (63.6%) | 16 (37.2%) | 7 (50.0%) |
Male | 135 (53.8%) | 4 (36.4%) | 27 (62.8%) | 7 (50.0%) |
Age group (years) | ||||
18–24 | 8 (3.2%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
25–34 | 115 (45.8%) | 0 (0.0%) | 1 (2.3%) | 1 (7.1%) |
35–44 | 83 (33.1%) | 4 (36.4%) | 1 (2.3%) | 0 (0.0%) |
45–54 | 29 (11.6%) | 3 (27.3%) | 6 (14.0%) | 1 (7.1%) |
55–64 | 14 (5.6%) | 1 (9.1%) | 15 (34.9%) | 8 (57.1%) |
≥65 | 2 (0.8%) | 3 (27.3%) | 20 (46.5%) | 4 (28.6%) |
Marital status | ||||
Single | 77 (30.7%) | 0 (0.0%) | 1 (2.3%) | 1 (7.1%) |
Married | 155 (61.8%) | 10 (90.9%) | 41 (95.3%) | 13 (92.9%) |
Divorced | 19 (7.6%) | 1 (9.1%) | 1 (2.3%) | 0 (0.0%) |
Educational attainment | ||||
Primary school or less | 118 (47.0%) | 10 (90.9%) | 41 (95.3%) | 12 (85.7%) |
Secondary school | 49 (29.5%) | 0 (0.0%) | 2 (4.7%) | 0 (0.0%) |
University/college | 84 (33.5%) | 1 (9.1%) | 0 (0.0%) | 2 (14.3%) |
Employment status | ||||
Employed | 137 (54.6%) | 5 (45.5%) | 13 (30.2%) | 8 (57.1%) |
Unemployed | 113 (45.0%) | 6 (54.5%) | 30 (69.8%) | 5 (35.7%) |
Smoking | 21 (8.4%) | 4 (36.4%) | 21 (48.8%) | 6 (42.9%) |
Khat consumption | 31 (12.4%) | 4 (36.4%) | 23 (53.5%) | 7 (50.0%) |
Diabetes | 15 (6.0%) | 4 (36.4%) | 11 (25.6%) | 0 (0.0%) |
Cholesterolemia | 7 (2.8%) | 6 (54.5%) | 25 (58.1%) | 5 (35.7%) |
Body mass index | ||||
Underweight | 2 (0.8%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Optimal weight | 176 (70.1%) | 4 (36.4%) | 23 (53.5%) | 7 (50.0%) |
Overweight | 71 (28.3%) | 6 (54.5%) | 15 (34.9%) | 5 (35.7%) |
Obese | 2 (0.8%) | 1 (9.1%) | 5 (11.6%) | 2 (14.3%) |
Unadjusted Model | Adjusted Model | |||||
---|---|---|---|---|---|---|
Characteristic | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Sex (Male) | 1.33 | 0.79–2.29 | 0.289 | 1.07 | 0.27–3.83 | 0.917 |
Age | 1.17 | 1.14–1.22 | <0.001 | 1.13 | 1.09–1.19 | <0.001 |
Educational attainment | 0.418 | |||||
Primary school or less | 1.00 | — | 1.00 | — | ||
Secondary school | 0.15 | 0.04–0.39 | <0.001 | 1.04 | 0.22–4.24 | |
University/college | 0.06 | 0.02–0.18 | <0.001 | 0.40 | 0.07–1.65 | |
Smoking | 10.2 | 5.32–20.00 | <0.001 | 2.51 | 0.53–13.00 | 0.265 |
Khat consumption | 7.52 | 4.14–13.90 | <0.001 | 0.81 | 0.13–4.46 | 0.827 |
Diabetes | 4.76 | 2.19–10.40 | <0.001 | 1.08 | 0.36–3.17 | 0.861 |
Raised cholesterol | 28.3 | 12.70–70.00 | <0.001 | 3.70 | 1.25–11.70 | 0.018 |
Obesity | 15.3 | 3.73–103.00 | <0.001 | 17.6 | 1.68–217.00 | 0.016 |
Females | Males | |||||
---|---|---|---|---|---|---|
Characteristic | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age | 1.16 | 1.09–1.25 | <0.001 | 1.12 | 1.05–1.21 | <0.001 |
Educational attainment | 0.775 | 0.263 | ||||
Primary school or less | 1.00 | — | 1.00 | — | ||
Secondary school | 2.80 | 0.20–25.7 | 0.70 | 0.09–3.99 | ||
University/college | 1.40 | 0.07–11.8 | 0.19 | 0.02–1.17 | ||
Smoking | 2.07 | 0.39–11.90 | 0.473 | |||
Khat consumption | 0.71 | 0.08–4.42 | 0.742 | |||
Diabetes | 0.72 | 0.13–3.21 | 0.691 | 1.70 | 0.34–10.10 | 0.467 |
Raised cholesterol | 3.17 | 0.63–16.2 | 0.210 | 6.64 | 1.21–58.8 | 0.028 |
Obesity | 44.2 | 2.37–1784 | 0.009 | 1.17 | 0.00–367.0 | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nooh, F.; Ali, M.I.; Chernet, A.; Probst-Hensch, N.; Utzinger, J. Prevalence and Risk Factors of Hypertension in Hargeisa, Somaliland: A Hospital-Based Cross-Sectional Study. Diseases 2023, 11, 62. https://doi.org/10.3390/diseases11020062
Nooh F, Ali MI, Chernet A, Probst-Hensch N, Utzinger J. Prevalence and Risk Factors of Hypertension in Hargeisa, Somaliland: A Hospital-Based Cross-Sectional Study. Diseases. 2023; 11(2):62. https://doi.org/10.3390/diseases11020062
Chicago/Turabian StyleNooh, Faisal, Mohamed I. Ali, Afona Chernet, Nicole Probst-Hensch, and Jürg Utzinger. 2023. "Prevalence and Risk Factors of Hypertension in Hargeisa, Somaliland: A Hospital-Based Cross-Sectional Study" Diseases 11, no. 2: 62. https://doi.org/10.3390/diseases11020062
APA StyleNooh, F., Ali, M. I., Chernet, A., Probst-Hensch, N., & Utzinger, J. (2023). Prevalence and Risk Factors of Hypertension in Hargeisa, Somaliland: A Hospital-Based Cross-Sectional Study. Diseases, 11(2), 62. https://doi.org/10.3390/diseases11020062