Association of Alleles of Human Leukocyte Antigen Class II Genes and Severity of COVID-19 in Patients of the ‘Red Zone’ of the Endocrinology Research Center, Moscow, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Clinical Data
2.2. HLA Typing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faner, R.; Nuñez, B.; Sauleda, J.; Garcia-Aymerich, J.; Pons, J.; Crespí, C.; Milà, J.; González, J.R.; Maria Antó, J.; Agusti, A.; et al. HLA distribution in COPD patients. COPD 2013, 10, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Motala, A.A.; Busson, M.; Al-Harbi, E.M.; Khuzam, M.A.; Al-Omari, E.M.; Arekat, M.R.; Almawi, W.Y. Susceptible and protective human leukocyte antigen class II alleles and haplotypes in bahraini type 2 (non-insulin-dependent) diabetes mellitus patients. Clin. Diagn. Lab. Immunol. 2005, 12, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klebanov, N. Genetic Predisposition to Infectious Disease. Cureus 2018, 10, e3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliorini, F.; Torsiello, E.; Spiezia, F.; Oliva, F.; Tingart, M.; Maffulli, N. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: A comprehensive review of the literature. Eur. J. Med. Res. 2021, 26, 84. [Google Scholar] [CrossRef]
- Feng, C.; Shi, J.; Fan, Q.; Wang, Y.; Huang, H.; Chen, F.; Tang, G.; Li, Y.; Li, P.; Li, J.; et al. Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nat. Commun. 2021, 12, 4984. [Google Scholar] [CrossRef] [PubMed]
- Schietzel, S.; Anderegg, M.; Limacher, A.; Born, A.; Horn, M.P.; Maurer, B.; Hirzel, C.; Sidler, D.; Moor, M.B. Humoral and cellular immune responses on SARS-CoV-2 vaccines in patients with anti-CD20 therapies: A systematic review and meta-analysis of 1342 patients. RMD Open 2022, 8, e002036. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Mangalmurti, N.; Hunter, C.A. Cytokine storms: Understanding COVID-19. Immunity 2020, 53, 19–25. [Google Scholar] [CrossRef]
- Shcherbak, S.G.; Anisenkova, A.Y.; Mosenko, S.V.; Glotov, O.S.; Chernov, A.N.; Apalko, S.V.; Urazov, S.P.; Garbuzov, E.Y.; Khobotnikov, D.N.; Klitsenko, O.A.; et al. Basic Predictive Risk Factors for Cytokine Storms in COVID-19 Patients. Front. Immunol. 2021, 12, 745515. [Google Scholar] [CrossRef]
- Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tsioufis, K.; Tousoulis, D. Genetic Predisposition and Inflammatory Inhibitors in COVID-19: Where Do We Stand? Biomedicines 2022, 10, 242. [Google Scholar] [CrossRef]
- Kolin, D.A.; Kulm, S.; Christos, P.J.; Elemento, O. Clinical, regional, and genetic characteristics of Covid-19 patients from UK Biobank. PLoS ONE 2020, 15, e0241264. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bautista, J.F.; Rodriguez-Nicolas, A.; Rosales-Castillo, A.; López-Ruz, M.Á.; Martín-Casares, A.M.; Fernández-Rubiales, A.; Anderson, P.; Garrido, F.; Ruiz-Cabello, F.; López-Nevot, M.Á. Study of HLA-A, -B, -C, -DRB1 and -DQB1 polymorphisms in COVID-19 patients. J. Microbiol. Immunol. Infect. 2022, 55, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Lani, R.; Senin, N.A.; AbuBakar, S.; Hassandarvish, P. Knowledge of SARS-CoV-2 Epitopes and Population HLA Types Is Important in the Design of COVID-19 Vaccines. Vaccines 2022, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; David, J.K.; Maden, S.K.; Wood, M.A.; Weeder, B.R.; Nellore, A.; Thompson, R.F. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol. 2020, 16, e00510-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shkurnikov, M.; Nersisyan, S.; Jankevic, T.; Galatenko, A.; Gordeev, I.; Vechorko, V.; Tonevitsky, A. Association of HLA Class I Genotypes With Severity of Coronavirus Disease-19. Front. Immunol. 2021, 12, 641900. [Google Scholar] [CrossRef] [PubMed]
- Basir, H.R.G.; Majzoobi, M.M.; Ebrahimi, S.; Noroozbeygi, M.; Hashemi, S.H.; Keramat, F.; Mamani, M.; Eini, P.; Alizadeh, S.; Solgi, G.; et al. Susceptibility and Severity of COVID-19 Are Both Associated with Lower Overall Viral-Peptide Binding Repertoire of HLA Class I Molecules, Especially in Younger People. Front. Immunol. 2022, 13, 891816. [Google Scholar] [CrossRef]
- Tian, J.; Yuan, X.; Xiao, J.; Zhong, Q.; Yang, C.; Liu, B.; Cai, Y.; Lu, Z.; Wang, J.; Wang, Y.; et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: A multicentre, retrospective, cohort study. Lancet Oncol. 2020, 21, 893–903. [Google Scholar] [CrossRef]
- Monari, C.; Sagnelli, C.; Maggi, P.; Sangiovanni, V.; Numis, F.G.; Gentile, I.; Masullo, A.; Rescigno, C.; Calabria, G.; Megna, A.S.; et al. More severe COVID-19 in patients with active cancer: Results of a multicenter cohort study. Front. Oncol. 2021, 11, 662746. [Google Scholar] [CrossRef]
- Russell, B.; Moss, C.L.; Shah, V.; Ko, T.K.; Palmer, K.; Sylva, R.; George, G.; Monroy-Iglesias, M.J.; Patten, P.; Ceesay, M.M.; et al. Risk of COVID-19 death in cancer patients: An analysis from Guy’s Cancer Centre and King’s College Hospital in London. Br. J. Cancer 2021, 125, 939–947. [Google Scholar] [CrossRef]
- Klein, S.L.; Dhakal, S.; Ursin, R.L.; Deshpande, S.; Sandberg, K.; Mauvais-Jarvis, F. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 2020, 16, 1008570. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, F.; Wang, T.; Luo, F.; Liu, X.; Wu, Q.; He, Q.; Wang, Z.; Liu, Y.; Liu, L.; et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care 2020, 43, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; D’Orazio, N. Review: Obesity and COVID-19: A Detrimental Intersection. Front. Endocrinol. 2021, 12, 652639. [Google Scholar] [CrossRef] [PubMed]
- Asai, Y.; Nomoto, H.; Hayakawa, K.; Matsunaga, N.; Tsuzuki, S.; Terada, M.; Ohtsu, H.; Kitajima, K.; Suzuki, K.; Suzuki, T.; et al. Comorbidities as Risk Factors for Severe Disease in Hospitalized Elderly COVID-19 Patients by Different Age-Groups in Japan. Gerontology 2022, 68, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of the Russian Federation. Prevention, Diagnosis and Treatment of New Coronavirus Infection (COVID-19); Temporary Methodological Recommendations; Version 5 (08.04.2020); Ministry of Health of the Russian Federation: Moscow, Russia, 2020. [Google Scholar]
- Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z.A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K.; et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020, 295, 200463. [Google Scholar] [CrossRef] [Green Version]
- National Center for Health Statistics. Special Topics. Adult Tobacco Use Information. Available online: https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm#:~:text=Current%20smoker%3A%20An%20adult%20who,and%20who%20currently%20smokes%20cigarettes.&text=Every%20day%20smoker%3A%20An%20adult,called%20a%20%E2%80%9Cregular%20smoker%E2%80%9D (accessed on 10 January 2022).
- Rosner, B. Fundamentals of Biostatistics, 6th ed.; Thomson-Brooks/Cole: Belmont, CA, USA, 2006. [Google Scholar]
- 2-Way Contingency Table Analysis. Available online: https://statpages.info/ctab2x2.html (accessed on 1 February 2022).
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, B.; Liang, S.; Yang, J.W.; Lu, H.W.; Chai, Y.H.; Wang, L.; Zhang, L.; Li, Q.H.; Zhao, L.; et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J. 2020, 55, 2001112. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Chen, J.; Qi, T.; Liu, L.; Ling, Y.; Qian, Z.; Li, T.; Li, F.; Xu, Q.; Zhang, Y.; Xu, S.; et al. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 2020, 80, e1–e6. [Google Scholar] [CrossRef]
- Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Chai, S.J.; Kirley, P.D.; Alden, N.B.; et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 States, March 1-30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 458–464. [Google Scholar] [CrossRef]
- Bwire, G.M. Coronavirus: Why Men are More Vulnerable to Covid-19 Than Women? SN Compr. Clin. Med. 2020, 2, 874–876. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Misra, A. Impact of COVID-19 and comorbidities on health and economics: Focus on developing countries and India. Diabetes Metab. Syndr. 2020, 14, 1625–1630. [Google Scholar] [CrossRef] [PubMed]
- Rychter, A.M.; Zawada, A.; Ratajczak, A.E.; Dobrowolska, A.; Krela-Kaźmierczak, I. Should patients with obesity be more afraid of COVID-19? Obes. Rev. 2020, 21, e13083. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Sy, K.T.L.; Haw, N.J.L.; Uy, J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect. Dis. 2020, 52, 902–907. [Google Scholar] [CrossRef]
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020, 21, 335–337. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef]
- Murtas, R.; Andreano, A.; Gervasi, F.; Guido, D.; Consolazio, D.; Tunesi, S.; Andreoni, L.; Greco, M.T.; Gattoni, M.E.; Sandrini, M.; et al. Association between autoimmune diseases and COVID-19 as assessed in both a test-negative case-control and population case-control design. Auto Immun. Highlights 2020, 11, 15. [Google Scholar] [CrossRef]
- HLA Nomenclature. Available online: https://www.ufrgs.br/imunovet/molecular_immunology/hla.html (accessed on 15 February 2022).
- Ou, G.; Xu, H.; Yu, H.; Liu, X.; Yang, L.; Ji, X.; Wang, J.; Liu, Z. The roles of HLA-DQB1 gene polymorphisms in hepatitis B virus infection. J. Transl. Med. 2018, 16, 362. [Google Scholar] [CrossRef] [Green Version]
- Kasjko, D.; Jasinskis, V.; Eglite, J.; Golushko, J.; Sture, G.; Kalimulin, A.; Sochnevs, A.; Viksna, L. Research of HLA II Class DRB1, DQA1, DQB1 Genetic Markers in Patients with HIV Infection and AIDS. J. Adv. Med. 2014, 4, 4482–4500. [Google Scholar] [CrossRef]
- Arango, M.T.; Perricone, C.; Kivity, S.; Cipriano, E.; Ceccarelli, F.; Valesini, G.; Shoenfeld, Y. HLA-DRB1 the notorious gene in the mosaic of autoimmunity. Immunol. Res. 2017, 65, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Krini, M.; Chouliaras, G.; Kanariou, M.; Varela, I.; Spanou, K.; Panayiotou, J.; Roma, E.; Constantinidou, N. HLA class II high-resolution genotyping in Greek children with celiac disease and impact on disease susceptibility. Pediatr. Res. 2012, 72, 625–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ombrello, M.J.; Remmers, E.F.; Tachmazidou, I.; Grom, A.; Foell, D.; Haas, J.P.; Martini, A.; Gattorno, M.; Özen, S.; Prahalad, S.; et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc. Natl. Acad. Sci. USA 2015, 112, 15970–15975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, A.; Boulware, D.; Yu, L.; Babu, S.; Steck, A.K.; Becker, D.; Rodriguez, H.; DiMeglio, L.; Evans-Molina, C.; Harrison, L.C.; et al. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives from Type 1 Diabetes Throughout the Stages of Disease Progression. Diabetes 2016, 65, 1109–1119. [Google Scholar] [CrossRef]
Clinical Feature | All Patients | Moderate COVID-19 (CT-1 or CT-2) | Severe COVID-19 (CT-3 or CT-4) | p (p0 = 0.003 after Bonferroni Correction) |
---|---|---|---|---|
Number of Patients | n = 100 | n = 41 | n = 59 | |
Duration of hospital stay, days | 13 (6, 26) (median value (min, max) are presented for quantitative variables) | 11 (6, 19) | 14 (8, 26) | 0.00002 (U) |
Fatal outcome | 3 (3%) | 0 | 3 (5.1%) | 0.267 (FET) |
Age, years | 58.5 (34, 96) | 54 (36, 89) | 61 (34, 96) | 0.062 (U) |
Sex, males | 52 (52%) | 18 (43.9%) | 34 (57.6%) | 0.223 (FET) |
Age, years | ||||
Females (n = 48) | 67 (40, 96) | 58 (40, 89) | 71 (43, 96) | 0.021 (U) |
Males (n = 52) | 51 (34, 88) | 48 (36, 79) | 57.5 (34, 88) | 0.233 (U) |
BMI, kg/m2 | 28.4 (16.9, 64) | 26.4 (16.9, 42,2) | 30.2 (20.8, 64) | 0.017 (U) |
Weight, kg | 84.5 (45, 185) | 77 (45, 180) | 87 (58, 185) | 0.007 (U) |
Smoking | 68 | 33 | 35 | - |
Smoking during hospitalization | 5 (7%) | 3 (9.1%) | 2 (5.7%) | 0.668 (FET) |
Of them males | 4 (80%) | 2 (67%) | 2 (100%) | 1.000 (FET) |
Invasive mechanical ventilation, number of patients, % | 3 (3%) | 0 | 3 (5.1%) | 0.267 (FET) |
Autoimmune diseases | 16 (16%) | 7 (17.1%) | 9 (15.3%) | 1.000 (FET) |
Endocrine | 8 (8%) | 4 (9.8%) | 4 (6.8%) | 0.713 (FET) |
Autoimmune thyroiditis | 8 (8%) | 4 (9.8%) | 4 (6.8%) | 0.713 (FET) |
Nonendocrine | 8 (8%) | 3 (7.3%) | 6 (10.2%) | 0.734 (FET) |
Bronchial asthma | 5 (5%) | 1 (2.4%) | 4 (6.8%) | 0.646 (FET) |
Psoriasis/psoriatic arthritis | 2 (2%) | 1 (2.4%) | 1 (1.7%) | 1.000 (FET) |
Rheumatoid arthritis | 1 (1%) | 0 | 1 (1.7%) | 1.000 (FET) |
Guillain–Barre disease | 1 (1%) | 0 | 1 (1.7%) | 1.000 (FET) |
Bechterew’s disease | 1 (1%) | 1 (2.4%) | 0 | 0.410 (FET) |
Non-autoimmune endocrine diseases | 59 (59%) | 21 (51.2%) | 38 (64.4%) | 0.218 (FET) |
Obesity | 45 (45%) | 13 (31.7%) | 32 (54.2%) | 0.040 (FET) |
Thyroid disease | 15 (15%) | 6 (14.6%) | 9 (15.3%) | 1.000 (FET) |
Type 2 diabetes mellitus (according to the medical history (carbohydrate metabolism disorders first detected during hospitalization were not considered)) | 12 (12%) | 5 (12.1%) | 7 (11.9%) | 1.000 (FET) |
Diseases of the parathyroid glands | 12 (12%) | 5 (12.1%) | 7 (11.9%) | 1.000 (FET) |
Others | 1 (1%) | 1 (2.4%) | 0 | 0.410 (FET) |
Cardiovascular diseases | 64 (64%) | 23 (56.1%) | 41 (69.5%) | 0.206 (FET) |
Arterial hypertension | 55 (55%) | 20 (48.8%) | 35 (59.3%) | 0.315 (FET) |
Coronary heart disease | 21 (21%) | 8 (19.5%) | 13 (22.0%) | 0.808 (FET) |
Atherosclerosis of the aorta, lower limb arteries | 12 (12%) | 4 (9.8%) | 8 (13.6%) | 0.757 (FET) |
Chronic heart failure | 4 (4%) | 2 (5%) | 2 (3.4%) | 1000 (FET) |
History of acute violation of cerebral circulation | 4 (4%) | 3 (7.3%) | 1 (1.7%) | 0.302 (FET) |
Heart rhythm disorders | 3 (3%) | 0 | 3 (5.1%) | 0.267 (FET) |
Others | 1 (1%) | 1 (2.4%) | 0 | 0.410 (FET) |
Oncological disorders | 5 (5%) | 1 (2.4%) | 3 (5.1%) | 0.642 (FET) |
Chronic leukemia | 2 (2%) | 0 | 1 (1.7%) | 1.000 (FET) |
Breast cancer | 2 (2%) | 1 (2.4%) | 1 (1.7%) | 1.000 (FET) |
Vulva cancer | 1 (1%) | 0 | 1 (1.7%) | 1.000 (FET) |
Lung diseases | 26 (26%) | 11 (17%) | 16 (27.1%) | 1.000 (FET) |
Pulmonary hypertension | 8 (8%) | 1 (2.4%) | 7 (11.9%) | 0.136 (FET) |
Emphysema | 7 (7%) | 4 (10%) | 3 (5.1%) | 0.441 (FET) |
Previous tuberculosis | 4 (4%) | 4 (10%) | 3 (5.1%) | 0.441 (FET) |
Chronic bronchitis | 5 (5%) | 3 (7.3%) | 2 (3.4%) | 0.398 (FET) |
Bronchial asthma | 5 (5%) | 1 (2.4%) | 4 (6.8%) | 0.646 (FET) |
Decreased lung volume due to injury/surgery | 2 (2%) | 0 | 2 (3.4%) | 0.511 (FET) |
Others | 2 (2%) | 1 (2.4%) | 1 (1.7%) | 1.000 (FET) |
Alleles | All Patients n = 100, 200 Alleles | Moderate COVID-19 (CT-1 or CT-2) n = 41, 82 Alleles | Severe COVID-19 (CT-3 or CT-4) n = 59, 118 Alleles | p *, χ2 | |
---|---|---|---|---|---|
n (%) | 95% CI for Proportion | n (%) | n (%) | ||
DRB1*01 | 28 (14%) | [9.5%; 19.6%] | 15 (18.3%) | 13 (11.0%) | 0.145 |
DRB1*03 (DRB1*17) | 20 (10%) | [6.2%; 15.0%] | 10 (12.2%) | 10 (8.5%) | 0.388 |
DRB1*04 | 15 (7.5%) | [4.3%; 12.1%] | 6 (7.3%) | 9 (7.6%) | 0.932 |
DRB1*07 | 24 (12%) | [7.8%; 17.3%] | 9 (10.9%) | 15 (12.7%) | 0.689 |
DRB1*08 | 6 (3%) | [1.1%; 6.4%] | 2 (2.4%) | 4 (3.4%) | 1.000 (FET) |
DRB1*09 | 3 (1.5%) | [0.3%; 4.3%] | 1 (1.2%) | 2 (1.7%) | 1.000 (FET) |
DRB1*10 | 5 (2.5%) | [0.8%; 5.7%] | 1 (1.2%) | 4 (3.4%) | 0.646 (FET) |
DRB1*11 | 25 (12.5%) | [8.3%; 17.9%] | 12 (14.6%) | 13 (11%) | 0.447 |
DRB1*12 | 8 (4%) | [1.7%; 7.7%] | 2 (2.4%) | 6 (5%) | 0.466 (FET) |
DRB1*13 | 21 (10.5%) | [6.6%; 15.6%] | 9 (10.9%) | 12 (10.2%) | 0.846 |
DRB1*14 | 3 (1.5%) | [0.3%; 4.3%] | 0 | 3 (2.5%) | 0.270 (FET) |
DRB1*15 | 33 (16.5%) | [11.6%; 22.4%] | 10 (12.2%) | 23 (19.5%) | 0.172 |
DRB1*16 | 9 (4.5%) | [2.1%; 8.4%] | 5 (6.1%) | 4 (3.4%) | 0.481 (FET) |
DQA1*01:01 | 35 (17.5%) | [12.5%; 23.5%] | 16 (19.5%) | 19 (16.1%) | 0.532 |
DQA1*01:02 | 39 (19.5%) | [14.3%; 25.7%] | 12 (14.6%) | 27 (22.9%) | 0.148 |
DQA1*01:03 | 17 (8.5%) | [5.0%; 13.3%] | 10 (12.2%) | 7 (5.9%) | 0.101 |
DQA1*02:01 | 24 (12%) | [7.8%; 17.3%] | 9 (10.9%) | 15 (12.7%) | 0.710 |
DQA1*03:01 | 20 (10%) | [6.2%; 15.0%] | 7 (8.5%) | 13 (11.0%) | 0.565 |
DQA1*04:01 | 4 (2%) | [0.6%; 5.0%] | 2 (2.4%) | 2 (1.7%) | 1.000 (FET) |
DQA1*05:01 | 60 (30%) | [23.7%; 36.9%] | 26 (31.7%) | 34 (28.8%) | 0.660 |
DQA1*06:01 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 1.000 (FET) |
DQB1*02 | 38 (19%) | [13.8%; 25.1%] | 15 (18.3%) | 23 (19.5%) | 0.832 |
DQB1*03:01 | 42 (21%) | [15.6%; 27.3%] | 15 (18.3%) | 27 (22.9%) | 0.433 |
DQB1*03:02 | 13 (6.5%) | [3.5%; 10.9%] | 6 (7.3%) | 7 (5.9%) | 0.685 |
DQB1*03:03 | 9 (4.5%) | [2.1%; 8.4%] | 5 (6.1%) | 4 (3.4%) | 0.481 (FET) |
DQB1*03:04 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 1.000 (FET) |
DQB1*03:05 | 1 (0.5%) | [0.01%; 2.8%] | 1 (1.2%) | 0 | 0.410 (FET) |
DQB1*04:01/02 | 4 (2%) | [0.6%; 5.0%] | 2 (2.4%) | 2 (1.7%) | 1.000 (FET) |
DQB1*05:01 | 33 (16.5%) | [11.6%; 22.4%] | 16 (19.5%) | 17 (14.4%) | 0.339 |
DQB1*05:02/04 | 10 (5%) | [2.4%; 9.0%] | 5 (6.1%) | 5 (4%) | 0.736 (FET) |
DQB1*05:03 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 1.000 (FET) |
DQB1*06:01 | 5 (2.5%) | [0.8%; 5.7%] | 3 (3.7%) | 2 (1.7%) | 0.398 (FET) |
DQB1*06:02-8 | 43 (21.5%) | [16.0%; 27.9%] | 14 (17.1%) | 29 (24.6%) | 0.204 |
Frequency of Alleles in Patients Cohort | Number of Alleles in Patients Cohort | Frequency of Alleles in Control Group | Number of Alleles in Control Group | p *, Yates Corrected χ2 | |
---|---|---|---|---|---|
Number of Patients | n = 100 | n = 327 | - | ||
Number of Alleles | n = 200 | n = 654 | - | ||
DRB1*01 | 0.140 | 28 | 0.095 | 62 | 0.091 |
DRB1*03(DRB1*17) | 0.100 | 20 | 0.075 | 49 | 0.322 |
DRB1*04 | 0.075 | 15 | 0.115 | 75 | 0.142 |
DRB1*07 | 0.120 | 24 | 0.143 | 94 | 0.463 |
DRB1*08 | 0.030 | 6 | 0.018 | 12 | 0.470 |
DRB1*09 | 0.015 | 3 | 0.007 | 5 | 0.599 |
DRB1*10 | 0.025 | 5 | 0.013 | 8 | 0.337 |
DRB1*11 | 0.125 | 25 | 0.142 | 93 | 0.617 |
DRB1*12 | 0.040 | 8 | 0.028 | 18 | 0.507 |
DRB1*13 | 0.105 | 21 | 0.142 | 93 | 0.217 |
DRB1*14 | 0.015 | 3 | 0.023 | 15 | 0.687 |
DRB1*15 | 0.165 | 33 | 0.132 | 86 | 0.280 |
DRB1*16 | 0.045 | 9 | 0.067 | 44 | 0.329 |
DQA1*01:01 | 0.175 | 35 | 0.130 | 85 | 0.137 |
DQA1*01:02 | 0.195 | 39 | 0.190 | 124 | 0.946 |
DQA1*01:03 | 0.085 | 17 | 0.107 | 70 | 0.442 |
DQA1*02:01 | 0.120 | 24 | 0.143 | 94 | 0.463 |
DQA1*03:01 | 0.100 | 20 | 0.122 | 80 | 0.463 |
DQA1*04:01 | 0.020 | 4 | 0.015 | 10 | 0.888 |
DQA1*05:01 | 0.300 | 60 | 0.290 | 189 | 0.833 |
DQA1*06:01 | 0.005 | 1 | 0.003 | 2 | 0.782 |
DQB1*02:01 | 0.190 | 38 | 0.195 | 128 | 0.939 |
DQB1*03:01 | 0.210 | 42 | 0.240 | 157 | 0.433 |
DQB1*03:02 | 0.065 | 13 | 0.083 | 54 | 0.510 |
DQB1*03:03 | 0.045 | 9 | 0.033 | 22 | 0.592 |
DQB1*03:04 | 0.005 | 1 | 0.002 | 1 | 0.958 |
DQB1*03:05 | 0.005 | 1 | 0.017 | 11 | 0.368 |
DQB1*04:01/02 | 0.020 | 4 | 0.022 | 14 | 0.873 |
DQB1*05:01 | 0.165 | 33 | 0.108 | 71 | 0.044 |
DQB1*05:02/04 | 0.050 | 10 | 0.032 | 21 | 0.333 |
DQB1*05:03 | 0.005 | 1 | 0.068 | 44 | 0.0011 |
DQB1*06:01 | 0.025 | 5 | 0.200 | 131 | <0.00005 |
DQB1*06:02-8 | 0.215 | 43 | 0.000 | 0 | <0.00005 |
DQB1*05:03 | DQB1*06:01 | DQB1*06:02-8 | |
---|---|---|---|
Number of Alleles | 1 | 5 | 43 |
Number of Patients | 1 | 5 | 35 |
Haplotypes | DRB1*14-DQA1*01:01-DQB1*05:03–1 (100%) | DRB1*15-DQA1*01:03-DQB1*06:01–5 (100%) | DRB1*15-DQA1*01:02-DQB1*06:02-8–27 (63%) DRB1*13-DQA1*01:03-DQB1*06:02-8–12 (28%) DRB1*13-DQA1*01:02-DQB1*06:02-8–3 (7%) DRB1*15-DQA1*03:01-DQB1*06:02-8–1 (2%) |
Duration of hospital stay, days | 12 | 13 (11, 19) | 13 (7, 21) |
Fatal outcome | 0 | 0 | 1 (2.9%) |
Age, years | 34 | 47 (41, 65) | 58 (34, 96) |
Sex, male | 1 (100%) | 2 (40%) | 21 (60%) |
Age | |||
Females | - | 43 (41, 47) | 69 (42, 96) |
Males | 34 | 48; 65 | 51 (34, 83) |
BMI, kg/m2 | 27.7 | 26.5 (22, 33,1) | 27.4 (16.9, 41.6) |
Weight, kg | 82 | 80 (65, 99) | 86.5 (45, 120) |
Smoking Smoking during hospitalization Of them males | 30 2 1 | 5 0 0 | 25 2 (8%) 1 (50%) |
CT-1 | 0 | 0 | 2 (5.7%) |
CT-2 | 0 | 3 (60%) | 10 (28.6%) |
CT-3 | 0 | 2 (40%) | 17 (48.6%) |
CT-4 | 1 (100%) | 0 | 6 (17.1%) |
Invasive mechanical ventilation | 0 | 0 | 1 (2.9%) |
Autoimmune diseases | 0 | 1 (20%) | 5 (14%) |
Endocrine diseases | 0 | 1 (20%) | 3 (9%) |
Autoimmune thyroiditis | 0 | 1 (20%) | 3 (9%) |
Nonendocrine | 0 | 0 | 3 (9%) |
Bronchial asthma | 0 | 0 | 3 (9%) |
Psoriasis/ psoriatic arthritis | 0 | 0 | 0 |
Rheumatoid arthritis | 0 | 0 | 1 (2.9%) |
Guillain–Barre disease | 0 | 0 | 0 |
Bechterew’s disease | 0 | 0 | 0 |
Non-autoimmune endocrine diseases | 0 | 2 (40%) | 18 (51%) |
Obesity | 0 | 1 (20%) | 13 (37%) |
Thyroid disease | 0 | 1 (20%) | 6 (17%) |
Type 2 diabetes mellitus | 0 | 0 | 4 (11%) |
Diseases of the parathyroid glands | 0 | 0 | 2 (5.7%) |
Others | 0 | 0 | 0 |
Cardiovascular diseases | 0 | 0 | 21 (60%) |
Arterial hypertension | 0 | 0 | 17 (48.6%) |
Coronary heart disease | 0 | 0 | 6 (17.1%) |
Atherosclerosis of the aorta, lower limb arteries | 0 | 0 | 5 (14%) |
Chronic heart failure | 0 | 0 | 1 (2.9%) |
History of acute violation of cerebral circulation | 0 | 0 | 0 |
Heart rhythm disorders | 0 | 0 | 1 (2.9%) |
Others | 0 | 0 | 0 |
Oncological diseases | 0 | 0 | 4 (11%) |
Chronic leukemia | 0 | 0 | 2 (5.7%) |
Breast cancer | 0 | 0 | 1 (2.9%) |
Vulva cancer | 0 | 0 | 1 (2.9%) |
Lung diseases | 0 | 1 (20%) | 9 (26%) |
Pulmonary hypertension | 0 | 1 (20%) | 1 (2.9%) |
Emphysema | 0 | 0 | 2 (5.7%) |
Previous tuberculosis | 0 | 0 | 2 (5.7%) |
Chronic bronchitis | 0 | 0 | 2 (5.7%) |
Bronchial asthma | 0 | 0 | 3 (9%) |
Decreased lung volume due to injury/surgery | 0 | 0 | 0 |
History of pneumonia | 0 | 0 | 1 (2.9%) |
Haplotype | All Patients n = 100, 200 Alleles | Moderate COVID-19 (CT-1 or CT-2) n = 41, 82 Alleles | Severe COVID-19 (CT-3 or CT-4) n = 59, 118 Alleles | p *, Yates χ2 | |
---|---|---|---|---|---|
n (%) | 95% CI for Proportion | n (%) | n (%) | ||
DRB1*01-DQA1*01:01-DQB1*05:01 | 28 (14%) | [9.5%; 19.6%] | 15 (18.3%) | 13 (11.0%) | 0.211 |
DRB1*03(DRB1*17)-DQA1*05:01-DQB1*02 | 20 (10%) | [6.2%; 15.0%] | 10 (12.2%) | 10 (8.5%) | 0.533 |
DRB1*04-DQA1*03:01-DQB1*03:01 | 2 (1%) | [0.1%; 3.6%] | 0 | 2 (1.7%) | 0.644 |
DRB1*04-DQA1*03:01-DQB1*03:02 | 12 (6%) | [3.1%; 10.3%] | 6 (7.3%) | 6 (5.1%) | 0.726 |
DRB1*04-DQA1*03:01-DQB1*03:04 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 0.854 |
DRB1*07-DQA1*02:01-DQB1*02 | 18 (9%) | [5.42%; 13.82%] | 6 (7.3%) | 12 | 0.658 |
DRB1*07-DQA1*02:01-DQB1*03:03 | 6 (3%) | [1.1%; 6.4%] | 4 (4.9%) | 2 (1.7%) | 0.381 |
DRB1*08-DQA1*03:01-DQB1*03:02 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 0.854 |
DRB1*08-DQA1*04:01-DQB1*04:01/02 | 4 (2%) | [0.6%; 5.0%] | 2 (2.4%) | 2 (1.7%) | 0.886 |
DRB1*08-DQA1*06:01-DQB1*03:01 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 0.854 |
DRB1*09-DQA1*03:01-DQB1*03:03 | 3 (1.5%) | [0.3%; 4.3%] | 1 (1.2%) | 2 (1.7%) | 0.750 |
DRB1*10-DQA1*01:01-DQB1*05:01 | 5 (2.5%) | [0.8%; 5.7%] | 1 (1.2%) | 4 (3.4%) | 0.613 |
DRB1*11-DQA1*05:01-DQB1*03:01 | 25 (12.5%) | [8.3%; 17.9%] | 12 (14.6%) | 13 (11.0%) | 0.587 |
DRB1*11-DQA1*05:01-DQB1*03:05 | 1 (0.5%) | [0.01%; 2.8%] | 1 (1.2%) | 0 | 0.854 |
DRB1*12-DQA1*05:01-DQB1*03:01 | 8 (4%) | [1.7%; 7.7%] | 2 (2.4%) | 6 (5.1%) | 0.567 |
DRB1*13-DQA1*01:02-DQB1*06:02-8 | 3 (1.5%) | [0.3%; 4.3%] | 0 | 3 (2.5%) | 0.388 |
DRB1*13-DQA1*01:03-DQB1*06:02-8 | 12 (6%) | [3.1%; 10.3%] | 7 (8.5%) | 5 (4.2%) | 0.339 |
DRB1*13-DQA1*05:01-DQB1*03:01 | 6 (3%) | [1.1%; 6.4%] | 2 (2.4%) | 4 (3.4%) | 0.973 |
DRB1*14-DQA1*01:01-DQB1*05:03 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 0.854 |
DRB1*14-DQA1*01:01-DQB1*05:02/04 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 0.854 |
DRB1*14-DQA1*05:01-DQB1*03:01 | 1 (0.5%) | [0.01%; 2.8%] | 0 | 1 (0.8%) | 0.854 |
DRB1*15-DQA1*01:02-DQB1*06:02-8 | 27 (13.5%) | [9.1%; 19.0%] | 7 (8.5%) | 20 (16.9%) | 0.133 |
DRB1*15-DQA1*01:03-DQB1*06:01 | 5 (2.5%) | [0.8%; 5.7%] | 3 (3.7%) | 2 (1.7%) | 0.679 |
DRB1*16-DQA1*01:02-DQB1*05:02/04 | 9 (4.5%) | [2.1%; 8.4%] | 5 (6.1%) | 4 (3.4%) | 0.574 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troshina, E.; Yukina, M.; Nuralieva, N.; Vasilyev, E.; Rebrova, O.; Akhmatova, R.; Ikonnikova, A.; Savvateeva, E.; Gryadunov, D.; Melnichenko, G.; et al. Association of Alleles of Human Leukocyte Antigen Class II Genes and Severity of COVID-19 in Patients of the ‘Red Zone’ of the Endocrinology Research Center, Moscow, Russia. Diseases 2022, 10, 99. https://doi.org/10.3390/diseases10040099
Troshina E, Yukina M, Nuralieva N, Vasilyev E, Rebrova O, Akhmatova R, Ikonnikova A, Savvateeva E, Gryadunov D, Melnichenko G, et al. Association of Alleles of Human Leukocyte Antigen Class II Genes and Severity of COVID-19 in Patients of the ‘Red Zone’ of the Endocrinology Research Center, Moscow, Russia. Diseases. 2022; 10(4):99. https://doi.org/10.3390/diseases10040099
Chicago/Turabian StyleTroshina, Ekaterina, Marina Yukina, Nurana Nuralieva, Evgeny Vasilyev, Olga Rebrova, Ravida Akhmatova, Anna Ikonnikova, Elena Savvateeva, Dmitry Gryadunov, Galina Melnichenko, and et al. 2022. "Association of Alleles of Human Leukocyte Antigen Class II Genes and Severity of COVID-19 in Patients of the ‘Red Zone’ of the Endocrinology Research Center, Moscow, Russia" Diseases 10, no. 4: 99. https://doi.org/10.3390/diseases10040099
APA StyleTroshina, E., Yukina, M., Nuralieva, N., Vasilyev, E., Rebrova, O., Akhmatova, R., Ikonnikova, A., Savvateeva, E., Gryadunov, D., Melnichenko, G., & Mokrysheva, N. (2022). Association of Alleles of Human Leukocyte Antigen Class II Genes and Severity of COVID-19 in Patients of the ‘Red Zone’ of the Endocrinology Research Center, Moscow, Russia. Diseases, 10(4), 99. https://doi.org/10.3390/diseases10040099