Nutritional Support in Acute Liver Failure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Acute Liver Failure: Definition and Clinical “Scenarios”
3.2. Nutritional Support in Acute Liver Failure
3.3. Gut Microbiota and Acute Liver Failure: A Potential Biologic Weapon Reversing the Syndrome
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ecker, M.E.; Paparoupa, M.; Sostmann, B.; Weissenborn, K.; Schuppert, F. Hepatic Encephalopathy Is Not Always due to Liver Cirrhosis. Case Rep. Gastroenterol. 2022, 16, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Çalışkan, A.R.; Harputluoğlu, M. Acute liver failure in adults. Turk. J. Gastroenterol. 2019, 30, 938–939. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Tuckfield, L.; DelVecchio, M.T.; Aronoff, S. Differential Diagnosis of Acute Liver Failure in Children: A Systematic Review. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Bazerbachi, F.; Haffar, S. Acute fulminant vs. acute-on-chronic liver failure in hepatitis E: Diagnostic implications. Infect. Dis. 2015, 47, 112. [Google Scholar] [CrossRef]
- Gustot, T.; Moreau, R. Acute-on-chronic liver failure vs. traditional acute decompensation of cirrhosis. J. Hepatol. 2018, 69, 1384–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanabria-Cabrera, J.; Tabbai, S.; Niu, H.; Alvarez-Alvarez, I.; Licata, A.; Björnsson, E.; Andrade, R.J.; Lucena, M.I. N-Acetylcysteine for the Management of Non-Acetaminophen Drug-Induced Liver Injury in Adults: A Systematic Review. Front. Pharmacol. 2022, 13, 876868. [Google Scholar] [CrossRef]
- Shingina, A.; Vutien, P.; Uleryk, E.; Shah, P.S.; Renner, E.; Bhat, M.; Tinmouth, J.; Kim, J. Long-term Outcomes of Pediatric Living Versus Deceased Donor Liver Transplantation Recipients: A Systematic Review and Meta-analysis. Liver Transpl. 2022, 28, 437–453. [Google Scholar] [CrossRef]
- Shingina, A.; Ziogas, I.A.; Vutien, P.; Uleryk, E.; Shah, P.S.; Renner, E.; Bhat, M.; Tinmouth, J.; Kim, J. Adult-to-adult living donor liver transplantation in acute liver failure. Transpl. Rev. 2022, 36, 100691. [Google Scholar] [CrossRef]
- Koretz, R.L.; Avenell, A.; Lipman, T.O.; Braunschweig, C.L.; Milne, A.C. Does enteral nutrition affect clinical outcome? A systematic review of the randomized trials. Am. J. Gastroenterol. 2007, 102, 412–429. [Google Scholar] [CrossRef]
- Ni, Y.; Lu, M.; Xu, Y.; Wang, Q.; Gu, X.; Li, Y.; Zhuang, T.; Xia, C.; Zhang, T.; Gou, X.J.; et al. The Role of Gut Microbiota-Bile Acids Axis in the Progression of Non-alcoholic Fatty Liver Disease. Front. Microbiol. 2022, 13, 908011. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, C.; Taminiau, B.; García-García, A.; Cueto, A.; Robles-Díaz, M.; Ortega-Alonso, A.; Martín-Reyes, F.; Daube, G.; Sanabria-Cabrera, J.; Jimenez-Perez, M.; et al. Microbiota diversity in nonalcoholic fatty liver disease and in drug-induced liver injury. Pharmacol. Res. 2022, 182, 106348. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver; Wendon, J.; Cordoba, J.; Dhawan, A.; Larsen, F.S.; Manns, M.; Samuel, D.; Simpson, K.J.; Yaron, I.; Bernardi, M. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 2017, 66, 1047–1081. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, K. Hepatic Encephalopathy: Definition, Clinical Grading and Diagnostic Principles. Drugs 2019, 79, 5–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poordad, F.F. Review article: The burden of hepatic encephalopathy. Aliment. Pharm. 2007, 25, 3–9. [Google Scholar] [CrossRef]
- Hadjihambi, A.; Arias, N.; Sheikh, M.; Jalan, R. Hepatic encephalopathy: A critical current review. Hepatol. Int. 2018, 12, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Neff, G.; Zachry, W., III. Systematic Review of the Economic Burden of Overt Hepatic Encephalopathy and Pharmacoeconomic Impact of Rifaximin. Pharmacoeconomics 2018, 36, 809–822. [Google Scholar] [CrossRef] [Green Version]
- Wlodzimirow, K.A.; Eslami, S.; Abu-Hanna, A.; Nieuwoudt, M.; Chamuleau, R.A. Systematic review: Acute liver failure - one disease, more than 40 definitions. Aliment. Pharm. 2012, 35, 1245–1256. [Google Scholar] [CrossRef]
- Stravitz, R.T.; Lee, W.M. Acute liver failure. Lancet 2019, 394, 869–881. [Google Scholar] [CrossRef]
- Vento, S.; Cainelli, F. Acute liver failure. Lancet 2020, 395, 1833. [Google Scholar] [CrossRef]
- Bernal, W.; Wendon, J. Acute liver failure. N. Engl. J. Med. 2013, 369, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.; Murphy, N. Management of acute liver failure. CEACCP 2004, 4, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.A.; Murphy, N.; Bangash, M.N. Acute liver failure. Clin. Med. 2020, 20, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Plauth, M. ESPEN practical guideline: Clinical nutrition in liver disease. Clin. Nutr. 2020, 39, 3533–3562. [Google Scholar] [CrossRef] [PubMed]
- Kappus, M.R. Acute Hepatic Failure and Nutrition. Nutr. Clin. Pract. 2020, 35, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Gao, B.; Zhang, X.X.; Li, J.; Jiang, W.T. Value of the controlling nutritional status score and psoas muscle thickness per height in predicting prognosis in liver transplantation. World J. Clin. Cases 2021, 9, 10871–10883. [Google Scholar] [CrossRef]
- Dos Santos, A.L.S.; Anastácio, L.R. The impact of L-chain amino acids and L-leucine on malnutrition, sarcopenia and other outcomes in patients with chronic liver disease. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 181–194. [Google Scholar] [CrossRef]
- Ismaiel, A.; Bucsa, C.; Farcas, A.; Leucuta, D.C.; Popa, S.L.; Dumitrascu, D.L. Effects of Brancheded-Chain Amino Acids on Parameters Evaluating Sarcopenia in Liver Cirrhosis: Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 749969. [Google Scholar] [CrossRef]
- Holecek, M. Brancheded-chain amino acids in health and disease: Metabolism, alterations in blood plasma and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Mohta, S.; Anand, A.; Sharma, S.; Qamar, S.; Agarwal, S.; Gunjan, D.; Singh, N.; Madhusudhan, K.S.; Pandey, R.M.; Saraya, A. Randomised clinical trial: Effect of adding brancheded chain amino acids to exercise and standard-of-care on muscle mass in cirrhotic patients with sarcopenia. Hepatol. Int. 2022, 16, 680–690. [Google Scholar] [CrossRef]
- Espina, S.; Sanz-Paris, A.; Gonzalez-Irazabal, Y.; Pérez-Matute, P.; Andrade, F.; Garcia-Rodriguez, B.; Carpéné, C.; Zakaroff, A.; Bernal-Monterde, V.; Fuentes-Olmo, J.; et al. Randomized Clinical Trial: Effects of β-Hydroxy-β-Methylbutyrate (HMB)-Enriched vs. HMB-Free Oral Nutritional Supplementation in Malnourished Cirrhotic Patients. Nutrients 2022, 14, 2344. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Conde, M.; Llop, E.; Gómez-Pimpollo, L.; Fernández Carrillo, C.; Rodríguez, L.; Van Den Brule, E.; Perelló, C.; López-Gómez, M.; Abad, J.; Martínez-Porras, J.L.; et al. Adding Brancheded-Chain Amino Acids to an Enhanced Standard-of-Care Treatment Improves Muscle Mass of Cirrhotic Patients With Sarcopenia: A Placebo-Controlled Trial. Am. J. Gastroenterol. 2021, 116, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, Y.; Takahashi, H.; Akiyama, T.; Murayama, K.; Iwane, S.; Kuwashiro, T.; Tanaka, K.; Kawazoe, S.; Ono, N.; Eguchi, T.; et al. Supplementation with brancheded-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J. Gastroenterol. 2018, 53, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Bear, D.E.; Langan, A.; Dimidi, E.; Wandrag, L.; Harridge, S.D.R.; Hart, N.; Connolly, B.; Whelan, K. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 109, 1119–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K. Raptor, a target binding partner of rapamycin (TOR), mediates mTOR action. Cell 2002, 110, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, P.; Richmond, S.; Dudley, K.; Prewitt, M.; Gandy, N.; Kudrna, B.; Touchberry, C. Interaction of resistance exercise and BCAA supplementation on phosphorylation of Akt and p70 s6 kinase in human skeletal muscle. PHASEB J. 2007, 21, A1206. [Google Scholar] [CrossRef]
- Shen, W.H.; Boyle, D.W.; Wisniowski, P.; Bade, A.; Liechty, E.A. Insulin and IGF-I stimulate eukaryotic initiation factor 4F complex formation and protein synthesis in C2C12 myotubes independent of external amino acid availability. J. Endocrinol. 2005, 185, 275–289. [Google Scholar] [CrossRef] [Green Version]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus late parenteral nutrition in critically ill adults. N. Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Sakusic, A.; Sabov, M.; McCambridge, A.J.; Rabinstein, A.A.; Singh, T.D.; Mukesh, K.; Kashani, K.B.; Cook, D.; Gajic, O. Features of Adult Hyperammonemia Not Due to Liver Failure in the ICU. Crit. Care Med. 2018, 46, e897–e903. [Google Scholar] [CrossRef]
- Osowska, S.; Kunecki, M.; Sobocki, J.; Tokarczyk, J.; Majewska, K.; Omidi, M.; Radkowski, M.; Fisk, H.L.; Calder, P.C. Effect of changing the lipid component of home parenteral nutrition in adults. Clin. Nutr. 2019, 38, 1355–1361. [Google Scholar] [CrossRef]
- Adelusi, O.B.; Ramachandran, A.; Lemasters, J.J.; Jaeschke, H. The role of Iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol. Appl. Pharm. 2022, 445, 116043. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.S.; Wigmore, S.J.; Hopton, P.; Richardson, R.; Lee, A. Energy expenditure in acetaminophen-induced fulminant hepatic failure. Crit. Care Med. 2000, 28, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Oldenbeuving, G.; McDonald, J.R.; Goodwin, M.L.; Sayilir, R.; Reijngoud, D.J.; Gladden, L.B.; Nijsten, M.W. A patient with acute liver failure and extreme hypoglycaemia with lactic acidosis who was not in a coma: Causes and consequences of lactate-protected hypoglycaemia. Anaesth. Intensive Care 2014, 42, 507–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaleem, M.; Saadeh, L.; Kumar, V.H.S.; Wilding, G.E.; Miller, L.; Mathew, B. Continued enteral feeding is beneficial in hypoglycemic infants admitted to intensive care for parenteral dextrose therapy. Glob. Pediatr. Health 2019, 6, 2333794X19857415. [Google Scholar] [CrossRef]
- Kramer, A.H.; Roberts, D.J.; Zygun, D.A. Optimal glycemic control in neurocritical care patients: A systematic review and meta-analysis. Crit. Care 2012, 16, R203. [Google Scholar] [CrossRef] [Green Version]
- Hugenholtz, G.C.; Adelmeijer, J.; Meijers, J.C.; Porte, R.J.; Stravitz, R.T.; Lisman, T. An unbalance between von Willebrand factor and ADAMTS13 in acute liver failure: Implications for hemostasis and clinical outcome. Hepatology 2013, 58, 752–761. [Google Scholar] [CrossRef]
- Lisman, T.; Bakhtiari, K.; Adelmeijer, J.; Meijers, J.C.; Porte, R.J.; Stravitz, R.T. Intact thrombin generation and decreased fibrinolytic capacity in patients with acute liver injury or acute liver failure. J. Thromb. Haemost. 2012, 10, 1312–1319. [Google Scholar] [CrossRef]
- Valle, M.; Mitchell, P.L.; Pilon, G.; Varin, T.; Hénault, L.; Rolin, J.; McLeod, R.; Gill, T.; Richard, D.; Vohl, M.C.; et al. Salmon peptides limit obesity-associated metabolic disorders by modulating a gut-liver axis in vitamin D-deficient mice. Obesity 2021, 29, 1635–1649. [Google Scholar] [CrossRef]
- Grama, A.; Burac, L.; Aldea, C.O.; Bulata, B.; Delean, D.; Samasca, G.; Abrudan, C.; Sirbe, C.; Pop, T.L. Vitamin D-Binding Protein (Gc-Globulin) in Acute Liver Failure in Children. Diagnostics 2020, 10, 278. [Google Scholar] [CrossRef]
- Janyajirawong, R.; Vilaichone, R.K.; Sethasine, S. Efficacy of Zinc Supplement in Minimal hepatic Encephalopathy: A prospective, Randomized Controlled Study (Zinc-MHE Trial). Asian Pac. J. Cancer Prev. 2021, 22, 2879–2887. [Google Scholar] [CrossRef]
- Pop, T.L.; Grama, A.; Stefanescu, A.C.; Willheim, C.; Ferenci, P. Acute liver failure with hemolytic anemia in children with Wilson’s disease: Genotype-phenotype correlations? World J. Hepatol. 2021, 13, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Montrief, T.; Koyfman, A.; Long, B. Acute liver failure: A review for emergency physicians. Am. J. Emerg. Med. 2019, 37, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Stravitz, R.T.; Kramer, D.J. Management of acute liver failure. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.S.; Gottfried, M.; Tujios, S.; Olson, J.C.; Karvellas, C.J.; Group USALFS. Continuous renal replacement therapy is associated with reduced serum ammonia levels and mortality in acute liver failure. Hepatology 2018, 67, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Scarpellini, E.; Fagoonee, S.; Rinninella, E.; Rasetti, C.; Aquila, I.; Larussa, T.; Ricci, P.; Luzza, F.; Abenavoli, L. Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J. Clin. Med. 2020, 9, 2488. [Google Scholar] [CrossRef]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Lan, T.; Zeng, L.; Luo, H.; Yang, X.; Li, N.; Hen, X.; Liu, Z.; Li, R.; Win, S.; et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol. 2018, 69, 51–59. [Google Scholar] [CrossRef]
- Castillo-Dela Cruz, P.; Wanek, A.G.; Kumar, P.; An, X.; Elsegeiny, W.; Horne, W.; Fitch, A.; Burr, A.H.P.; Gopalakrishna, K.P.; Chen, K.; et al. Intestinal IL-17R Signaling Constrains IL-18-Driven Liver Inflammation by the Regulation of Microbiome-Derived Products. Cell Rep. 2019, 29, 2270–2283. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejczyk, A.A.; Federici, S.; Zmora, N.; Mohapatra, G.; Dori-Bachash, M.; Hornstein, S.; Leshem, A.; Reuveni, D.; Zigmond, E.; Tobar, A.; et al. Acute liver failure is regulated by MYC- and microbiome-dependent programs. Nat. Med. 2020, 26, 1899–1911. [Google Scholar] [CrossRef]
- Niu, M.; Luo, Z.; Gong, S.; Win, S.; Kaplowitz, N.; Jiang, Y.; Chen, P. Intestinal Epithelial Chemokine (C-C Motif) Ligand 7 Overexpression Enhances Acetaminophen-Induced Hepatotoxicity in Mice. Am. J. Pathol. 2020, 190, 57–67. [Google Scholar] [CrossRef]
- Schneider, K.M.; Elfers, C.; Ghallab, A.; Schneider, C.V.; Galvez, E.J.C.; Mohs, A.; Gui, W.; Candles, L.S.; Wirtz, T.H.; Zuehlke, S.; et al. Intestinal Dysbiosis Amplifies Acetaminophen-Induced Acute Liver Injury. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 909–933. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.X.; Hu, X.J.; Qian, G.R.; Zhang, H.; Lu, H.F.; Zheng, B.W.; Jiang, L.; Li, L.J. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats. Appl. Microbiol. Biotechnol. 2014, 98, 5619–5632. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Lv, L.; Fang, D.; Wu, W.; Hu, C.; Xu, L.; Chen, Y.; Guo, J.; Hu, X.; Li, A.; et al. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl4-induced liver cirrhosis by protecting the intestinal barrier in rats. Sci. Rep. 2017, 7, 6927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuge, A.; Li, B.; Yuan, Y.; Lv, L.; Li, Y.; Wu, J.; Yang, L.; Bian, X.; Wang, K.; Wang, Q.; et al. Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates D-galactosamine-induced acute liver injury in rats. Appl. Microbiol. Biotechnol. 2020, 104, 7437–7455. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yan, R.; Wang, K.; Wang, Q.; Chen, X.; Chen, L.; Li, L.; Lv, L. Lactobacillus Reuteri DSM 17938 Alleviates D-Galactosamine-Induced Liver Failure in Rats. BioMed. Pharm. 2021, 133, 111000. [Google Scholar] [CrossRef]
- Saeedi, B.J.; Liu, K.H.; Owens, J.A.; Hunter-Chang, S.; Camacho, M.C.; Eboka, R.U.; Chandrasekharan, B.; Baker, N.F.; Darby, T.M.; Robinson, B.S.; et al. Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. Cell. Metab. 2020, 31, 956–968.e5. [Google Scholar] [CrossRef]
- Neag, M.A.; Catinean, A.; Muntean, D.M.; Pop, M.R.; Bocsan, C.I.; Botan, E.C.; Buzoianu, A.D. Probiotic Bacillus Spores Protect Against Acetaminophen Induced Acute Liver Injury in Rats. Nutrients 2020, 12, 632. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lv, L.; Ye, J.; Fang, D.; Shi, D.; Wu, W.; Wang, Q.; Wu, J.; Yang, L.; Bian, X.; et al. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl. Microbiol. Biotechnol. 2019, 103, 375–393. [Google Scholar] [CrossRef]
- Li, Y.T.; Ye, J.Z.; Lv, L.X.; Xu, H.; Yang, L.Y.; Jiang, X.W.; Wu, W.R.; Shi, D.; Fang, D.Q.; Bian, X.Y.; et al. Pretreatment with Bacillus cereus Preserves Against D-Galactosamine-Induced Liver Injury in a Rat Model. Front. Microbiol. 2019, 10, 1751. [Google Scholar] [CrossRef] [Green Version]
- Grander, C.; Adolph, T.E.; Wieser, V.; Lowe, P.; Wrzosek, L.; Gyongyosi, B.; Ward, D.V.; Grabherr, F.; Gerner, R.R.; Pfister, A.; et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018, 67, 891–901. [Google Scholar] [CrossRef]
- Wu, W.; Lv, L.; Shi, D.; Ye, J.; Fang, D.; Guo, F.; Li, Y.; He, X.; Li, L. Protective Effect of Akkermansia muciniphila against Immune-Mediated Liver Injury in a Mouse Model. Front. Microbiol. 2017, 8, 1804. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhao, X.K.; Cheng, M.L.; Yang, G.Z.; Wang, B.; Liu, H.J.; Hu, Y.X.; Zhu, L.L.; Zhang, S.; Xiao, Z.W.; et al. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury. Sci. Rep. 2017, 7, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xie, J.; Li, Y.; Dong, S.; Liu, H.; Chen, J.; Wang, Y.; Zhao, S.; Zhang, Y.; Zhang, H. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur. J. Nutr. 2016, 55, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Sidhu, A.; Ma, Z.; McClain, C.; Feng, W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G32–G41. [Google Scholar] [CrossRef] [PubMed]
Cause of ALF |
---|
Acetaminophen |
Other drugs |
Acute viral hepatitis |
Acute-onset autoimmune hepatitis |
Wilson disease |
Acute ischemia |
Budd–Chiari syndrome |
Veno-occlusive disease |
Acute fatty liver of pregnancy |
Cancer liver infiltration |
Hepatectomy |
Toxins |
Sepsis |
Heat stroke |
Hemophagocytic lymphohistiocytosis |
Probiotic Used and Dose | Animal Model | Liver Damage | Effects | Ref. |
---|---|---|---|---|
Lactobacillus reuteri DSM 17,938 (oral gavage with 3 × 109 CFU daily for one week) | Sprague-Dawley rats | D-GaIN (1.1 g/kg of body weight) intraperitoneally injected | ↓ dysbiosis; ↓ transcription of inflammatory factors in hepatocytes | [65] |
Lactobacillus rhamnosus GG (oral gavage with 2 × 108 CFU/100 μL HBSS daily for 2 weeks) | Germ-free C57BL/6 mice | Acetaminophen (300 mg/kg of body weight) oral gavage | Production of 5-MIAA with the activation of Nrf2 within the liver to protect against drug-induced oxidative stress | [66] |
MegaSporeBioticTM (MSB) (orally 1 × 109 CFU/rat daily for 12 days) | Charles River Wistar white male rats | Acetaminophen (2 g/kg of body weight) oral gavage | ↓ pro-inflammatory cytokines production, ↓ hepatocyte necrosis | [67] |
Bifidobacterium adolescents CGMCC15058 (gavage 3 × 109 CFU/mL PBS daily for 2 weeks) | Germ-free Sprague–Dawley (SD) rats | D-GaIN (1.1 g/kg of body weight) intraperitoneal injection | ↓ levels of mTOR and inflammatory cytokines; ↑ levels of anti-inflammatory cytokines (e.g., interleukin-10) | [68] |
Bacillus cereus (gavage at 3 × 109 CFU/mL PBS daily for 2 weeks) | Sprague–Dawley rats | D-GaIN (1.1 g/kg of body weight) intraperitoneal injection | ↓ inflammatory response; improved intestinal permeability; re-establishing of eubiota | [69] |
Akkermansia muciniphila (oral gavage 1.5 × 109 CFU/200 μL PBS daily for 2 days) | C57BL/6 mice | Alcohol (6 g/kg of body weight) oral gavage | ↓ hepatic injury, steatosis, and infiltration of MPO+ neutrophils | [70] |
Akkermansia muciniphila (oral gavage 3 × 109 CFU/200 μL PBS daily for 2 weeks) | C57BL/6 mice | Con A (15 mg/kg of body weight) injection through the tail vein | ↓ inflammatory cytokines production, cytotoxic factors and hepatocellular necrosis; ↑ gut microbiota diversity | [71] |
Saccharomyces boulardii (gavaged with 1 × 109 CFU/mL for 4 weeks) | BALB/c mice | D-GaIN (200 mg/kg of body weight) intraperitoneally injected | ↑ Bacteroidetes abundance; ↓ the abundance of Firmicutes and Proteobacteria | [72] |
Lactobacillus casei Zhang (gavaged with 109 CFU/daily for one month) | Wistar rats | LPS / D-GalN (50 μg/kg and 300 mg/kg of body weight, LPS and D-GalN, respectively) intraperitoneal injection | Modulation of the TLR-MAPK-PPAR-g pathways leading to ↓↓ pro-inflammatory cytokine production and hepatic inflammation | [73] |
Lactobacillus rhamnosus GG (mixed with drinking water approximately 109 CFU/daily for 5 days) | C57BL/6N mice | Alcohol (6 g/kg of body weight) oral gavage | Activating HIF signaling to: ↓ hepatic damage, impaired intestinal permeability, and levels of endotoxemia | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenavoli, L.; Maurizi, V.; Boccuto, L.; Di Berardino, A.; Giostra, N.; Santori, P.; Scarcella, M.L.; Procopio, A.C.; Rasetti, C.; Scarpellini, E. Nutritional Support in Acute Liver Failure. Diseases 2022, 10, 108. https://doi.org/10.3390/diseases10040108
Abenavoli L, Maurizi V, Boccuto L, Di Berardino A, Giostra N, Santori P, Scarcella ML, Procopio AC, Rasetti C, Scarpellini E. Nutritional Support in Acute Liver Failure. Diseases. 2022; 10(4):108. https://doi.org/10.3390/diseases10040108
Chicago/Turabian StyleAbenavoli, Ludovico, Valentina Maurizi, Luigi Boccuto, Arianna Di Berardino, Nena Giostra, Pierangelo Santori, Maria Laura Scarcella, Anna Caterina Procopio, Carlo Rasetti, and Emidio Scarpellini. 2022. "Nutritional Support in Acute Liver Failure" Diseases 10, no. 4: 108. https://doi.org/10.3390/diseases10040108
APA StyleAbenavoli, L., Maurizi, V., Boccuto, L., Di Berardino, A., Giostra, N., Santori, P., Scarcella, M. L., Procopio, A. C., Rasetti, C., & Scarpellini, E. (2022). Nutritional Support in Acute Liver Failure. Diseases, 10(4), 108. https://doi.org/10.3390/diseases10040108