Task Space Trajectory Planning for Robot Manipulators to Follow 3-D Curved Contours
Abstract
:1. Introduction
2. Trajectory Planning via Spline Method
2.1. Related Works
2.2. Catmull–Rom Spline
3. Trajectory Planning for Multiple Knots
3.1. Iterative Segmentation for Multiple Knots
3.2. Comparison with Cubic Spline
3.3. Optimization of Velocity and Acceleration
4. Experiments in 3-D Industrial Task
4.1. Target Task
4.2. Experiment to Validate the Effect on the Number of Points
4.3. Experiment to Validate the Uniform Distribution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 62–76. ISBN 978-3-540-85628-3. [Google Scholar]
- Guan, Y.; Yokoi, K.; Stasse, O.; Khaddar, A. On robotic trajectory planning using polynomial interpolations. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Shatin, China, 5–9 July 2005; pp. 111–116. [Google Scholar] [CrossRef]
- Available online: http://www.diag.uniroma1.it/~deluca/ (accessed on 31 January 2020).
- Chen, W.; Li, X.; Ge, H.; Wang, L.; Zhang, Y. Trajectory Planning for Spray Painting Robot Based on Point Cloud Slicing Technique. Electronics 2020, 9, 908. [Google Scholar] [CrossRef]
- Lan, J.; Xie, Y.; Liu, G.; Cao, M. A Multi-Objective Trajectory Planning Method for Collaborative Robot. Electronics 2020, 9, 859. [Google Scholar] [CrossRef]
- Mohsin, I.; He, K.; Li, Z.; Du, R. Path Planning under Force Control in Robotic Polishing of the Complex Curved Surfaces. Appl. Sci. 2019, 9, 5489. [Google Scholar] [CrossRef] [Green Version]
- Augustine, J.; Mishra, A.K.; Patra, K. Mathematical Modeling and Trajectory Planning of a 5 Axis Robotic Arm for Welding Applications. In Proceedings of the 3rd International Conference on Production and Industrial Engineering, Jalandhar, India, 29–31 March 2013. [Google Scholar] [CrossRef]
- Park, S.; Lee, M.C.; Kim, J. Trajectory Planning with Collision Avoidance for Redundant Robots Using Jacobian and Artificial Potential Field-based Real-time Inverse Kinematics. Int. J. Control. Autom. Syst. 2020, 18, 2095–2107. [Google Scholar] [CrossRef]
- Cimurs, R.; Suh, I.H. Time-optimized 3D Path Smoothing with Kinematic Constraints. Int. J. Control. Autom. Syst. 2020, 18, 1277–1287. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Shin, D.; Jin, M. Robot-based Shoe Manufacturing System. In Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS), Daegwallyeong, Korea, 17–20 October 2018; pp. 1491–1494. [Google Scholar]
- Bu, X.; Su, H.; Zou, W.; Wang, P. Curvature continuous path smoothing based on cubic bezier curves for car-like vehicles. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1453–1458. [Google Scholar] [CrossRef]
- Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like robots. In Proceedings of the IEEE International Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 835–842. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, P.; Li, D.; Sun, T. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs. Sensors 2017, 17, 2155. [Google Scholar] [CrossRef]
- Dupac, M. Smooth trajectory generation for rotating extensible manipulators. Math. Methods Appl. Sci. 2018, 41, 2281–2286. [Google Scholar] [CrossRef]
- Pacheco, R.R.; Hounsell, M.S.; Rosso, R.S.U., Jr.; Leal, A.B. Smooth trajectory tracking interpolation on a robot simulator. In Proceedings of the Latin American Robotics Symposium and Intelligent Robotics Meeting, Sao Bernardo do Campo, Brazil, 23–28 October 2010; pp. 13–18. [Google Scholar] [CrossRef]
- Elbanhawi, M.; Simic, M. Sampling-based robot motion planning: A review. IEEE Access 2014, 2, 56–77. [Google Scholar] [CrossRef]
- de Boor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 2001; pp. 40–43. ISBN 0-387-95366-3. [Google Scholar]
- Dyllong, E.; Visioli, A. Planning and real-time modifications of a trajectory using spline techniques. Robotica 2003, 21, 475–482. [Google Scholar] [CrossRef]
- Koch, P.E.; Wang, K. The introduction of B-splines to trajectory planning for manipulators. ModelingIdentif. Control 1988, 9, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Biagiotti, L.; Melchiorri, C. B-spline based filters for multi-point trajectories planning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 3065–3070. [Google Scholar] [CrossRef] [Green Version]
- Haron, H.; Rehman, A.; Adi, D.I.S.; Lim, S.P.; Saba, T. Parameterization Method on B-Spline Curve. Math. Probl. Eng. 2012, 640742. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wei, S.; Wang, N.; Zhang, X. Trajectory Planning with Bezier Curve in Cartesian Space for Industrial Gluing Robot. Lect. Notes Comput. Sci. 2014, 8918, 146–154. [Google Scholar] [CrossRef]
- Kolter, J.Z.; Ng, A.Y. Task-space trajectories via cubic spline optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 1675–1682. [Google Scholar] [CrossRef] [Green Version]
- Ogniewski, J. Cubic Spline Interpolation in Real-Time Applications using Three Control Points. Comput. Sci. Res. Notes 2019, 1–10. [Google Scholar] [CrossRef]
- Visioli, A. Trajectory planning of robot manipulators by using algebraic and trigonometric splines. Robotica 2000, 18, 611–631. [Google Scholar] [CrossRef]
- Dupac, M. A combined polar and Cartesian piecewise trajectory generation and analysis of a robotic arm. Comput. Math. Methods 2019, 1, e1049. [Google Scholar] [CrossRef] [Green Version]
- Catmull, E.; Rom, R. A class of local interpolating splines. Comput. Aided Geom. Des. 1974, 317–326. [Google Scholar] [CrossRef]
- Yuksel, C.; Schaefer, S.; Keyser, J. Parameterization and applications of Catmull-Rom curves. Comput. Aided Des. 2011, 43, 747–755. [Google Scholar] [CrossRef] [Green Version]
- DeRose, T.D.; Barsky, B.A. Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines. ACM Trans. Graph. (TOG) 1988, 7, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Bazaz, S.A.; Tondu, B. Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators. Robot. Auton. Syst. 1999, 29, 257–268. [Google Scholar] [CrossRef]
- Broquere, X.; Sidobre, D.; Nguyen, K. From motion planning to trajectory control with bounded jerk for service manipulator robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 4505–4510. [Google Scholar] [CrossRef]
- Huang, J.; Hu, P.; Wu, K.; Zeng, M. Optimal time-jerk trajectory planning for industrial robots. Mech. Mach. Theory 2018, 121, 530–544. [Google Scholar] [CrossRef]
- Tondu, B.; Bazaz, S.A. The Three-Cubic Method: An Optimal Online Robot Joint Trajectory Generator under Velocity, Acceleration, and Wandering Constraints. Int. J. Robot. Res. 1999, 18, 893–901. [Google Scholar] [CrossRef]
- Yoon, H.J.; Chung, S.Y.; Kang, H.S.; Hwang, M.J. Trapezoidal Motion Profile to Suppress Residual Vibration of Flexible Object Moved by Robot. Electronics 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://youtu.be/I6UyaKXRmGs (accessed on 20 August 2020).
knot | Task #1 | Task #2 |
---|---|---|
1 | (0, 0, 0) | (0, 0, 0) |
2 | (100, 0, 0) | (100, 0, 0) |
3 | (100, 100, 0) | (100, 200, 0) |
4 | (200, 100, 0) | (400, 200, 0) |
5 | (200, 0, 0) | (400, 0, 0) |
Time | Task #1 | Task #2 | ||
---|---|---|---|---|
Catmull–Rom | Cubic | Catmull–Rom | Cubic | |
Average | 20.7 | 26.6 | 21.8 | 27.1 |
Standard deviation | 2.8 | 4.1 | 2.7 | 3.9 |
Case | ||
---|---|---|
1 | 1000 | 2000 |
2 | 1000 | 3000 |
3 | 300 | 3000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Jin, M.; Park, S.H.; Chung, S.Y.; Hwang, M.J. Task Space Trajectory Planning for Robot Manipulators to Follow 3-D Curved Contours. Electronics 2020, 9, 1424. https://doi.org/10.3390/electronics9091424
Kim J, Jin M, Park SH, Chung SY, Hwang MJ. Task Space Trajectory Planning for Robot Manipulators to Follow 3-D Curved Contours. Electronics. 2020; 9(9):1424. https://doi.org/10.3390/electronics9091424
Chicago/Turabian StyleKim, Juhyun, Maolin Jin, Sang Hyun Park, Seong Youb Chung, and Myun Joong Hwang. 2020. "Task Space Trajectory Planning for Robot Manipulators to Follow 3-D Curved Contours" Electronics 9, no. 9: 1424. https://doi.org/10.3390/electronics9091424
APA StyleKim, J., Jin, M., Park, S. H., Chung, S. Y., & Hwang, M. J. (2020). Task Space Trajectory Planning for Robot Manipulators to Follow 3-D Curved Contours. Electronics, 9(9), 1424. https://doi.org/10.3390/electronics9091424