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Abstract: Surface polishing is required in many manufacturing sectors. Currently, it demands a large
amount of manual work, which is time-consuming, error-prone, and costly. Additionally, it creates
hazards for the workers as it may result in many deadly respiratory diseases. Robotic polishing
is the solution to these problems. It can improve productivity, eliminate the defects, and provides
consistent product quality. In this paper, an effective approach is presented for the robotic polishing
of the complex curved surfaces. The key part of the presented method is the tool path planning with
controlled force and polishing parameters optimization evaluated using design of experiments (DOE).
The tool path planning is aimed at improving the surface quality and the contact area per path. The
constraints of joint limits and productivity are also considered. Moreover, its jerk avoidance strategy
allows the robot to move swiftly while ensuring a smooth trajectory. The presented method is verified
for the polishing of an eyeglass frame. A considerable improvement of 90% on the average roughness
is achieved with the maximum acceptable roughness set at 0.02 µm. The polishing operation takes just
79 secs and the average glossiness of 76 G is achieved on the final product along with the successful
elimination of scratches on the surface.

Keywords: robotic polishing; path planning; force control; glossiness; surface roughness

1. Introduction

Polishing is a tedious but important finishing process, which demands a considerable amount of
manual work in many manufacturing sectors. It is equally essential in the restoration of the old or
damaged parts. This time consuming, error-prone, and costly multistage process is facing a shortage
of skilled workers due to the various problems, such as government regulation, deadly respiratory
diseases, and increasing labor cost [1–4]. Robotic polishing is the solution to these problems, which
can improve the working condition of the labor, eliminate the manufacturing defects, and ensure the
product quality giving an appealing glossiness to the product.

As a serious contender for the robotic polishing, the industrial robot is an automated,
programmable, and multipurpose robotic system, which can work in unhealthy and accident-prone
environments with high accuracy. However, it has some mechanical constraints, which need to be
addressed before using it into the surface polishing of the complex parts. For instance, even for the
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simplest movement of the end effector between two points within the working envelope requires
proper consideration of collision avoidance, work proficiency, best obtainable trajectory path, and other
kinematic constraints such as singularity and joints limits. Therefore, path planning and trajectory
planning are very significant for robot movement.

Moreover, cumulative demand for high speed and less production time from the industrial robots
challenge high precision and repeatability. These extreme demands place the path and trajectory
planning algorithms in the limelight. Path planning utilizing various scanning patterns and space-filling
curves have been discussed under automated polishing in several research studies [5–9]. H. Y. Tam et
al. presented an investigation for surface roughness reduction by using a scanning path, which focuses
the path evenness through pitch adaptation with surface slope changes and line spacing [5]. Fractal
path generation was used in the robotic polishing of the metal molds [6]. It used a planer Peano curve
with end effector orientation normal to the freeform surface. Contact mechanics was also used for
contact area modeling and analysis to automate the polishing process in coverage based tool-path
planning [7].

Similarly, the different force control methods and process control techniques have been used for
better-controlled interaction during the polishing [10–12]. A fuzzy vector method was suggested for
the grinding and polishing, which enables the controller to deal with force sensor signals caused by
the working tool, to search the direction of the constraint surface of an unknown object [10]. Another
study concentrated on the control issues that arise during the automation of die and mold surface
polishing using an arm robot, particularly on the force controllers to maintain the required tool and
workpiece interaction [12]. The major focus of this paper was on the active end effector force control
because there are performance limitations in the force control loop of the arm robot.

The third most adopted technique for the improvement of automated polishing is the
implementation of specially designed polishing tools [13–15]. Chunjin Wang et al. presented
an improved semirigid bonnet tool for the high-quality polishing on aspheric optics [13]. Based on the
finite element analysis method, the tool influence function is modeled for the structural optimization
to eliminate previous present defects. In paper [15], a collaborative tool for robotic polishing was
presented to allow the simultaneous operation of the robot and human cooperation for polishing. The
polishing tool was developed by using the minimum viable product approach.

However, tool path planning plays a significant role in achieving the good surface quality during
the polishing process in the complex structures and requires high reachability, but it offers some
relaxation in terms of accuracy [11]. Due to the flexibility and dexterity of the articulated robot, it is a
better preference for polishing the non-plainer surfaces as compared to other types of industrial robots.
It can be programmed for surface polishing by specifically repeated action with acceptable accuracy.

This paper presents a tool path planning approach to polish the complex curved surfaces utilizing
a six-axis industrial robot under controlled and optimized force. The key contribution of the paper
is to combine the path planning, the force control, and the optimization of the polishing parameters
for polishing complex surfaces, such as an eyeglass frame, to achieve the desired surface quality
efficiently. The optimization of the polishing parameters is obtained using the full factorial design of
experiments (DOE). Common path planning issues like joint limits and the singularity of the robots
are also addressed since these are part of path planning. Surface quality judgment parameters like
glossiness, surface roughness, and scratch eradication on the surface area under the proposed method
are tested for polishing an eyeglass frame to verify the anticipated methodology. The proposed method
gives complete insight into the automated polishing and can improve the complex curved surfaces
quality effectively.

The rest of the paper is organized as follows: Section 2 presents the proposed method with focuses
on force controlling strategy, tool path planning, and method to evaluate the optimized polishing
parameters. Section 3 gives the experiment setup, the testing results, and discussions. Finally, Section 4
contains conclusions.
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2. The Proposed Method

The key to robotic polishing is the tool path. Ideally, it shall have the minimum path length,
the best coverage of the polishing surface and the uniform surface quality. A top-down approach is
developed for tool path planning. Figure 1 shows the setup for the robotic polishing of the eyeglass
frames, which includes an articulated robot with a supporting fixture to hold the workpiece and a
force feedback system to control the polishing force of the tool through a variable speed motor.
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Figure 1. The setup for the robotic polishing of the eyeglass frames.

The flow chart of the proposed robotic polishing method for the complex curve surfaces is
presented in Figure 2. It consists of two major stages (workstation building and path planning). In
the workstation building stage, polishing tool selection, decision for using a tool or workpiece as the
end effector, and force controlling strategy are determined because these decisions affect the tool path
planning. Path planning can be further divided into three stages. First is surface division, in which
the surface to be polished is divided into several regions. For each region, the limits of the robot
joints and surface normal vector are considered to ensure continued orientation. Second is tool path
generation, in which each surface region is assigned a tool path with specific pattern and polishing
parameters. The quality of the polishing surface and productivity are the major considerations here.
Finally, the tool path stitching, in which the tool paths in different regions are stitched together. The
major considerations include the shortest connecting routes and jerk avoidance. These parts are
detailed below.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 22 
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2.1. Workstation Building and Force Control

2.1.1. Polishing Tool and End Effector Selection

There are large amounts of polishing tools available in the market. To select an appropriate tool
would need to consider various factors such as tool cost, required roughness, polishing time, tool
changing time, tool compliance, material removal rate, etc. [16]. For polishing plain and/or simple
curved surfaces, it is relatively easy to find a suitable tool that can reach every point of the workpiece.
However, for complex surfaces, it is sometimes difficult to find a perfect tool. A sensible solution is to
test several polishing tools manually on the workpiece. In our application (polishing eyeglass frame),
based on the know-how of experienced workers, we choose the 150 mm × 15 mm loose cotton wheel
(LCW) for polishing (Manufacturer: Bolpol, Model: HL150/1) with dry polishing wax. It is a flexible
polishing tool that can reach the difficult corners of the eyeglass frame. The target is to achieve the
arithmetic average roughness (Ra) of 0.02 µm.

For robot polishing, the end effector of the robot can be either the polishing tool or the workpiece.
The decision depends on the application [17–20]. Figure 3a shows the polishing tool used as the end
effector. It is effective when the workpiece is large and/or heavy. Additionally, when multiple polishing
tools are needed, it is convenient to use an automatic tool changer (ATC) for tool change. In other
configurations, workpiece is used as an end effector by attaching to the robot through a specifically
designed fixture as shown in Figure 3b. The advantage of this setup is that the orientation of the end
effector can be easily controlled to retain a constant orientation between the tool and the workpiece.
Additionally, the polishing force control unit can be separated from the robot and there is no delay in
polishing for the various tools change. Thus, in this study, the workpiece is used as an end effector.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22 
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Figure 3. Two different workstation building: (a) use tool as the end effector and (b) use workpiece as
the end effector.

Note that when using a workpiece as the end effector, both the payload and the gripping force
of the robot must be considered. The payload is the maximum mass that can be attached as the end
effector of the robot. It is a key parameter when selecting the robot, whereas, the gripping force is the
maximum force of the gripper to hold the workpiece as

Fg =
mg(g + a)

µ
(1)

where Fg is the minimal gripping force to hold the workpiece, µ is the friction coefficient, g is the
gravitational constant, mg is the mass of the gripped body and a is the acceleration. In the polishing
operation, the tool exerts force on the workpiece to smoothen the surface. This additional polishing
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force
(
Fp

)
must be added in the gripping force to firmly hold the workpiece during the polishing

process. Hence, the total gripping force (Ft) can be represented as

Ft = Fg + Fp =
mg (g + a)

µ
+ Fp (2)

2.1.2. Force Control in Surface Polishing

During the grinding and polishing process, the interacting force between the tool and surface plays
a key role in achieving the surface finish. Generally, this force can be divided into two components,
which are tangential force component (FT) and normal force component (FN) [21–23] as shown in
Figure 4a. The direction of the FT is parallel to the direction of the feed and affects the power
consumption and tool life, whereas the direction of FN is perpendicular to the surface plane and it has
more influence on surface roughness and deformation of the workpiece [21]. A threefold strategy is
presented in Figure 4b, which controls all three factors (wheel rotation speed, workpiece speed and
direction, and normal contact force), which affect FT and FN.

Tangential Force Component Control

Specific grinding energy (u) is an important process parameter, which can be defined as the energy
consumed per unit volume of material removed [21,22], it can relate FT and other parameters as

u =
FT vs

vw ap b
(3)

where b is the width of the wheel and ap is the depth of the cutting (for polishing less material removal
is always desired so it will be very shallow). The other two parameters are wheel speed (vs) and
workpiece speed (vw), which are used to control the FT in this work.
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Wheel speed or surface feed per minute: the polishing wheel speed against the normal polishing
force (pressure applied on the workpiece) is very important for effective polishing. It is measured
by surface feet per minute (SFPM), which dependents on the wheel diameter and the wheel rotation
speed:

SFPM = π

(
1 ( f t)
12 (in)

D
)

rpm, (4)

where D is the diameter of the wheel in inches (in) and rpm is the speed of the wheel (revolutions
per minute). From the SFPM formula, it can be seen that the required SFPM can be achieved with the
various combination of the wheel diameter and the wheel rotation speed. Depending on the SFPM,
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the wheel creates a frictional force for the polishing process that can be further tuned by the applied
pressure from the normal contact force.

Workpiece speed and direction: the workpiece speed and direction against wheel rotation are
other factors that contribute to polishing force. The direction of workpiece motion plays a significant
role in handling the applied pressure. There are two motions for the polishing as shown in Figure 5.
The first one is moving the workpiece against the wheel rotation with high pressure. It is usually
used for smoothening and can generate the semi-brightness surface. The second motion is moving
the workpiece in the direction of the wheel with comparatively medium or low pressure. It produces
brightness and a shiny surface.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 22 
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Normal Force Component Control

In order to achieve the full control of the polishing force, merely aligning up the workpiece and
the speed regulation of the tool and workpiece is not enough, particularly when the workpiece has a
freeform surface. Therefore, a force feedback control system active contact flange (ACF) manufactured
by Ferrobotics under model ACF110-01 is used to keep the contact force constant. It shall be mentioned
that many force feedback systems in robot applications use only one extensive setup to control the
force and position because robot movement is associated with it [24–26]. It may cause a delay in the
response of the force regulation. Conversely, ACF uses a separate setup independent of the robot
movement, which provides quick response time. Therefore, the presented system has two different
setups for robot force and motion control.

The first setup has a robot and its controller for the robot movement and collision control. It
uses motion supervision, which is a highly sensitive feature in robot for the supervision of load, jam,
and collision. If it is kept very sensitive, the movement may trip for a large force acts on the robot.
Depending on the polishing process force, the sensitivity level should be raised until no trigger occurs.
If any collision detected under the sensitivity level, the robot will quickly stop and move back a short
distance to remove residual forces as shown in Figure 6.

Another separate setup is for ACF, which controls the normal contact force. The block diagram of
the ACF setup is shown in Figure 7. It is a hybrid position/force control system. It consists of a high
priority control and a core force feedback regulation unit. Its Ethernet-based interface allows the user
to set the desired force and constantly provides the status of the actual force and position displacement.
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ACF does not interfere in the predefined robot movement and uses the sensor-based feedback to
measure output force and position. Any error (Ferror) between set force (Fset) and actual force (Factual)
can be found by comparing these forces as in Equation (5). The corrected force and its corresponding
position are asserted by an autonomous pneumatic actuator, which quickly compensates any abrupt
change in the force and provides dexterity and sensitivity for high-speed precision surface treatment.
Additionally, it offers gravitation compensation and provides constant force even with changing
orientations if it is used at the robot end effector.

Ferror = Fset − Factual. (5)

It is important to note that ACF is a one-dimensional system. When polishing a freeform surface
as illustrated in Figure 8, the workpiece surface must be constantly moved by the robot against the
polishing tool so that the polishing force remains normal to the tool. The width of the polishing wheel
(WTool) covers the workpiece surface strip by strip. This proposed setup separates the control of the
workpiece position (through the robot) and the control of the polishing force (through the polishing
wheel). It has two advantages: first, the passive nature of the end effector avoids mechanical vibrations
generated due to the motor rotation. Second, the force control does not affect the payload of the robot
and hence, it is easy to implement.
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2.2. Tool Path Planning

The presented path planning for a multifaceted eyeglass frame consists of three major parts:
surface division, path planning for each part surface, and stitching of all part surfaces in one trajectory.

2.2.1. Surface Division

It is known that the robot reachability at a point with a particular orientation of the end effector or
tool frame {T} depends on its joint configuration q = {qj, j ∈ [1 . . . N]} ∈
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(coordinates of the origin of the attached frame), and three from SO(3) (rotation matrices for frame
orientation) such robots are said to have six degrees of freedom [27]. The articulated robot with end
effector poses ξE~(x, y, z, θr, θp, θy) fulfills this demand.

However, maintaining the required position and orientation continuously normal to the surface
may not be feasible due to the joints limit. To achieve the non-stop smooth trajectory for the entire
polishing surface, it is often necessary to divide the polishing surface into several regions. It converts
a complex surface into several simple curved surfaces, which is comparatively easier to polish. It
also helps to provide better tool contact with the workpiece surface, which improves the polishing
quality. Moreover, it offers a quick change in the tool path of the particular area when needed without
disturbing the other part surfaces.

In this study, the symmetrical eyeglass frame is first divided virtually into two symmetrical parts
A and B by the plane of symmetry as shown in Figure 9a. The surface division in one part shall be
followed in the other part by mirroring. Secondly, the surface is further divided into the top and side
face by following the edges of the faces. Additionally, other multiple factors are considered including
the variation in the orientation of surface normal vector (n), the robot joints limit, the curvature of the
part surface, the size, and complexity of the face. By taking these factors into account, the eyeglass
frame is divided into 18 plain and simple curve part surfaces as in Figure 9b. Most of the parts are
simple in shape with less n variation. Part surface 1–8 and 11–18 are symmetrical, therefore, the
polishing tool will follow a similar tool path.
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complete division into part surfaces.

2.2.2. Tool Path Generation for Individual Part Surfaces

Tool path pattern: the prime objective of path planning is the achievement of the required level of
the surface finish on the entire area of the workpiece in the shortest time. Several scanning patterns and
area filling curves have been implemented on the different shapes of the workpieces for the better path
consistency, stock removal, surface texture, and quality [5,6,28,29]. Figure 10 presents some commonly
used tool path patterns to cover the plain or simple curved surfaces. Each pattern has its advantages,
disadvantages, and parameters that control its performances.
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According to the literature, the scanning path is one of the most adopted tool path patterns in
polishing [5,8,9,30,31]. In this study, the scanning path pattern was selected for the eyeglass frame
because mostly part surfaces were long stripes. Scanning path consists of a starting point, ending point,
and the middle body. It can be classified into two categories, “S” pattern and “Z” pattern. Path density
of the middle body is responsible for the quality and the productivity of the polishing process that can
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be controlled by the distance between two consecutive lines. In S scan, tool moves in an alternative
direction, however, Z scan moves in the same direction all over the scans. In tangential polishing,
tool feed direction had a significant impact on the resultant surface as discussed in Section 2.1.2. The
implementation of the scanning path patterns for the polishing curve surface utilizing adopted LCW
can be seen in Figure 8. High curvature surfaces demand high path densities because these provide
less surface contact. Depending on the tool effective width (we), line spacing can vary from 0 to WTool.

Tool compliance: the flexibility of the polishing tool is another important factor that offers smooth
interaction, additional tool contact, and help to reach the difficult places of the workpiece. Examples of
flexible tools include polishing belts, wool pad, and cloth wheels. Figure 11 shows the impact of using
different tool center point (TCP) at flexible LCW in polishing the plain and simply curved surface.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 22 
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TCP defines the zero position of the tool coordinate system. All robots have predefined tool
coordinates system and new tool coordinates are defined as an offset from this predefined location.
TCP with R–h gives large surface contact compare to TCP at R. However, it offers different effects on
plain and curved surfaces (a2 > a1) as shown in Figure 11b,c. Smart surface division can convert the
high curvature surfaces into nearly a plain or less curved surface that can provide approximately the
same contact area as plain surface (i.e., a2 � a1). Equation (6) affirms that we and s controls the surface
contact area (AC) between the tool and plain surface. In our study, TCP is taken at R–h with a small
value of s because the compliance force of the tool can easily deform the frame for a larger value.

AC = 2 we (R − h) tan (
θ1

2

)
and θ1 = cos−1

[
(R− h)

R

]
. (6)

TCP or end effector velocity in polishing: the composite robot applications like painting, welding,
and polishing require continuous path control with explicit orientation and uniform velocity. Within
the working space of a robot, there are some spaces where the position and orientation of the end
effector of the robot cannot be asserted. These locations are referred to as singularities in which robot
displacements and velocities are volatile [32]. For the six-axis robot, singularity can be mathematically
described by the relation between the vector of joint velocities (

.
q) and the Cartesian velocity vector (v)

of the end-effector [27].
q = J−1 v, (7)

where J is a Jacobian matrix of order 6 × 6, which is a function of the joint positions (q) and the robot
geometry. This equation can calculate joint rates at every point on the path for the robot movement
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with some velocity vector in the Cartesian space. However, the robots have some values of q for which
Jacobians becomes singular. Those places are considered as singularities.

While using the robot in Cartesian mode, trajectories that instruct the robot to move close to a
singularity must be avoided. Normally, robots are programmed to stop the movement near singularity
to avoid any harm to the robot. Some robots are designed to move slowly near a singularity but lose
constant speed in line and force the tool to linger on at the same point, which is damaging for the
polishing surface. Sometimes to avoid the most commonly occurred wrist singularity, a small angle is
added to the end effector, which reduces the chance of two links alignment.

Optimization of polishing parameters: optimized control of the polishing parameters can lead to
the required surface quality (surface roughness Ra) in a short time. However, it is difficult to optimize
the input parameters due to the complexity of the polishing process. Additionally, the random effects
of the flexible polishing tool on the polishing surface make this process difficult to represent by simple
equations. Therefore, a full factorial DOE is used to investigate the effect of input factors (SFPM, feed
rate, and no. of the polishing cycle) on the surface roughness of the eyeglass frame in the polishing
process. It can help to find the economical polishing parameters for the required surface finish. The full
factorial design consists of all possible combinations of the input factors and their levels [33,34]. The
number of the experimental run for a full factorial design is the product of the levels of each factor (Fn):

No. o f experimental run = Levels in F1 × Levels in F2 × . . .× Levels in Fn. (8)

Using the above equation, thirty no. of experimental runs were designed with the various
combinations of the process parameters. Besides the full factorial design, other methods under DOE
can be used such as the fractional factorial design, Plackett–Burman design, and Taguchi method.
However, depending on the required accuracy and process cost a full factorial design is used.

PE =
A∆Ra

T
(9)

According to references [29,30], the best parameters can be selected by using the polishing
efficiency (PE) formula given in Equation (9). It is defined as the amount of roughness reduction (∆Ra)
for the specified area (A) in time (T). A plot of the PE against the Ra can help to extract the best possible
polishing parameters based on the highest polishing efficiency achieve.

After the surface division of the eyeglass frame, most of the part surfaces are strips. The maximum
width (WPS) of each part surface is less than the tool width (WTool). As a result, the polishing tool can
cover the entire strip or part surface just in one pass starting from one point and ending at the opposite
side. However, to achieve the required surface quality, multiple polishing passes are needed. The
number of polishing passes, the starting, and ending points is dependent on the polishing parameters.
Figure 12 shows the polishing trajectory of the four part surfaces with the tool and robot target frames
{R}. Based on the optimized polishing parameters achieved by full factorial DOE from the part surface
one (S1), two polishing cycles are suggested for each part surface. In the first polishing cycle, the
eyeglass frame will move against the wheel rotation and later in the direction of the wheel rotation for
required gloss. {T} will remain normal to the surface during the whole polishing process.
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2.2.3. Tool Path Stitching

The final step is to link all the part surfaces to achieve the shortest possible route, minimum joint
angles, and jerk-free movement. Previously [9], the shortest possible connecting route was achieved
by using brute force search, nearest neighboring algorithm (NNA), and the greedy algorithm. These
algorithms do not satisfy the target of achieving the smooth robot movement with minimum joint
angles because they just focus to find the shortest connecting distance. Therefore, a new approach was
used here, which satisfies all the mentioned objectives.

The proposed strategy avoids the hasty orientation shifts during the connecting path movement.
It sorts part surfaces in different groups based on the orientation of the {T} at the starting point in each
part surface. Following the surface division previously as in Figure 9, there are two face groups (top
and side). The total 18 part surfaces of the eyeglass frame are mainly sorted into top and side face
groups. Similarly, the top face group is further sorted into the X-axis and Y-axis categories. Later, the
part surfaces in the X-axis group are linked based on minimum Euclidian distance d(p, q) as express in
Equation (10). The same action is performed on the other two sorted groups. Finally, all these three
groups are connected to create one complete path based on the short distance covered.

d(p, q)= min
√
(p1 − q1)

2 + (p2 − q2)
2 + (p3 − q3)

2. (10)

Figure 13 compares the effect of using the NNA and proposed approach to connect the part
surfaces by showing the complete joints angle movement (θn: n = 6) of the robot during the polishing of
the eyeglass frame. Both methods utilized only an average of 32% of whole angles range available for
the used robot because of the smart part division approach. However, the new proposed strategy allows
the robot to maintain {T} orientation normal to the surface during polishing by using very less joints
movements. Additionally, it provides smooth robot movement because it avoids a jerk, which occurs
due to the sudden tool orientation shift while moving from one part to another part surface and hence,
allows the robot to move comparatively faster. Moreover, the Joint 4 (wrist) demonstrated a minimum
and smooth angle transition that was significant in avoiding the mostly occurred wrist singularity.
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Figure 13. Joints movement (degree) of all six joints of the robot during the polishing of the
eyeglasses frame.

3. Results and Discussions

A compact ABB IRB 1200 six-axis industrial robot controlled by IRC5 controller polishing the
eyeglass frame is shown in Figure 14. It can carry 7 kg payload, which is enough to support the
eyeglass frame fixture during polishing. A separate setup for force regulation (ACF110-01) was
used independently for the robot movement as discussed earlier. Motor-driven polishing wheel
(LCW) was attached to the force sensor, which was present in front of the robot within its working
envelope. A well planned off-line tool path planning under the proposed method and its conversion
into its corresponding robot joint angle values was performed using robot programming simulator
Robotmaster®. Flex pendant with the small LCD was used for different operations of the robot system
such as jogging the robotic arm, running, and a quick modification in the robot program.
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Figure 15 shows the different equipment used for surface evaluation of the eyeglass frame. These
are a surface roughness tester (SJ-210), a special purpose (small aperture) gloss meter (NHG60M)
with a 60◦ measuring angle, and a highly zoomed microscope. A tachometer was used for the tool
speed measurement.
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3.1. Surface Roughness

Arithmetic average roughness measurement is a well-established entity to evaluate the surface
quality and it has been a crucial part of many theoretical and experimental studies. It is the average
absolute deviation of the profile height y(x) from the mean line within the sample line. It is easy to
measure and gives a general view of the height profile, however, it is not sensitive to small height
variation and it does not give any information about wavelength. Conversely, the root mean square
roughness (Rq) is the square root of the mean of the squared of roughness. It indicates the deviation of
the distribution of the surface heights. Although Ra is the most commonly used entity, the Rq is more
capable of large deviations from the mean line.

Figure 16 demonstrates the arithmetic average roughness height profile at a point on the part
surface 1 of the eyeglass frame before and after polishing under 1 mm evaluation and 0.25 mm sample
length. Besides the Ra and Rq, skewness (Rsk) and kurtosis (Rku) are also mentioned to understand
the peaks and valleys formation during polishing steps. Before polishing, the surface has plenty of
high peaks and deep valleys. After the 1st polishing cycle, this profile became negatively skewed
(Rsk = −1.726) because more high peaks are removed compared to the valleys. Moreover, fine grains of
the polishing wax created shallow valleys that make the profile leptokurtic (Rku = 7.854). The second
polishing cycle pushed it towards the normally distributed profile (Rku = 2.946), however still have
fewer peaks (Rsk = −0.695). The initial experimental analyses substantiate that the used of LCW and
polishing wax can provide an average minimum Ra of 0.017 µm. Further visualization of the surface
topography of the eyeglass frame at the same point under the highly zoomed microscope is present in
Figure 17 that shows the magnified photos taken at different polishing stages. Figure 17a shows the
rough surface image before polishing with deep scratches. However, an effective polishing smoothed
the surface as shown in Figure 17b with few shallow scratches left. The first polishing cycle improved
84% in the surface roughness approximately. The second polishing cycle further improved the surface
as shown in Figure 17c. It gives gloss to the surface without any visible scratch.

By acknowledging the fact that the eyeglass frame is made of plastic (synthetic resin) and can
easily deform its shape particularly at the edges if exposed to the tool for a longer time. Therefore, the
higher SFPM and contact force are avoided. The minimum polishing force of 1 N for the FN is used
throughout the experiments. Table 1 shows the complete experimental runs conducted at the part
surface one (S1) to find the optimized input polishing parameters for all the part surfaces. Ra as an
output of the polishing process was measured for different combinations of three input parameters.
Every experiment was started with the average initial surface roughness of 0.214 µm. The polishing
cycles were planned to achieve the target Ra of 0.02 µm in a way that the first cycle was the workpiece
motion against wheel rotation and in the later cycles, it would be in the direction of wheel rotation.
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Table 1. Full factorial design of experiments (DOE) to find the economical polishing parameters at part
surface one.

Exp.
No.

Feed Rate
(mm/s)

No. of
Cycle SFPM Ra PE = A∆Ra

T
Exp.
No.

Feed Rate
(mm/s)

No. of
Cycle SFPM Ra PE = A∆Ra

T

1 15 1 2950 0.032 13.06 16 45 2 3750 0.019 15.50
2 15 1 3750 0.020 13.97 17 45 3 2950 0.017 08.80
3 15 2 2950 0.017 07.07 18 45 3 3750 0.017 08.80
4 15 2 3750 0.017 07.07 19 60 1 2950 0.051 28.45
5 15 3 2950 0.015 04.03 20 60 1 3750 0.039 30.55
6 15 3 3750 0.016 04.01 21 60 2 2950 0.028 16.23
7 30 1 2950 0.033 22.59 22 60 2 3750 0.025 16.50
8 30 1 3750 0.023 23.86 23 60 3 2950 0.021 09.26
9 30 2 2950 0.017 12.30 24 60 3 3750 0.020 09.31
10 30 2 3750 0.017 12.30 25 75 1 2950 0.070 26.36
11 30 3 2950 0.015 06.97 26 75 1 3750 0.053 29.47
12 30 3 3750 0.016 06.94 27 75 2 2950 0.041 15.83
13 45 1 2950 0.038 27.97 28 75 2 3750 0.036 16.29
14 45 1 3750 0.029 29.44 29 75 3 2950 0.028 09.21
15 45 2 2950 0.020 15.43 30 75 3 3750 0.023 09.45

Figure 18 shows the Ra curve against the feed rate for two different SFPM and three polishing
cycles for the part surface one. A little disagreement in the graph from the trend line can be due to
impurities in the polishing material. Increment in the feed rate increased the resultant roughness;
however, with proper SFPM this rate could slowdown effectively. Suitable feed rate and SFPM
could increase the polishing efficiency and achieve the desired surface quality in a short time. To
find the highest PE by optimizing the polishing parameters, a graph between the Ra and PE for all
three polishing cycles with SFPM of 2950 and 3750 was plotted in Figure 19. It shows that the target
roughness was achieved with all three polishing cycles at different feed rates. The maximum feed rates
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with a 10% safety margin to get the desired roughness in one, two, and three polishing cycles were
13 mm/s, 45 mm/s, and 54 mm/s respectively. However, the two polishing cycles with 3750 SFPM
shows the maximum efficiency to get the target. Therefore, optimized polishing parameters (feed rate
= 45 mm/s, no. of cycles = 2, and SFPM = 3750) from the graph were selected for polishing the all
remaining 17 part surfaces of the eyeglass frame.
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Table 2 summarizes the optimized polishing parameters taken form the initial experimentation of
the eyeglass frame polishing on surfaces S1. It is supposed that all the part surfaces had approximately
similar initial Ra as S1. It suggested two polishing cycles with SFPM of 3750 by LCW utilizing dry finish
paste (P126 by Menzerna). Different combinations of wheel diameter and rotation speed were possible,
which generated SFPM of 3750. A wheel with a 152 mm diameter and rotation speed 2387 rpm was
adopted to polish.
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Table 2. Economical polishing parameters for each part surface of the eyeglass frame.

Polishing
Cycle

Selected
Tool

Polishing
Material

SFPM (3750)
Feed Direction

Contact Force
FN (N)

Feed Rate
(mm/s)Wheel

Diameter (mm)
Wheel Speed

(rpm)

1
LCW

Dry finish
Paste (P126) 152 2387

Against wheel rotation
1 45

2 In direction of wheel
rotation

Figure 20 demonstrates the surface roughness evolution for rough to mirror-like polishing in
terms of Ra and Rq at all six selected points in different part surfaces. To minimize the chance of error,
every measurement was repeated three times at the same point. It can be seen that the roughness
dropped severely in the first polishing step, while it slowed down in the second step because of the
feed direction in both steps. However, the second polishing cycle provided gloss to the surface. Before
polishing, Ra was ranging from 0.204 to 0.215 µm for six selected points that shows all part surfaces had
nearly the same initial roughness. After the first polishing cycle, roughness reduced approximately
83% on average at the selected points. Average Ra and Rq were 0.0185 and 0.0233 µm respectively
with the approximately 90% improvement in the surface height profile after two polishing steps. The
major accomplishment of this robotic polishing was the resultant even surface quality in the freeform
surface with economical parameters. Ra values after polishing reflected this evenness with a very small
variation from 0.018 to 0.021 µm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 22 
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3.2. Glossiness

Glossiness or specular reflection is another quality parameter for the polished surface that
measures the visual appearance of the product. From Equation (11), glossiness (G) can be measured as
the ratio of the specular reflectance of the target surface (RT) to the specular reflectance of the polished
glass (Ro) with a standard refractive index of 1.567 [35,36].

G =
RT

Ro
× 100% (11)

From the Fresnel equation, the specular reflectance (R) can be calculated as in Equation (12) [35].
It substantiates that incident angle i and refractive index n affect the spectral reflectance. Therefore,
measurements at different angles were adopted in various standards. 20◦, 60◦, and 80◦ are mostly used
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angles in many measuring standards like ASTM D523 and DIN 67530. However, the 60◦ is the most
adopted angle in many gloss meters as it is used in majority standards.

R =
1

RS + RP
=

1
2


cos i−

√
n2 − sin2 i

cos i+
√

n2 − sin2 i


2

+

n2cos i−
√

n2 − sin2 i

n2cos i+
√

n2 − sin2 i


2 (12)

Similarly, many studies have been established the relation between specular reflectance and surface
roughness [35,37]. For example, H. E. Bennet and J. O. Porteus derived the following equation [38]:

RS = Ro exp

− (4πσ)2

λ2

+ Ro
25π4

m2

(
σ
λ

)4
(∆θ)2 (13)

Here, σ is the root mean square roughness, ∆θ is acceptance angle, m is the root mean square
slope of the surface profile, and λ is a wavelength, which is assumed to be greater than the root mean
square roughness. Surfaces with high roughness provide less gloss compared to the less rough surface.

Table 3 shows the glossiness comprehensive measurements at selected point P3 using gloss meter
for best mean value with tolerance 10 G. A similar procedure was used throughout all sample surfaces.
Five readings on the same points on every sample part surface were taken for the measurement.

Table 3. Measured glossiness at P3 using gloss meter.

S. No. Mean Value Max. Value Min. Value Standard. Deviation Difference Mean Glossiness

01 78.1 78.1 78.1 0.0 0.1

77.6
02 77.4 78.1 76.7 0.7 −0.6
03 77.7 78.3 76.7 0.7 −0.3
04 77.0 78.3 74.9 1.3 −1.0
05 77.6 80.0 74.9 1.7 −0.4

Figure 21 presents the glossiness of all the selected six points before and after polishing. It also
presents the improvement in the gloss after polishing. It shows the significant improvement in the
glossiness of the part surfaces at different points between 62.5 and 68.7 G. It provided an average 88%
improvement in glossiness in a short time just with two polishing cycles.
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In manufacturing industries, machining economics is crucial to optimize the machine process.
This optimization to get the target can be achieved by controlling the machining influencing variable
parameters. Figure 22 shows the comparison in achieving the target roughness of 0.02 µm by three
different no. of polishing cycles at their maximum efficiencies as in the PE vs. Ra plot. This comparison
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demonstrates that the required surface quality can be attained by different parameters combinations;
however, the correct selection of the parameters for tool path can save resources (such as time, energy,
money, etc.). The minimum time taken by 1, 2, and 3 no. of polishing cycles were 136 s, 79 s and 184 s
respectively. The best chosen 45 mm/s feed rate with two polishing cycles at 3750 SFPM achieves
uniform roughness of target 0.02 µm in just 79 s. It is 42% and 57% less time compared to 136 s and
184 s respectively. Figure 23 shows the effect of robotic polishing on the selected polishing area of the
final product.Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 22 
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4. Conclusions

This paper presented a robotic polishing method for complex curved surfaces based on a
combination of tool path planning, force control, and optimized polishing parameters. From the above
results and discussions, the following conclusions could be drawn:

(a) Robot polishing is a difficult task, in which the key considerations include: the surface area
coverage, best-suited polishing parameters, the stable contact force, especially for complex surfaces,
and the required surface quality (glossiness and uniformness). The presented method uses the
divide-and-conquer strategy and is composed of four steps: workstation building, surface division,
tool path generation, and tool path stitching. Based on the results of the tests on polishing eyeglass
frames, this method was effective. It ensured the surface quality and avoided the robot running into
singularities, joint limits, and jerks.

(b) The surface division is important. It decomposes a complex surface into a number of plain
or simple curved surfaces. For each piece of surface, the robot could move smoothly and speedily.
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The main considerations in breaking a complex curved surface are edges of faces, variation in the
orientation of surface normal vector, the robot joints limit, the curvature of the part surface, the size,
and complexity of the surface.

(c) Three major research directions in robotic polishing are new tool design, path planning, and
force control between tool and surface. However, the correct selection of the input process parameters
could increase the efficiency exponentially and could be implemented with all three improvement
techniques. The optimization of the parameters in this study was achieved by using full factorial DOE
(30 experimental runs). The optimized input polishing parameters for the eyeglass frame were SFPM
(3750), feed rate (45 mm/s), and no. of polishing cycles (2 cycles).

Based on the experimental results on polishing eyeglass frames, the presented method could
achieve a high-quality surface with an average roughness of 0.0185 µm in 79 s. In addition, the
entire surface was well covered and the average improvement in glossiness was 67 G, which was 88%
improvement in just two polishing cycles. Moreover, all the scratches were eliminated successfully. It
was believed that the presented method could be used on the shop floor directly.
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