Channel-Based Network for Fast Object Detection of 3D LiDAR
Abstract
:1. Introduction
2. Related Work
2.1. Voxel-Based Network
2.2. Image Transformation-Based Network
3. LiDAR Channel-Based Network
3.1. Channel Internal Convolution Network
3.2. Channel External Convolution Network
3.3. Detection Network
3.4. Loss Function
4. Experiment
4.1. Experiment Setup
4.1.1. Object Detection Test Using 16-Channel LiDAR
4.1.2. Object Detection Test Using 64-Channel LiDAR
4.2. Experiment Result
4.2.1. Object Detection Test Using 16-Channel LiDAR
4.2.2. Object Detection Test Using 64-Channel LiDAR
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 1356–1361. [Google Scholar]
- Zhou, Y.; Tuzel, O. VoxelNet: End-to-End learning for point cloud based 3D object detection. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar]
- Wang, D.Z.; Posner, I. Voting for voting in online point cloud object detection. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015; Volume 1. [Google Scholar]
- Sedaghat, N.; Zolfaghari, M.; Amiri, E.; Brox, T. Orientation-boosted voxel nets for 3D object recognition. In Proceedings of the 28th British Machine Vision Conference, London, UK, 4–7 September 2017. [Google Scholar]
- Li, B. 3D fully convolutional network for vehicle detection in point cloud. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; pp. 1513–1518. [Google Scholar]
- Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [Google Scholar] [CrossRef] [Green Version]
- Rist, C.B.; Enzweilrt, M.; Gavrila, D.M. Cross-Sensor Deep Domain Adaptation for LiDAR Detection and Segmentation. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; pp. 1535–1542. [Google Scholar]
- Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. arXiv 2019, arXiv:1912.13192. [Google Scholar]
- Yu, S.; Westfechtel, T.; Hamada, R.; Ohno, K.; Tadokoro, S. Vehicle Detection and Localization on Bird’s Eye View Elevation Images Using Convolutional Neural Network. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics, Shanghai, China, 11–13 October 2017; pp. 102–109. [Google Scholar]
- Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3D lidar using fully convolutional network. In Proceedings of the 2016 Robotics: Science and Systems Conference, Ann Arbor, MI, USA, 18–22 June 2016. [Google Scholar]
- Beltran, J.; Guindel, C.; Moreno, F.M.; Cruzado, D.; Garcia, F.; Escalera, A. BirdNet: A 3D object detection framework from LiDAR information. arXiv 2018, arXiv:1805.01195. [Google Scholar]
- Kim, T.H.; Kwon, S.S.; Lee, K.S.; Park, T.H. Multiple lidars calibration and deep learning based vehicle recognition. In Proceedings of the 2017 KSAE Annual Spring Conference, Jeju, Korea, 18–20 May 2017; pp. 1356–1357. [Google Scholar]
- Kim, Y.; Kim, J.; Koh, J.; Choi, J.W. Enhanced Object Detection in Bird’s Eye View Using 3D Global Context Inferred from Lidar Point Data. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; pp. 2516–2521. [Google Scholar]
- Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-Time 3D Object Detection from Point Clouds. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 27–30 June 2016; pp. 7652–7660. [Google Scholar]
- Barrera, A.; Guindel, C.; Beltrán, J.; García, F. BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. arXiv 2020, arXiv:2003.04188. [Google Scholar]
- Zhang, W.; Zhou, C.; Yang, J.; Huang, K. LiSeg: Lightweight road-object semantic segmentation in 3D LiDAR scans for autonomous driving. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Changshu, China, 26–30 June 2018; pp. 1021–1026. [Google Scholar]
- Kwon, S.S.; Park, T.H. Polar-View Based Object Detection Algorithm Using 3D Low-Channel Lidar. J. Inst. Control Robot. Syst. 2019, 25, 56–62. [Google Scholar] [CrossRef]
- Lee, J.S.; Jo, J.H.; Park, T.H. Segmentation of Vehicles and Roads by a Low-Channel Lidar. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4251–4256. [Google Scholar] [CrossRef]
- Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D object detection network for autonomous driving. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium, Honolulu, HI, USA, 21–26 July 2017; pp. 6526–6534. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 18–23 June 2018; pp. 770–778. [Google Scholar]
- Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A Tutorial on the Cross-Entropy Method. Ann. Oper. Res. 2005, 1, 56–62. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv 2017, arXiv:1711.08488. [Google Scholar]
- Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 770–779. [Google Scholar]
- Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3DSSD: Point-based 3D Single Stage Object Detector. arXiv 2020, arXiv:2002.10187. [Google Scholar]
Type | Vehicle | Pedestrian | Run Time | |||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | |||
VoxelNet [2] | Voxel | 83.51 % | 77.73 % | 80.52 % | 60.67 % | 43.24 % | 50.49 % | 46 ms |
Kim et al. [12] | Top | 83.17 % | 80.58 % | 81.85 % | - | - | - | 41 ms |
Kwon et al. [17] | Polar | 87.32 % | 81.52 % | 84.32 % | 80.72 % | 76.87 % | 78.75 % | 42 ms |
MV3D [19] | Top,front | 79.23 % | 50.75 % | 61.87 % | - | - | - | 240 ms |
proposed | channel | 86.81 % | 80.16 % | 83.35 % | 78.33 % | 72.87 % | 75.50 % | 21 ms |
Type | Vehicle | Pedestrian | Run Time * | |||||
---|---|---|---|---|---|---|---|---|
Easy | Moderate | Hard | Easy | Moderate | Hard | |||
VoxelNet [2] | Voxel | 77.47 % | 65.11 % | 57.73 % | 39.48 % | 33.69 % | 31.51 % | 50 ms |
PV-RCNN [8] | Voxel | 90.25 % | 81.43 % | 76.82 % | 52.17 % | 43.29 % | 40.29 % | 83 ms |
MV3D [19] | Top,front | 74.97 % | 63.63 % | 54.00 % | - | - | - | 254 ms |
F-PointNet [24] | RGB,front | 82.19 % | 69.79 % | 60.59 % | 50.53 % | 42.15 % | 38.08 % | 186 ms |
BirdNet+ [15] | Top-view | 70.14 % | 51.85 % | 50.03 % | 37.99 % | 31.46 % | 29.46 % | 110 ms |
PointRCNN [25] | point | 86.96 % | 75.64 % | 70.70 % | 47.98 % | 39.37 % | 36.01 % | 107 ms |
3DSSD [26] | point | 88.36 % | 79.57 % | 74.55 % | 54.64 % | 44.27 % | 40.23 % | 41 ms |
proposed | channel | 86.40 % | 77.74 % | 72.97 % | 47.14 % | 39.72 % | 37.25 % | 32 ms |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Park, T. Channel-Based Network for Fast Object Detection of 3D LiDAR. Electronics 2020, 9, 1122. https://doi.org/10.3390/electronics9071122
Kwon S, Park T. Channel-Based Network for Fast Object Detection of 3D LiDAR. Electronics. 2020; 9(7):1122. https://doi.org/10.3390/electronics9071122
Chicago/Turabian StyleKwon, SoonSub, and TaeHyoung Park. 2020. "Channel-Based Network for Fast Object Detection of 3D LiDAR" Electronics 9, no. 7: 1122. https://doi.org/10.3390/electronics9071122
APA StyleKwon, S., & Park, T. (2020). Channel-Based Network for Fast Object Detection of 3D LiDAR. Electronics, 9(7), 1122. https://doi.org/10.3390/electronics9071122