Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the Conjunctiva
Abstract
:1. Introduction
1.1. Background
1.2. Haemoglobin Spectrophotometry
1.3. Related Works
1.4. Image Capturing Methodology
- Provide an easy to us;e device with affordable hardware components
- Its usage should not require trained medical personnel;
- It should provide remote diagnosis and telemedicine conveniences.
2. Proposed Method
2.1. K-Means Dimensionality Reduction
- Initialize centroid vectors.
- Pixels retain spatial as well as color features, allowing us to define an appropriate weighted Euclidean distance as a measure of similarity between them. For each of them, calculate the distance d between the centroid and each pixel of the image defined as:
- Each pixel is assigned to the centroid minimizing d.
- Recalculate the position of each centroid where is the pixel contained in centroid using the relation:
2.2. Normalized Cuts Segmentation
2.3. Hemoglobin Heatmap Coefficients
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Image ID | F1-Measure | Accuracy | Sensitivity (TPR) | Specificity (TNR) |
---|---|---|---|---|
164733 | 0.7547 | 0.9097 | 0.6060 | 1.0000 |
918410 | 0.7647 | 0.9287 | 0.6369 | 0.9567 |
094523 | 0.9123 | 0.9674 | 0.8696 | 0.9595 |
103722 | 0.6429 | 0.9687 | 0.6103 | 0.6792 |
190841 | 0.7011 | 0.8625 | 0.586 | 0.8724 |
154215 | 0.6494 | 0.9558 | 0.5505 | 0.7915 |
160737 | 0.7844 | 0.9327 | 0.6470 | 0.9957 |
155221 | 0.7179 | 0.9813 | 0.7044 | 0.7319 |
122613 | 0.7616 | 0.9176 | 0.8953 | 0.6627 |
132714 | 0.6641 | 0.8779 | 0.4971 | 1.0000 |
140525 | 0.7250 | 0.9316 | 0.9255 | 0.5959 |
154320 | 0.5296 | 0.8965 | 0.3602 | 1.0000 |
143315 | 0.7563 | 0.8955 | 0.6081 | 1.0000 |
145200 | 0.7834 | 0.9837 | 0.7677 | 0.7997 |
150240 | 0.6542 | 0.9170 | 0.4861 | 1.0000 |
155237 | 0.7672 | 0.9549 | 0.9374 | 0.6493 |
801000 | 0.7595 | 0.9460 | 0.9613 | 0.6277 |
121216 | 0.7848 | 0.9521 | 0.6534 | 0.9823 |
120556 | 0.6804 | 0.9080 | 0.5207 | 0.9815 |
134128 | 0.7827 | 0.9675 | 0.6715 | 0.938 |
150536 | 0.8229 | 0.9769 | 0.8237 | 0.8221 |
151234 | 0.7343 | 0.9285 | 0.6025 | 0.9400 |
155418 | 0.8351 | 0.9757 | 0.8186 | 0.8523 |
152136 | 0.7407 | 0.9264 | 0.8862 | 0.6362 |
152924 | 0.6875 | 0.9653 | 0.5282 | 0.9846 |
153536 | 0.6818 | 0.8958 | 0.5174 | 0.9995 |
154129 | 0.8665 | 0.9596 | 0.9719 | 0.7817 |
154759 | 0.8436 | 0.9559 | 0.7770 | 0.9226 |
155456 | 0.8463 | 0.9539 | 0.8111 | 0.8846 |
160045 | 0.6242 | 0.9333 | 0.4544 | 0.9965 |
123002 | 0.7943 | 0.9244 | 0.6703 | 0.9745 |
122915 | 0.7728 | 0.9664 | 0.7984 | 0.7488 |
232040 | 0.6222 | 0.9300 | 0.5065 | 0.8064 |
160522 | 0.8019 | 0.9790 | 0.8133 | 0.7909 |
121836 | 0.5998 | 0.8646 | 0.5157 | 0.7166 |
134745 | 0.7401 | 0.8944 | 0.7800 | 0.7040 |
211040 | 0.4881 | 0.9146 | 0.3258 | 0.9724 |
210631 | 0.9184 | 0.9838 | 0.9235 | 0.9134 |
223744 | 0.7676 | 0.9013 | 0.6468 | 0.9440 |
224452 | 0.655 | 0.8827 | 0.4872 | 0.9991 |
231923 | 0.7167 | 0.9513 | 0.5585 | 0.9999 |
232931 | 0.8046 | 0.9636 | 0.7029 | 0.9406 |
141804 | 0.7793 | 0.9310 | 0.7248 | 0.8428 |
152107 | 0.6693 | 0.9144 | 0.5063 | 0.9871 |
161452 | 0.7892 | 0.8955 | 0.7651 | 0.9673 |
154641 | 0.8193 | 0.9806 | 0.8627 | 0.7801 |
210419 | 0.8587 | 0.9675 | 0.8427 | 0.8753 |
221400 | 0.8056 | 0.9256 | 0.6767 | 0.9952 |
222325 | 0.8093 | 0.9298 | 0.6913 | 0.9758 |
140311 | 0.6237 | 0.9594 | 0.4608 | 0.9645 |
180148 | 0.8293 | 0.9154 | 0.7085 | 0.9998 |
183506 | 0.7559 | 0.9214 | 0.6226 | 0.9617 |
195511 | 0.7103 | 0.9149 | 0.5554 | 0.9849 |
201501 | 0.7197 | 0.9031 | 0.5662 | 0.9874 |
184029 | 0.7589 | 0.9715 | 0.6305 | 0.9531 |
184734 | 0.8508 | 0.9636 | 0.8814 | 0.8221 |
185602 | 0.8863 | 0.9722 | 0.8574 | 0.9172 |
190638 | 0.8229 | 0.9267 | 0.7120 | 0.9747 |
191233 | 0.8163 | 0.9388 | 0.8559 | 0.7801 |
191620 | 0.6685 | 0.8737 | 0.7922 | 0.5782 |
194457 | 0.7283 | 0.9508 | 0.5858 | 0.9624 |
114700 | 0.6357 | 0.9133 | 0.5007 | 0.8705 |
115146 | 0.6255 | 0.8800 | 0.5202 | 0.7842 |
115853 | 0.8018 | 0.9526 | 0.7490 | 0.8626 |
120426 | 0.6434 | 0.9588 | 0.5084 | 0.8762 |
202058 | 0.6903 | 0.8737 | 0.5271 | 1.0000 |
123714 | 0.7709 | 0.9415 | 0.8038 | 0.7406 |
133633 | 0.6015 | 0.9539 | 0.4604 | 0.8673 |
143301 | 0.8145 | 0.9803 | 0.7065 | 0.9614 |
144551 | 0.7174 | 0.9540 | 0.8865 | 0.6025 |
145301 | 0.6573 | 0.9124 | 0.4972 | 0.9693 |
150804 | 0.6424 | 0.9447 | 0.4849 | 0.9515 |
150539 | 0.8357 | 0.9547 | 0.7311 | 0.9750 |
151450 | 0.7388 | 0.9020 | 0.5886 | 0.9917 |
153146 | 0.7744 | 0.9295 | 0.6382 | 0.9844 |
162916 | 0.7940 | 0.9369 | 0.6713 | 0.9716 |
202947 | 0.9040 | 0.9641 | 0.8552 | 0.9587 |
180925 | 0.7136 | 0.9124 | 0.6152 | 0.8494 |
190130 | 0.8209 | 0.9776 | 0.7666 | 0.8834 |
190334 | 0.6594 | 0.9354 | 0.7855 | 0.5682 |
121621 | 0.8401 | 0.9549 | 0.7570 | 0.9436 |
154729 | 0.4816 | 0.9293 | 0.3244 | 0.9343 |
205012 | 0.8539 | 0.9651 | 0.9005 | 0.8120 |
205445 | 0.8337 | 0.9887 | 0.8632 | 0.8063 |
222551 | 0.7993 | 0.9394 | 0.7278 | 0.8863 |
223503 | 0.8563 | 0.9834 | 0.8353 | 0.8783 |
224240 | 0.7352 | 0.9379 | 0.6334 | 0.8760 |
205917 | 0.7118 | 0.9691 | 0.6264 | 0.8242 |
225922 | 0.7938 | 0.9492 | 0.8498 | 0.7447 |
231050 | 0.7480 | 0.9386 | 0.7003 | 0.8027 |
183626 | 0.5987 | 0.9463 | 0.4453 | 0.9133 |
161347 | 0.7855 | 0.9466 | 0.7371 | 0.8406 |
130148 | 0.6814 | 0.9690 | 0.5243 | 0.9728 |
130225 | 0.7896 | 0.9383 | 0.6632 | 0.9757 |
References
- World Health Organization. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; de Benoist, B., McLean, E., Egli, I., Cogswell, M., Eds.; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- World Health Organization. The World Health Report 2002; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2008, 12, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koury, M.J. Red blood cell production and kinetics. In Rossi’s Principles of Transfusion Medicine; Wiley: Hoboken, NJ, USA, 2016; pp. 85–96. [Google Scholar] [CrossRef]
- White, J.; Porwit, A.M. Blood and Bone Marrow Pathology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- World Health Organization; Centers for Disease Control and Prevention. Assessing the Iron Status of Populations; World Health Organization, Department of Nutrition for Health and Development: Geneva, Switzerland, 2005.
- Marn, H.; Critchley, J.A. Accuracy of the WHO Haemoglobin Colour Scale for the diagnosis of anaemia in primary health care settings in low-income countries: A systematic review and meta-analysis. Lancet Glob. Health 2016, 4, e251–e265. [Google Scholar] [CrossRef] [Green Version]
- Critchley, J.; Bates, I. Haemoglobin colour scale for anaemia diagnosis where there is no laboratory: A systematic review. Int. J. Epidemiol. 2005, 34, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Dimauro, G.; Girardi, F.; Gelardi, M.; Bevilacqua, V.; Caivano, D. Rhino-Cyt: A System for Supporting the Rhinologist in the Analysis of Nasal Cytology. Intell. Comput. Theor. Appl. Lect. Notes Comput. Sci. 2018, 619–630. [Google Scholar] [CrossRef]
- Dimauro, G.; Ciprandi, G.; Deperte, F.; Girardi, F.; Ladisa, E.; Latrofa, S.; Gelardi, M. Nasal cytology with deep learning techniques. Int. J. Med Informatics 2019, 122, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Triggiani, A.; Bevilacqua, V.; Brunetti, A.; Lizio, R.; Tattoli, G.; Cassano, F.; Soricelli, A.; Ferri, R.; Nobili, F.; Gesualdo, L.; et al. Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: A study using artificial neural networks. Front. Neurosci. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, V.; Pannarale, P.; Abbrescia, M.; Cava, C.; Paradiso, A.; Tommasi, S. Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression. BMC Bioinform. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, V.; Cariello, L.; Columbo, D.; Daleno, D.; Fabiano, M.D.; Giannini, M.; Mastronardi, G.; Castellano, M. Retinal fundus biometric analysis for personal identifications. In Proceedings of the International Conference on Intelligent Computing, Shanghai, China, 5–18 September 2008; Springer: Berlin, Germany, 2008; pp. 1229–1237. [Google Scholar]
- Bevilacqua, V.; D’Ambruoso, D.; Mandolino, G.; Suma, M. A new tool to support diagnosis of neurological disorders by means of facial expressions. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 30–31 May 2011; pp. 544–549. [Google Scholar]
- Dimauro, G.; Caivano, D.; Bevilacqua, V.; Girardi, F.; Napoletano, V. VoxTester, software for digital evaluation of speech changes in Parkinson disease. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016. [Google Scholar] [CrossRef]
- Bevilacqua, V.; Brunetti, A.; Trotta, G.F.; Dimauro, G.; Elez, K.; Alberotanza, V.; Scardapane, A. A novel approach for Hepatocellular Carcinoma detection and classification based on triphasic CT Protocol. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017. [Google Scholar] [CrossRef]
- Dimauro, G.; Nicola, V.D.; Bevilacqua, V.; Caivano, D.; Girardi, F. Assessment of Speech Intelligibility in Parkinson’s Disease Using a Speech-To-Text System. IEEE Access 2017, 5, 22199–22208. [Google Scholar] [CrossRef]
- Dimauro, G.; Caivano, D.; Girardi, F.; Ciccone, M.M. The patient centered Electronic Multimedia Health Fascicle-EMHF. In Proceedings of the IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS), Rome, Italy, 17 October 2014. [Google Scholar] [CrossRef]
- Collings, S.; Thompson, O.; Hirst, E.; Goossens, L.; George, A.; Weinkove, R. Non-Invasive Detection of Anaemia Using Digital Photographs of the Conjunctiva. PLoS ONE 2016, 11, e0153286. [Google Scholar] [CrossRef] [Green Version]
- Townsend, D.; D’Aiuto, F.; Deanfield, J. Super actinic 420 nm light-emitting diodes for estimating relative microvascular hemoglobin oxygen saturation. J. Med. Biol. Eng. 2014, 34, 172–177. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, L.; Sun, Y.; Huang, C.; Li, T. Optimal hemoglobin extinction coefficient data set for near-infrared spectroscopy. Biomed. Opt. Express 2017, 8, 5151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, O.; McMurdy, J.; Jay, G.; Lines, C.; Crawford, G.; Alber, M. Combined reflectance spectroscopy and stochastic modeling approach for noninvasive hemoglobin determination via palpebral conjunctiva. Physiol. Rep. 2014, 2, e00192. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, B. Biophysical Characterization of Genistein in Its Natural Carrier Human Hemoglobin Using Spectroscopic and Computational Approaches. Food Nutr. 2013, 4, 83–92. [Google Scholar]
- Horecker, B. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J. Biol. Chem. 1943, 148, 173–183. [Google Scholar]
- Sanchez-Carrillo, C. Bias due to conjunctiva hue and the clinical assessment of anemia. J. Clin. Epidemiol. 1989, 42, 751–754. [Google Scholar] [CrossRef]
- Kent, A.; Elsing, S.; Hebert, R. Conjunctival vasculature in the assessment of anemia. Ophthalmology 2000, 107, 274–277. [Google Scholar] [CrossRef]
- Kanchi, S.; Sabela, M.I.; Mdluli, P.S.; Bisetty, K. Smartphone based bioanalytical and diagnosis applications: A review. Biosens. Bioelectron. 2018, 102, 136–149. [Google Scholar] [CrossRef]
- Escobedo, P.; Palma, A.J.; Erenas, M.M.; Olmos, A.M.; Carvajal, M.A.; Chavez, M.T.; Gonzalez, M.A.L.; Diaz-Mochon, J.J.; Pernagallo, S.; Capitan-Vallvey, L.F.; et al. Smartphone-Based Diagnosis of Parasitic Infections With Colorimetric Assays in Centrifuge Tubes. IEEE Access 2019, 7, 185677–185686. [Google Scholar] [CrossRef]
- Ogirala, T.; Eapen, A.; Salvante, K.G.; Rapaport, T.; Nepomnaschy, P.A.; Parameswaran, A.M. Smartphone-based colorimetric ELISA implementation for determination of women’s reproductive steroid hormone profiles. Med Biol. Eng. Comput. 2017, 55, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Li, W.; Hawkins, D.; Gernsheimer, T.; Norby-Slycord, C.; Patel, S. HemaApp: Noninvasive Blood Screening of Hemoglobin Using Smartphone Cameras. Getmobile: Mob. Comput. Commun. 2017, 21, 26–30. [Google Scholar] [CrossRef]
- Mannino, R.; Myers, D.; Tyburski, E.; Caruso, C.; Boudreaux, J.; Leong, T.; Clifford, G.; Lam, W. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Sheth, T.; Choudhry, N.; Bowes, M.; Detsky, A. The Relation of Conjunctival Pallor to the Presence of Anemia. J. Gen. Intern. Med. 1997, 12, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rivera, G.; Roman-Gonzalez, A.; Alva-Mantari, A.; Saldivar-Espinoza, B.; Zimic, M.; Barrientos-Porras, F.; Salguedo-Bohorquez, M. Method for the Automatic Segmentation of the Palpebral Conjunctiva using Image Processing. In Proceedings of the IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), Concepcion, Chile, 17–19 Ocotber 2018; pp. 1–4. [Google Scholar]
- Bevilacqua, V.; Dimauro, G.; Marino, F.; Brunetti, A.; Cassano, F.; Maio, A.D.; Nasca, E.; Trotta, G.F.; Girardi, F.; Ostuni, A.; et al. A novel approach to evaluate blood parameters using computer vision techniques. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 12–14 May 2016. [Google Scholar] [CrossRef]
- Bauskar, S.; Jain, P.; Gyanchandani, M. A Noninvasive Computerized Technique to Detect Anemia Using Images of Eye Conjunctiva. Pattern Recognit. Image Anal. 2019, 29, 438–446. [Google Scholar] [CrossRef]
- Dimauro, G.; Caivano, D.; Girardi, F. A new method and a non-invasive device to estimate anaemia based on digital images of the conjunctiva. IEEE Access 2018, 1. [Google Scholar] [CrossRef]
- Dimauro, G.; Guarini, A.; Caivano, D.; Girardi, F.; Pasciolla, C.; Iacobazzi, A. Detecting clinical signs of anaemia from digital images of the palpebral conjunctiva. IEEE Access 2019, 1. [Google Scholar] [CrossRef]
- Dimauro, G.; Baldari, L.; Caivano, D.; Colucci, G.; Girardi, F. Automatic Segmentation of Relevant Sections of the Conjunctiva for Non-Invasive Anemia Detection. In Proceedings of the 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 26–29 June 2018; pp. 1–5. [Google Scholar]
- Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.N.; Lin, C.C.; Chang, C.C. Brain Tumor Detection Using Color-Based K-Means Clustering Segmentation. In Proceedings of the Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007), Kaohsiung, Taiwan, 26–28 November 2007. [Google Scholar] [CrossRef]
- Chitade, A.; Katiyar, S. Color based image segmentation using K-means clustering. Int. J. Eng. Sci. Technol. 2010, 2, 5319–5325. [Google Scholar]
- Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 22. [Google Scholar] [CrossRef] [Green Version]
- Dimauro, G.; De Ruvo, S.; Di Terlizzi, F.; Ruggieri, A.; Volpe, V.; Colizzi, L.; Girardi, F. Estimate of Anemia with New Non-Invasive Systems—A Moment of Reflection. Electronics 2020, 9, 780. [Google Scholar] [CrossRef]
- Tan, K.; Oakley, J. Enhancement Of Color Images In Poor Visibility Conditions. In Proceedings of the ICIP International Conference on Image Processing, Vancouver, BC, Canada, 10–13 September 2000. [Google Scholar] [CrossRef] [Green Version]
- Arce, G.R.; Bacca, J.; Paredes, J.L. Nonlinear Filtering for Image Analysis and Enhancement. Essent. Guide Image Process. 2009, 263–291. [Google Scholar] [CrossRef]
- Graif, M.; Bydder, G.M.; Steiner, R.E.; Niendorf, P.; Thomas, D.; Young, I.R. Contrast-enhanced MR imaging of malignant brain tumors. Am. J. Neuroradiol. 1985, 6, 855–862. [Google Scholar] [PubMed]
- Mammography, O.; Laine, A.; Fan, J.; Yang, W. Wavelets for Contrast Enhancement of Digital Mammography. IEEE Eng. Med. Biol. Mag. 1999, 14. [Google Scholar] [CrossRef]
- Kaya, B.; Can, Y.B.; Timofte, R. Towards Spectral Estimation from a Single RGB Image in the Wild. arXiv 2018, arXiv:cs.CV/1812.00805]. [Google Scholar]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15. [Google Scholar] [CrossRef] [Green Version]
Age Group | No Anemia | Mild Anemia | Moderate Anemia | Severe Anemia |
---|---|---|---|---|
Children 5–11 years | ≥11.5 g/dL | 11–11.4 g/dL | 8–10.9 g/dL | <8 g/dL |
Children 12–14 years | ≥12 g/dL | 11–11.9 g/dL | 8–10.9 g/dL | <8 g/dL |
Non-pregnant women | ≥12 g/dL | 11–11.9 g/dL | 8–10.9 g/dL | <8 g/dL |
Pregnant women | ≥11 g/dL | 10–10.9 g/dL | 7–9.9 g/dL | <7 g/dL |
Men | ≥13 g/dL | 11–12.9 g/dL | 8–10.9 g/dL | <8 g/dL |
F1-Measure | Accuracy | Sensitivity (TPR) | Specificity (TNR) | |
---|---|---|---|---|
Predicted ROIs | 0.7363 | 93.79% | 86.73% | 94.63% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimauro, G.; Simone, L. Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the Conjunctiva. Electronics 2020, 9, 997. https://doi.org/10.3390/electronics9060997
Dimauro G, Simone L. Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the Conjunctiva. Electronics. 2020; 9(6):997. https://doi.org/10.3390/electronics9060997
Chicago/Turabian StyleDimauro, Giovanni, and Lorenzo Simone. 2020. "Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the Conjunctiva" Electronics 9, no. 6: 997. https://doi.org/10.3390/electronics9060997
APA StyleDimauro, G., & Simone, L. (2020). Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the Conjunctiva. Electronics, 9(6), 997. https://doi.org/10.3390/electronics9060997