Improved Kalman Filter Variants for UAV Tracking with Radar Motion Models
Abstract
:1. Introduction
2. Background
2.1. When UAV Meets 5G IoT
2.2. Probing, Recognizing and Tracking of UAVs
2.2.1. Identify by Computer Vision
2.2.2. Detecting and Interfere UAVs by Capturing Remote Control Signals
2.2.3. Detecting UAVs by Extracting the Micro-Doppler Effect [15]
2.2.4. Identification of UAVs Based on 5G Millimeter-Wave Cellular Infrastructure
2.3. Kalman Filter Algorithm and Its Extended Algorithms
2.4. A Special Application Scenario
3. Analysis of Motion Model Consistency during Tracking UAVs
3.1. The Applied Coordinates
3.2. Problem of Interest
4. Extended Algorithms Based on ECEF Coordinates
4.1. EKF Algorithm Based on ECEF Coordinates
4.2. UKF Algorithm Based on ECEF Coordinates
- Calculating the sampling of the measurement vector:
- 2.
- Converting the sample point into the ENU coordinate:
- 3.
- Calculating the measurement prediction:
4.3. UCMKF Algorithm Based on ECEF Coordinates
5. Simulation Experiment and Data Analysis
5.1. Experiment Setup
5.2. Simulation Results and Discussion
6. Computational Complexity and Implementation Cost of Proposed Extended Algorithms
6.1. Computational Complexity
6.2. Implementation Cost
6.3. Scalability Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Calculating the sampling after state transition equation:
- 2.
- Calculating the sampling of predicted value:
- 3.
- Calculating the one-step prediction:
- 4.
- Filtering updates after fetching new measurement value:
References
- Fragkos, G.; Tsiropoulou, E.E.; Papavassiliou, S. Disaster Management and Information Transmission Decision-making in Public Safety Systems. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Jiang, Z.J.; Cheng, X.G.; Peng, Y.Q. Research on UAV identification algorithm based on deeplearning. App. Elec. Tech. 2017, 43, 84–87. [Google Scholar]
- Zhang, D.X. Research on electromagnetic interference mechanism of main remote control data link of UAV. J. Microwave 2016, 32, 90–96. [Google Scholar]
- Zhao, J.C.; Fu, X.R.; Yang, Z.K.; Xu, F.T. Radar-Assisted UAV Detection and Identification Based on 5G in the Internet of Things. Wirel. Commun. Mob. Comput. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.C.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Solomitckii, D.; Gapeyenko, M.; Semkin, V.; Andreev, S.; Koucheryavy, Y. Technologies for efficient amateur drone detection in 5G millimeter-wave cellular infrastructure. IEEE Commun. Mag. 2018, 56, 43–50. [Google Scholar] [CrossRef]
- Schreiber, E.; Heinzel, A.; Peichl, M.; Engel, M.; Wiesbeck, W. Advanced buried object detection by multichannel, UAV/drone carried synthetic aperture radar. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Dill, S.; Schreiber, E.; Engel, M.; Heinzel, A.; Peichl, M. A drone carried multichannel Synthetic Aperture Radar for advanced buried object detection. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Zhu, L.Z.; Zhao, H.C.; Xu, H.L.; Lu, X.Y.; Chen, S.; Zhang, S.N. Classification of Ground Vehicles Based on Micro-Doppler Effect and Singular Value Decomposition. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Zekavat, R.; Buehrer, R.M. Handbook of Position Location: Theory, Practice and Advances; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Zhang, X.C.; Guo, C.J. Cubature Kalman filters: Derivation and extension. Chin. Phys. B. 2013, 22, 128401. [Google Scholar] [CrossRef]
- Liu, Z.X.; Xie, W.X.; Wang, P. Tracking a target using a cubature Kalman filter versus unbiased converted measurements. In Proceedings of the 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 21–25 October 2012; pp. 2130–2133. [Google Scholar]
- Bordonaro, S.; Willett, P.; Bar-Shalom, Y. Decorrelated unbiased converted measurement Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1431–1444. [Google Scholar] [CrossRef]
- Chen, V.C.; Li, F.; Ho, S.S.; Wechsler, H. Micro-Doppler effect in radar: Phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [Google Scholar] [CrossRef]
- Basso, G.F.; De Amorim, T.G.S.; Brito, A.V.; Nascimento, T.P. Kalman Filter with Dynamical Setting of Optimal Process Noise Covariance. IEEE Access 2017, 5, 8385–8393. [Google Scholar] [CrossRef]
- Roth, M.; Hendeby, G.; Gustafsson, F. EKF/UKF maneuvering target tracking using coordinated turn models with polar/Cartesian velocity. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Wu, W.; Jiang, J.; Feng, X.; Qin, X. A sequential converted measurement kalman filter with doppler measurements in ECEF coordinate system. Chin. J. Electron. 2016, 25, 139–145. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. A Survey of Maneuvering Target Tracking—Part III: Measurement Models. In Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, San Diego, CA, USA, 26 November 2001; pp. 423–446. [Google Scholar]
- Elnashar, A.; El-saidny, M.A. LTE and LTE-A Overview. In Practical Guide to LTE-A, VoLTE and IoT: Paving the Way Towards 5G; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Vaughan-Nichols, S.J. Mobile WiMAX: The next wireless battle ground. Computer 2008, 41, 16–18. [Google Scholar] [CrossRef]
- Rong, B.; Qian, Y.; Lu, K.; Chen, H.H.; Guizani, M. Call admission control optimization in WiMAX networks. IEEE Trans. Veh. Technol. 2008, 57, 2509–2522. [Google Scholar] [CrossRef]
- Sun, S.; Kadoch, M.; Gong, L.; Rong, B. Integrating network function virtualization with SDR and SDN for 4G/5G networks. IEEE Netw. 2015, 29, 54–59. [Google Scholar] [CrossRef]
- Qi, F.; Zhu, X.; Mang, G.; Kadoch, M.; Li, W. UAV network and IoT in the sky for future smart cities. IEEE Netw. 2019, 33, 96–101. [Google Scholar] [CrossRef]
- Wang, L.; Che, Y.L.; Long, J.; Duan, L.; Wu, K. Multiple Access MmWave Design for UAV-Aided 5G Communications. IEEE Wirel. Commun. 2019, 26, 64–71. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Hou, S.; Zhao, Z.; Xu, H.; Wu, X.; Wu, Q.; Zhang, R. A Survey on 5G Millimeter Wave Communications for UAV-Assisted Wireless Networks. IEEE Access 2019, 7, 117460–117504. [Google Scholar] [CrossRef]
- Wu, Y.; Rong, B.; Salehian, K.; Gagnon, G. Cloud Transmission: A New Spectrum-Reuse Friendly Digital Terrestrial Broadcasting Transmission System. IEEE Trans. Broadcast. 2012, 58, 329–337. [Google Scholar] [CrossRef]
- Wang, Y.; Phelps, T.; Kibaroglu, K.; Sayginer, M.; Ma, Q.; Rebeiz, G.M. 28 GHz 5G-Based Phased-Arrays for UAV Detection and Automotive Traffic-Monitoring Radars. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 895–898. [Google Scholar]
- Chan, E.C.L.; Baciu, G. Introduction to Wireless Localization: With IPhone SDK Examples; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Xu, G.C.; Xu, Y. GPS: Theory, Algorithms and Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. A New Extension of the Kalman Filter to Nonlinear Systems. In Proceedings of the Signal processing, sensor fusion, and target recognition VI, Orlando, FL, USA, 28 July 1997; pp. 182–193. [Google Scholar]
- Decker, B.L. World geodetic system 1984. In Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning, Austin, TX, USA, 28 April–2 May 1986; pp. 69–92. [Google Scholar]
- Mo, L.B.; Song, X.Q.; Zhou, Y.Y.; Sun, Z.K.; Bar-Shalom, Y. Unbiased converted measurements for tracking. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 1023–1027. [Google Scholar]
Raw Data | EKF-ENU | UKF-ENU | UKF-ECEF | UCMKF-ENU | UCMKF-ECEF | |
---|---|---|---|---|---|---|
0 | 103.271 | 44.598 | 44.597 | 44.597 | 44.691 | 44.691 |
1 | 103.663 | 45.142 | 45.142 | 45.144 | 45.228 | 45.230 |
10 | 118.379 | 50.176 | 50.181 | 44.752 | 50.085 | 44.770 |
20 | 149.673 | 113.863 | 113.880 | 50.803 | 113.751 | 50.804 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Hong, T.; Kadoch, M. Improved Kalman Filter Variants for UAV Tracking with Radar Motion Models. Electronics 2020, 9, 768. https://doi.org/10.3390/electronics9050768
Wei Y, Hong T, Kadoch M. Improved Kalman Filter Variants for UAV Tracking with Radar Motion Models. Electronics. 2020; 9(5):768. https://doi.org/10.3390/electronics9050768
Chicago/Turabian StyleWei, Yuan, Tao Hong, and Michel Kadoch. 2020. "Improved Kalman Filter Variants for UAV Tracking with Radar Motion Models" Electronics 9, no. 5: 768. https://doi.org/10.3390/electronics9050768
APA StyleWei, Y., Hong, T., & Kadoch, M. (2020). Improved Kalman Filter Variants for UAV Tracking with Radar Motion Models. Electronics, 9(5), 768. https://doi.org/10.3390/electronics9050768