Combined Color Semantics and Deep Learning for the Automatic Detection of Dolphin Dorsal Fins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Dataset
- ∼10,000 pictures taken in the Gulf of Taranto (Jonian Sea) between 2013 and 2018
- ∼14,000 pictures taken near Azores islands (Atlantic Ocean) in 2018
2.2. Methodology
- image pre-processing using 3D polyhedron-based color segmentation;
- classification based on CNN.
- Sea color estimation to identify the best model among the with a major voting approach, i.e., the model that masks the highest number of sea pixels:
- Dorsal fins region proposal: a binary mask is computed by filtering the image I with the corresponding 3D polyhedron . Each of the resulting connected components—e.g., according to 8-connectivity—likely contains a dorsal fin.
- median filtering (for salt and pepper noise reduction), holes fill and selection of connected regions based on their area;
- aspect ratio (width/height) dimension analysis to discard regions with high aspect ratio, due to their low probability of representing a dorsal fin useful for photo-ID purposes;
- size refinement of single regions based on their centroids and extreme points in order to include only relevant portions of the fins.
Algorithm 1: Color models update |
|
3. Experiments and Results
4. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlucci, R.; Fanizza, C.; Cipriano, G.; Paoli, C.; Russo, T.; Vassallo, P. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indicat. 2016, 69, 707–721. [Google Scholar] [CrossRef]
- Carlucci, R.; Cipriano, G.; Paoli, C.; Ricci, P.; Fanizza, C.; Capezzuto, F.; Vassallo, P. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estuarine Coastal Shelf Sci. 2018, 204, 177–192. [Google Scholar] [CrossRef]
- Carlucci, R.; Ricci, P.; Cipriano, G.; Fanizza, C. Abundance, activity and critical habitat of the striped dolphin Stenella coeruleoalba in the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Aquatic Conserv. Mar. Freshw. Ecosyst. 2018, 28, 324–336. [Google Scholar] [CrossRef]
- Carlucci, R.; Bandelj, V.; Ricci, P.; Capezzuto, F.; Sion, L.; Maiorano, P.; Tursi, A.; Solidoro, C.; Libralato, S. Exploring spatio-temporal changes in the demersal and benthopelagic assemblages of the north-western Ionian Sea (central Mediterranean Sea). Mar. Ecol. Progress Ser. 2018, 598, 1–19. [Google Scholar] [CrossRef]
- Ciccarese, S.; Carlucci, R.; Ciani, E.; Corcella, E.; Cosentino, A.; Fanizza, C.; Linguiti, G.; Antonacci, R. Cytochrome b marker reveals an independent lineage of Stenella coeruleoalba in the Gulf of Taranto. PLoS ONE 2019, 14, e0213826. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P.; Libralato, S.; Capezzuto, F.; D’Onghia, G.; Maiorano, P.; Sion, L.; Tursi, A.; Solidoro, C.; Carlucci, R. Ecosystem functioning of two marine food webs in the North-Western Ionian Sea (Central Mediterranean Sea). Ecol. Evol. 2019, 9, 10198–10212. [Google Scholar] [CrossRef]
- Carlucci, R.; Baş, A.A.; Liebig, P.; Renò, V.; Santacesaria, F.C.; Bellomo, S.; Fanizza, C.; Maglietta, R.; Cipriano, G. Residency patterns and site fidelity of Grampus griseus (Cuvier, 1812) in the Gulf of Taranto (Northern Ionian Sea, Central-Eastern Mediterranean Sea). Mammal Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Azzolin, M.; Arcangeli, A.; Cipriano, G.; Crosti, R.; Maglietta, R.; Pietroluongo, G.; Saintingan, S.; Zampollo, A.; Fanizza, C.; Carlucci, R. Spatial distribution modelling of striped dolphin (Stenella coeruleoalba) at different geographical scales within the EU Adriatic and Ionian Sea Region, central-eastern Mediterranean Sea. Aquatic Conserv. Mar. Freshw. Ecosyst. 2020. [Google Scholar] [CrossRef]
- Azzellino, A.; Fossi, M.C.; Gaspari, S.; Lanfredi, C.; Lauriano, G.; Marsili, L.; Panigada, S.; Podesta, M. An index based on the biodiversity of cetacean species to assess the environmental status of marine ecosystems. Mar. Environ. Res. 2014, 100, 94–111. [Google Scholar] [CrossRef]
- Pace, D.; Tizzi, R.; Mussi, B. Cetaceans value and conservation in the Mediterranean Sea. J. Biodiv. Endang. Spec. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Arcangeli, A.; Campana, I.; Bologna, M.A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquatic Conserv. Mar. Freshw. Ecosyst. 2017, 27, 995–1010. [Google Scholar] [CrossRef]
- Nowacek, D.P.; Christiansen, F.; Bejder, L.; Goldbogen, J.A.; Friedlaender, A.S. Studying cetacean behaviour: New technological approaches and conservation applications. Anim. Behav. 2016, 120, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Baş, A.A.; Öztürk, B.; Öztürk, A.A. Encounter rate, residency pattern and site fidelity of bottlenose dolphins (Tursiops truncatus) within the Istanbul Strait, Turkey. J. Mar. Biol. Assoc. UK 2019, 99, 1009–1016. [Google Scholar]
- Hartman, K.L.; Wittich, A.; Cai, J.J.; van der Meulen, F.H.; Azevedo, J.M. Estimating the age of Risso’s dolphins (Grampus griseus) based on skin appearance. J. Mammal. 2016, 97, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Hartman, K.L. Risso’s Dolphin: Grampus griseus. In Encyclopedia of Marine Mammals; Academic Press: Cambridge, MA, USA, 2018; pp. 824–827. [Google Scholar]
- Maglietta, R.; Renò, V.; Cipriano, G.; Fanizza, C.; Milella, A.; Stella, E.; Carlucci, R. DolFin: An innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Sci. Rep. 2018, 8, 17185. [Google Scholar] [CrossRef]
- Renò, V.; Dimauro, G.; Labate, G.; Stella, E.; Fanizza, C.; Cipriano, G.; Carlucci, R.; Maglietta, R. A SIFT-based software system for the photo-identification of the Risso’s dolphin. Ecol. Inform. 2019, 50, 95–101. [Google Scholar] [CrossRef]
- Maglietta, R.; Bruno, A.; Renò, V.; Dimauro, G.; Stella, E.; Fanizza, C.; Bellomo, S.; Cipriano, G.; Tursi, A.; Carlucci, R. The promise of machine learning in the Risso’s dolphin Grampus griseus photo-identification. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 183–187. [Google Scholar] [CrossRef]
- Renò, V.; Dimauro, G.; Labate, G.; Stella, E.; Fanizza, C.; Capezzuto, F.; Cipriano, G.; Carlucci, R.; Maglietta, R. Exploiting species-distinctive visual cues towards the automated photo-identification of the Risso’s dolphin Grampus griseus. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 125–128. [Google Scholar] [CrossRef]
- Van Tienhoven, A.; Den Hartog, J.; Reijns, R.; Peddemors, V. A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus. J. Appl. Ecol. 2007, 44, 273–280. [Google Scholar] [CrossRef]
- Arzoumanian, Z.; Holmberg, J.; Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks Rhincodon typus. J. Appl. Ecol. 2005, 42, 999–1011. [Google Scholar] [CrossRef]
- Abdeldaim, A.M.; Houssein, E.H.; Hassanien, A.E. Color image segmentation of fishes with complex background in water. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2018), Cairo, Egypt, 22–24 February 2018; pp. 634–643. [Google Scholar]
- Coleman, T.; Moon, J. A biometric for shark dorsal fins based on boundary descriptor matching. In Proceedings of the 32nd International Conference on Computer Applications in Industry and Engineering, San Diego, CA, USA, 30 September–2 October 2019; pp. 63–71. [Google Scholar]
- Gilman, A.; Hupman, K.; Stockin, K.A.; Pawley, M.D. Computer-assisted recognition of dolphin individuals using dorsal fin pigmentations. In Proceedings of the IEEE 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), Palmerston North, New Zealand, 21–22 November 2016; pp. 1–6. [Google Scholar]
- Carvajal-Gámez, B.E.; Trejo-Salazar, D.B.; Gendron, D.; Gallegos-Funes, F.J. Photo-id of blue whale by means of the dorsal fin using clustering algorithms and color local complexity estimation for mobile devices. EURASIP J. Image Video Process. 2017, 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Buehler, P.; Carroll, B.; Bhatia, A.; Gupta, V.; Lee, D.E. An automated program to find animals and crop photographs for individual recognition. Ecol. Inform. 2019, 50, 191–196. [Google Scholar] [CrossRef]
- Dimauro, G.; Caivano, D.; Bevilacqua, V.; Girardi, F.; Napoletano, V. VoxTester, software for digital evaluation of speech changes in Parkinson disease. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Dimauro, G.; Caivano, D.; Girardi, F. A new method and a non-invasive device to estimate anemia based on digital images of the conjunctiva. IEEE Access 2018, 6, 46968–46975. [Google Scholar] [CrossRef]
- Dimauro, G.; Baldari, L.; Caivano, D.; Colucci, G.; Girardi, F. Automatic segmentation of relevant sections of the conjunctiva for non-invasive anemia detection. In Proceedings of the IEEE 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 26–29 June 2018; pp. 1–5, ISBN 978-953290083-5. [Google Scholar]
- Dimauro, G.; Girardi, F.; Gelardi, M.; Bevilacqua, V.; Caivano, D. Rhino-Cyt: A system for supporting the rhinologist in the analysis of nasal cytology. In Proceedings of the International Conference on Intelligent Computing (ICIC 2018), Wuhan, China, 15–18 August 2018; pp. 619–630. [Google Scholar]
- Dimauro, G.; Ciprandi, G.; Deperte, F.; Girardi, F.; Ladisa, E.; Latrofa, S.; Gelardi, M. Nasal cytology with deep learning techniques. Int. J. Med. Inform. 2019, 122, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing And Computer-Assisted Intervention (MICCAI 2015), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Nanni, L.; Lumini, A.; Ghidoni, S.; Maguolo, G. Stochastic Selection of Activation Layers for Convolutional Neural Networks. Sensors 2020, 20, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weideman, H.J.; Jablons, Z.M.; Holmberg, J.; Flynn, K.; Calambokidis, J.; Tyson, R.B.; Allen, J.B.; Wells, R.S.; Hupman, K.; Urian, K.; et al. Integral curvature representation and matching algorithms for identification of dolphins and whales. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2831–2839. [Google Scholar]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R.B. Deep learning for coral classification. In Handbook of Neural Computation; Academic Press: Cambridge, MA, USA, 2017; pp. 383–401. [Google Scholar]
- Lumini, A.; Nanni, L.; Maguolo, G. Deep learning for plankton and coral classification. Appl. Comput. Inform. 2019, in press. [Google Scholar] [CrossRef]
- Bouma, S.; Pawley, M.D.; Hupman, K.; Gilman, A. Individual common dolphin identification via metric embedding learning. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018; pp. 1–6. [Google Scholar]
- Pollicelli, D.; Coscarella, M.; Delrieux, C. RoI detection and segmentation algorithms for marine mammals photo-identification. Ecol. Inform. 2020, 56, 101038. [Google Scholar] [CrossRef]
- Renò, V.; Fanizza, C.; Dimauro, G.; Telesca, V.; Dibari, P.; Gala, G.; Mosca, N.; Cipriano, G.; Carlucci, R.; Maglietta, R. Predictive models for abundance estimation and distribution maps of the striped dolphin Stenella coeruleoalba and the bottlenose dolphin Tursiops truncatus in the Northern Ionian Sea (North-eastern Central Mediterranean). In Multimodal Sensing: Technologies and Applications. International Society for Optics and Photonics; SPIE Optical Metrology: Munich, Germany, 2019; Volume 11059, p. 1105917. [Google Scholar]
- Maglietta, R.; Renò, V.; Caccioppoli, R.; Seller, E.; Bellomo, S.; Santacesaria, F.C.; Colella, R.; Cipriano, G.; Stella, E.; Hartman, K.; et al. Convolutional Neural Networks for Risso’s dolphins identification. IEEE Access 2020. [Google Scholar] [CrossRef]
- Capezzuto, F.; Carlucci, R.; Maiorano, P.; Sion, L.; Battista, D.; Giove, A.; Indennidate, A.; Tursi, A.; D’Onghia, G. The bathyal benthopelagic fauna in the north-western Ionian Sea: Structure, patterns and interactions. Chem. Ecol. 2010, 26, 199–217. [Google Scholar] [CrossRef]
- Harris, P.T.; Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 2011, 285, 69–86. [Google Scholar] [CrossRef]
- Senatore, T.; Pescatore, M.R. A comparison between a present-day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennines (Italy). Forel. Basins (Spec. Publ. 8 IAS) 2009, 36, 169. [Google Scholar]
- Rossi, S.; Gabbianelli, G. Geomorfologia del golfo di Taranto. Boll. Della Soc. Geol. Ital. 1978, 97, 423–437. [Google Scholar]
- Sellschopp, J.; Álvarez, A. Dense low-salinity outflow from the Adriatic Sea under mild (2001) and strong (1999) winter conditions. J. Geophys. Res. Oceans 2003, 108, PBE5-1. [Google Scholar] [CrossRef] [Green Version]
- Bakun, A.; Agostini, V.N. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci. Mar. 2001, 65, 243–257. [Google Scholar] [CrossRef]
- Milligan, T.G.; Cattaneo, A. Sediment dynamics in the western Adriatic Sea: From transport to stratigraphy. Cont. Shelf Res. 2007, 3, 287–295. [Google Scholar] [CrossRef]
- Matarrese, R.; Chiaradia, M.T.; Tijani, K.; Morea, A.; Carlucci, R. ‘Chlorophyll a’multi-temporal analysis in coastal waters with MODIS data. Ital. J. Remote Sens./Riv. Ital. Telerilev. 2011. [Google Scholar] [CrossRef]
- Carlucci, R.; Battista, D.; Capezzuto, F.; Serena, F.; Sion, L. Occurrence of the basking shark Cetorhinus maximus (Gunnerus, 1765) (Lamniformes: Cetorhinidae) in the central-eastern Mediterranean Sea. Ital. J. Zool. 2014, 81, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.S.; Hawkins, S.; Monteiro, L.R.; Alves, M.; Isidro, E.J. Marine research, resources and conservation in the Azores. Aquatic Conserv. Mar. Freshw. Ecosyst. 1995, 5, 311–354. [Google Scholar] [CrossRef]
- Johnson, J.; Stevens, I. A fine resolution model of the eastern North Atlantic between the Azores, the Canary Islands and the Gibraltar Strait. Deep Sea Res. Part I Oceanogr. Res. Papers 2000, 47, 875–899. [Google Scholar] [CrossRef]
- Morton, B.; Britton, J.; Frias Martins, A. Coastal Ecology Of the Azores; Sociedade Afonso Chaves: Ponta Delgada, Portugal, 1998. [Google Scholar]
- Hartman, K.L.; Fernandez, M.; Wittich, A.; Azevedo, J.M.N. Sex differences in residency patterns of Risso’s dolphins (Grampus griseus) in the Azores: Causes and management implications. Mar. Mammal Sci. 2015, 31, 1153–1167. [Google Scholar] [CrossRef]
- Hartman, K.L.; Fernandez, M.; Azevedo, J.M. Spatial segregation of calving and nursing Risso’s dolphins (Grampus griseus) in the Azores, and its conservation implications. Mar. Biol. 2014, 161, 1419–1428. [Google Scholar] [CrossRef]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L.; Borchers, D.L.; Thomas, L. Introduction to Distance Sampling Estimating Abundance of Biological Populations; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Hartman, K.L.; Visser, F.; Hendriks, A.J. Social structure of Risso’s dolphins (Grampus griseus) at the Azores: A stratified community based on highly associated social units. Can. J. Zool. 2008, 86, 294–306. [Google Scholar] [CrossRef]
- Renò, V.; Mosca, N.; Marani, R.; Nitti, M.; D’Orazio, T.; Stella, E. Convolutional neural networks based ball detection in tennis games. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1758–1764. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. Available online: http://www.deeplearningbook.org (accessed on 10 April 2020).
- Venkatanath, N.; Praneeth, D.; Bh, M.C.; Channappayya, S.S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the IEEE 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015; pp. 1–6. [Google Scholar]
- Iqbal, H. HarisIqbal88/PlotNeuralNet v1.0.0. 2018. Available online: https://zenodo.org/record/2526396#.XrD0ciPdNPY (accessed on 10 April 2020).
Model Name | L | a | b |
---|---|---|---|
Azure | |||
Blue-Gray | |||
Dark Blue | |||
Light Blue-Green | |||
Gray |
Model Name | N Points | Median L | Mad L | Median a | Mad a | Median b | Mad b |
---|---|---|---|---|---|---|---|
Azure | 16,765 | 25.608 | 15.436 | 2.112 | 2.0381 | −9.5608 | 3.3382 |
Blue-Gray | 8761 | 36.219 | 13.191 | 3.0862 | 2.0364 | −0.27897 | 5.9787 |
Dark Blue | 5366 | 26.179 | 12.152 | 1.8735 | 1.2887 | −7.6542 | 3.2112 |
Light Blue-Green | 19,149 | 35.168 | 13.606 | 1.976 | 1.976 | −3.963 | 7.5908 |
Gray | 3917 | 32.423 | 13.21 | 1.8309 | 1.7932 | −1.6679 | 1.418 |
Accuracy | Sensitivity | Specificity |
---|---|---|
Accuracy | Sensitivity | Specificity |
---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renò, V.; Losapio, G.; Forenza, F.; Politi, T.; Stella, E.; Fanizza, C.; Hartman, K.; Carlucci, R.; Dimauro, G.; Maglietta, R. Combined Color Semantics and Deep Learning for the Automatic Detection of Dolphin Dorsal Fins. Electronics 2020, 9, 758. https://doi.org/10.3390/electronics9050758
Renò V, Losapio G, Forenza F, Politi T, Stella E, Fanizza C, Hartman K, Carlucci R, Dimauro G, Maglietta R. Combined Color Semantics and Deep Learning for the Automatic Detection of Dolphin Dorsal Fins. Electronics. 2020; 9(5):758. https://doi.org/10.3390/electronics9050758
Chicago/Turabian StyleRenò, Vito, Gianvito Losapio, Flavio Forenza, Tiziano Politi, Ettore Stella, Carmelo Fanizza, Karin Hartman, Roberto Carlucci, Giovanni Dimauro, and Rosalia Maglietta. 2020. "Combined Color Semantics and Deep Learning for the Automatic Detection of Dolphin Dorsal Fins" Electronics 9, no. 5: 758. https://doi.org/10.3390/electronics9050758
APA StyleRenò, V., Losapio, G., Forenza, F., Politi, T., Stella, E., Fanizza, C., Hartman, K., Carlucci, R., Dimauro, G., & Maglietta, R. (2020). Combined Color Semantics and Deep Learning for the Automatic Detection of Dolphin Dorsal Fins. Electronics, 9(5), 758. https://doi.org/10.3390/electronics9050758