A Parallel Timing Synchronization Structure in Real-Time High Transmission Capacity Wireless Communication Systems
Abstract
:1. Introduction
2. Shortages of Existing Parallel Architectures
2.1. Non-Real Time
2.2. High Hardware Resource Consumption
3. Improved Parallel Architecture
3.1. Parallel Preprocess
3.1.1. Parallel FIFO
3.1.2. Resource-Saving Data Rearrangement
3.1.3. Data Select
3.2. Parallel Dual Feedback Loop
3.2.1. Parallel Module
- 1
- Coefficient Multiplier-Free Interpolator
- 2
- Error Detector
- 3
- Simplified NCO
3.2.2. High Precision Loop Filter
4. Simulation and Fpga Implementation
4.1. MATLAB Simulation
4.2. FPGA Implementation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022; White Paper Cisco Public: San Jose, CA, USA, 2019. [Google Scholar]
- Parhi, K.K. VLSI Digital Signal Processing: Systems Design and Implementation; A Wiley-Interscience Publication: Hoboken, NJ, USA, 1999; pp. 255–311. [Google Scholar]
- Blin, S.; Tohme, L.; Coquillat, D.; Horiguchi, S.; Minamikata, Y.; Hisatake, S.; Nouvel, P.; Cohen, T.; Pénarier, A.; Cano, F.; et al. Wireless Communication at 310 GHz using GaAs high-Electron-Mobility Transistors for Detection. J. Commun. Netw. 2013, 15, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Antes, J.; König, S.; Leuther, A.; Massler, H.; Leuthold, J.; Ambacher, O.; Kallfass, I. 220 GHz wireless data transmission experiments up to 30 Gbit/s. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Song, H.; Kim, J.; Ajito, K.; Kukutsu, N.; Yaita, M. 50-Gbps Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz. IEEE Trans. Microw. Theory Tech. 2014, 62, 600–609. [Google Scholar] [CrossRef]
- Yang, T.; Shi, C.; Chen, X.; Zhang, M.; Ji, Y.; Hua, F.; Chen, Y. Linewidth-tolerant and multi-format carrier phase estimation schemes for coherent optical m-QAM flexible transmission systems. Opt. Express 2018, 26, 10599–10615. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhou, M.; Reviriego, P.; Maestro, J.A. Efficient Fault-Tolerant Design for Parallel Matched Filters. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 366–370. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X. Parallel implementation of all-digital timing recovery for high-speed and real-time optical coherent receivers. Opt. Express 2011, 19, 9282–9295. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Lin, C.; Lu, B.; Miao, L.; Hao, X.; Wang, Z.; Jiang, Y.; Lei, W.; Den, X.; Chen, H.; et al. A 21 km 5 Gbps real time wireless communication system at 0.14 THz. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar]
- Lin, C.; Zhang, J.; Shao, B. A Multi-Gigabit Parallel Demodulator and Its FPGA Implementation. IEICE TRANSACTIONS Fundam. Electron. Commun. Comput. Sci. 2012, 95, 1412–1415. [Google Scholar] [CrossRef]
- Lin, C.; Shao, B.; Zhang, J. A high data rate parallel demodulator suited to FPGA implementation. In Proceedings of the 2010 International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, China, 6–8 December 2010; pp. 1–4. [Google Scholar]
- Cheng, C.; Parhi, K.K. Hardware Efficient Fast Parallel FIR Filter Structures Based on Interated Short Convolution. IEEE Trans. Circuits Syst. I 2004, 51, 1492–1500. [Google Scholar] [CrossRef]
- Cheng, C.; Parhi, K.K. Low Cost Parallel Adaptive Filter Structures. In Proceedings of the Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 30 October–2 November 2005; pp. 354–358. [Google Scholar]
- Gardner, F.M. Interpolation in digital modems. I. Fundamentals. IEEE Trans. Commun. 1993, 41, 501–507. [Google Scholar] [CrossRef]
- Erup, L.; Gardner, F.M.; Harris, R.A. Interpolation in digital modems. II. Implementation and performance. IEEE Trans. Commun. 1993, 41, 998–1008. [Google Scholar] [CrossRef]
- Gardner, F. A BPSK/QPSK Timing-Error Detector for Sampled Receivers. IEEE Trans. Commun. 1986, 34, 423–429. [Google Scholar] [CrossRef]
- Oerder, M.; Meyr, H. Digital filter and square timing recovery. IEEE Trans. Commun. 1988, 36, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, X.; Zhou, W.; Fan, Y.; Zhu, H.; Li, Z. All-Digital Timing Recovery and Adaptive Equalization for 112Gbit/s POLMUX-NRZ-DQPSK Optical Coherent Receivers. IEEE/OSA J. Opt. Commun. Netw. 2010, 2, 984–990. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, X.; Zhou, W.; Zhou, X. Parallel processing clock synchronization-dispersion equalization combining loop in 112Gb/s optical coherent receivers. In Proceedings of the 19th Annual Wireless and Optical Communications Conference (WOCC 2010), Shanghai, China, 14–15 May 2010; pp. 1–4. [Google Scholar]
- Lin, C.; Zhang, J.; Shao, B. A High Speed Parallel Timing Recovery Algorithm and Its FPGA Implementation. In Proceedings of the 2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing, Hubei, China, 22–23 October 2011; pp. 63–66. [Google Scholar]
- Yan, X.; Wang, Q.; Hao, X.; Qin, K. A High-Efficiency Multiplierless Symbol Synchronization Algorithm for IEEE802.11x WLANs. Wirel. Pers. Commun. 2017, 94, 1737–1749. [Google Scholar] [CrossRef]
In [10] | Associated Index |
---|---|
index(i) | index(i) |
index(i+1) | index(i)+1 |
⋯ | ⋯ |
index(i+m-1) | index(i)+m-1 |
Parameter | LUT | FF | |
---|---|---|---|
Utilization | In [10] | 21,248 (7.00%) | 3175 (0.52%) |
Proposed | 6881 (2.27%) | 2531 (0.42%) | |
Available | 303,600 | 607,200 |
Resource | Utilization | Available | Utilization% |
---|---|---|---|
LUT | 35,228 | 303,600 | 11.60 |
LUTRAM | 1375 | 130,800 | 1.05 |
FF | 55,950 | 607,200 | 9.21 |
BRAM | 143 | 1030 | 13.88 |
DSP48e | 480 | 2800 | 17.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Lin, C.; Wu, Q. A Parallel Timing Synchronization Structure in Real-Time High Transmission Capacity Wireless Communication Systems. Electronics 2020, 9, 652. https://doi.org/10.3390/electronics9040652
Hao X, Lin C, Wu Q. A Parallel Timing Synchronization Structure in Real-Time High Transmission Capacity Wireless Communication Systems. Electronics. 2020; 9(4):652. https://doi.org/10.3390/electronics9040652
Chicago/Turabian StyleHao, Xin, Changxing Lin, and Qiuyu Wu. 2020. "A Parallel Timing Synchronization Structure in Real-Time High Transmission Capacity Wireless Communication Systems" Electronics 9, no. 4: 652. https://doi.org/10.3390/electronics9040652
APA StyleHao, X., Lin, C., & Wu, Q. (2020). A Parallel Timing Synchronization Structure in Real-Time High Transmission Capacity Wireless Communication Systems. Electronics, 9(4), 652. https://doi.org/10.3390/electronics9040652