# Carbon-Based Composite Microwave Antennas

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Carbon Composite Materials in Antenna Technology

## 3. Dipole Antennas

#### 3.1. Specialized Dipole Antennas at 200 MHz and 600 MHz

#### 3.2. Standard Dipole Antennas at 540 MHz

## 4. Horn Antennas

#### 4.1. Manufacturing Horn Antennas

#### 4.2. Radiation Properties of the Horn Antennas

#### 4.3. Polarization Characteristics of Horn Antennas

## 5. Conclusions

## 6. Patents

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

SWR | Standing wave ratio |

GCM | Graphene-containing carbon composite material |

## References

- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Giem, A.K. Two-dimensional atomic crystals. Proc. Nat. Acad. Sci. USA
**2005**, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed][Green Version] - Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubbonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science
**2004**, 306, 666–669. [Google Scholar] [CrossRef] [PubMed][Green Version] - Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B
**2004**, 108, 19912–19915. [Google Scholar] [CrossRef][Green Version] - Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech.
**2008**, 3, 563–568. [Google Scholar] [CrossRef][Green Version] - Engheta, N.; Ziolkowski, R.W. (Eds.) Metamaterials: Physics and Engineering Explorations; Wiley-IEEE: Hoboken, NJ, USA, 2006. [Google Scholar]
- Slyusar, V.I. Metamaterials in antenna technology: History and basic principles. Electronika NTV
**2009**, 7, 70–79. (In Russian) [Google Scholar] - Lier, E. Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns. IEEE Antennas. Propag. Mag.
**2010**, 52, 31–39. [Google Scholar] [CrossRef] - Tang, M.C.; Xiao, S.; Wang, B.; Guan, J.; Deng, T. Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs. IEEE Antennas. Propag. Mag.
**2011**, 53, 31–41. [Google Scholar] [CrossRef] - Vendik, I.B.; Vendik, O.G. Metamaterials and their application in microwaves: A Review. Tech. Phys.
**2013**, 58, 1–24. [Google Scholar] [CrossRef] - Veselago, V.G. The electrodynamics of substances with simultaneous negative values of ε and μ. Sov. Phys. Uspekhi
**1967**, 10, 509–514. [Google Scholar] [CrossRef] - Temelkuara, B.; Bayindir, M.; Ozbay, E.; Biswas, R.; Sigalas, M.M.; Tuttle, G.; Ho, K.M. Photonic crystal-based resonant antenna with a very high directivity. J. Appl. Phys.
**2000**, 87, 603–605. [Google Scholar] [CrossRef][Green Version] - Ge, Z.C.; Zhang, W.X.; Liu, Z.G.; Gu, Y.Y. Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover. Microw. Opt. Technol. Lett.
**2006**, 48, 1272–1274. [Google Scholar] [CrossRef] - Marques, R.; Martin, F.; Sorolla, M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications; Wiley Series in Microwave and Optical Engineering; Wiley-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bychkov, I.V.; Zotov, I.S.; Fedii, A.A. Studing microwave transmission and reflection in multilayer CaSO
_{4}·2H_{2}O—Graphite composites. Tech. Phys. Lett.**2011**, 37, 689–691. [Google Scholar] [CrossRef] - Weily, A.R.; Horvath, L.; Esselle, K.P.; Sanders, B.C.; Bird, T.S. A planar resonator antenna based on a woodpile EBG material. IEEE Trans. Antennas Propag.
**2005**, 53, 216–223. [Google Scholar] [CrossRef] - Caiazzo, M.; Maci, S.; Engheta, N. A metamaterial surface for compact cavity resonators. IEEE Antennas Wirel. Propag. Lett.
**2004**, 3, 261–264. [Google Scholar] [CrossRef] - Zhigang, X.; Xu, H. Low refractive metamaterials for gain enhancement of horn antenna. J. Infrared Millim. Terahertz Waves
**2009**, 30, 225–232. [Google Scholar] - Lashab, M.; Hraga, H.I.; Read, A.A.; Zebiri, C.; Benabdelaziz, F.; Jones, S.M.R. Horn antennas loaded with metamaterial for UWB applications. PIERS Online
**2011**, 7, 161–165. [Google Scholar] - Lai, A.; Caloz, C.; Itoh, T. Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag.
**2004**, 5, 34–50. [Google Scholar] [CrossRef] - Hu, J.; Yan, C.S.; Lin, Q.C. A new patch antenna with metamaterial cover. J. Zhejiang Univ. Sci. A
**2006**, 7, 89–94. [Google Scholar] [CrossRef] - Rybin, V.V.; Kuznetsov, P.A.; Ulin, I.V.; Farmakovskii, B.V.; Bakhareva, V.E. Nanomaterials structural and functional class. Vopr. Mater.
**2006**, 1, 169–178. (In Russian) [Google Scholar] - Maher, F.E.; Strong, V.; Dubin, S.; Kaner, R.B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science
**2012**, 335, 1326–1330. [Google Scholar] - Dugin, N.A.; Zaboronkova, T.M.; Chugurin, V.V.; Myasnikov, E.N. Antenna-Feeder the Microwave Device From Graphene-Containing Carbon Composite Material and Its Manufactoring. RF Patent N–RU2016/2577918 (C1), 18 February 2016. [Google Scholar]
- Dugin, N.A.; Zaboronkova, T.M.; Myasnikov, E.N.; Belyaev, G.R.; Lobastov, V.V. Electrodynamic characteristics of dipole antennas made of graphene-containing carbon composite materials. J. Commun. Technol. Electron.
**2018**, 63, 864–867. [Google Scholar] [CrossRef] - Dugin, N.A.; Zaboronkova, T.M.; Myasnikov, E.N. Using carbon-based composite materials for manufactoring C-range antenna devices. Latv. J. Phys. Tech. Sci.
**2016**, 53, 17–24. [Google Scholar] - Dugin, N.A.; Zaboronkova, T.M.; Myasnikov, E.N. Antenna-waveguide microwave devices of carbon composition materials. Tech. Phys. Lett.
**2016**, 42, 598–600. [Google Scholar] [CrossRef] - Ovechkin, G.I.; Golovanova, V.V.; Dvirnyi, G.V. Transformable Antenna of the Umbrella-Type Spacecraft. RF Patent N-RU2011/2427949 (C1), 20 April 2011. [Google Scholar]
- Chung-Yen Yang Method of Forming Antenna by Utilizing Graphene. U.S. Patent N-US2013/0004658 (A1), 3 January 2013.
- Gi, C.C.; Soon, O.S. Metamaterial And Manufacturing Method at the Same. U.S. Patent N-US2012/013989 (A1), 25 January 2012. [Google Scholar]
- Bychkov, I.V.; Zotov, I.S.; Fedii, A.A. Reflection properties of electromagnetic crystal based composite material. In Proceedings of the 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, 31 August–4 September 2009; p. 602. [Google Scholar]
- Kazantseva, N.E.; Ryvkina, N.G.; Chmutin, I.A. Promising materials for microwave absorbers. J. Commun. Technol. Electron.
**2003**, 48, 173–184. [Google Scholar] - Giboney, K.S. Gap-Mode Waveguide. U.S. Patent N-US2012/0243823 (A1), 27 September 2012. [Google Scholar]
- Dugin, N.A.; Zaboronkova, T.M.; Chugurin, V.V.; Myasnikov, E.N. Study of electromagnetic properties of multylayer graphene fractal structures by remote method. In Proceedings of the 21th annual International Conference on Advanced Laser Technologies, Budva, Montenegro, 16–20 Spetember 2013; p. 192. [Google Scholar]
- Kudrin, A.V.; Zaitseva, A.S.; Zaboronkova, T.M.; Krafft, C. Analysis of a strip antenna located on the interface between a uniaxial plasma and an isotropic medium. In Proceedings of the 11th European Conference on Antennas and Propagation, Paris, France, 19–24 March 2017; pp. 3574–3578. [Google Scholar]
- Kudrin, A.V.; Zaitseva, A.S.; Zaboronkova, T.M.; Krafft, C. Current distribution and input impedance of a circular loop antenna located on the surface of a gyromagnetic cylinder. In Proceedings of the International Conference Days on Diffraction 2018, St-Petersburg, Russia, 4–8 June 2018; pp. 192–197. [Google Scholar]
- Kudrin, A.V.; Zaboronkova, T.M.; Zaitseva, A.S.; Spagnolo, B. Theory of strip antenna located at a plane interface of a uniaxial metamaterial and an isotropic magnetodielectric. IEEE Trans. Ant. Prop.
**2020**, 68, 195–206. [Google Scholar] [CrossRef] - Zaboronkova, T.M.; Dugin, N.A.; Myasnikov, E.N. Microwave horn antenna made of a graphene-containing carbon composite material. In Proceedings of the 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 13–17 April 2015; pp. 7228220-1–7228220-2. [Google Scholar]
- Dugin, N.A.; Belyaev, G.R.; Zaboronkova, T.M.; Lobastov, V.G. Polarization characteristics of graphene-containing composite horn antenna. In Proceedings of the International Conference Days on Diffraction 2018, St-Petersburg, Russia, 4–8 June 2018; pp. 88–92. [Google Scholar]
- Dugin, N.A.; Zaboronkova, T.M.; Myasnikov, E.N.; Belyaev, G.R. Electrodynamic characteristics of horn microwave antennas made of graphene-containing carbon–composite materials. Tech. Phys.
**2018**, 63, 268–273. [Google Scholar] [CrossRef] - Available online: https://zoltek.com/products/px35/ (accessed on 20 January 2020).
- Tseitlin, N.M. Methods of Measurement of Antenna Characteristics; Radio i Svyaz’: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Felsen, L.B.; Marcuvitz, N. Radiation and Scattering of Waves; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]

**Figure 1.**View of the dipole antenna operating at 600 MHz with its radiation elements made from carbon fiber.

**Figure 2.**Radiation elements of the dipole antenna, with longitudinal laying on the dielectric insert (top panel) and circular winding on the dielectric insert (bottom panel).

**Figure 3.**Dipole antenna operating at 200 MHz. (

**a**) SWRs and (

**b**) Square of the normalized field amplitude of the emitted signal as a function of frequency for 3 different prototypes with (i) metal radiating elements (curve 1, solid line), (ii) a longitudinal laying of the fiber on the fluoroplastic insert (curve 2, dashed line), and (iii) curricular winding of the fiber on the duralumin insert (curve 3, dashed-dotted line). ${E}_{\mathrm{max}}$ is the maximum value of the field amplitude.

**Figure 4.**Dipole antenna operating at 600 MHz. (

**a**) Radiation pattern and (

**b**) Square of the normalized field amplitude of the emitted signal as a function of frequency for four different prototypes with (i) metal radiating elements (solid line), (ii) a longitudinal laying of the carbon fiber on the duralumin base (dashed line), (iii) a curricular winding of the fiber on the fluoroplastic insert (short dashed-dotted line), and (iv) a curricular winding of the fiber on the duralumin insert (long dashed-dotted line). ${E}_{\mathrm{max}}$ is the maximum value of the field amplitude.

**Figure 5.**Dipole antenna at 540 MHz. (

**a**) SWRs and (

**b**) Square of the normalized field amplitude of the emitted signal as a function of frequency for six different protopypes with the following charcateristics: (i) metal radiating elements and metal reflector (solid line), (ii) metal radiating elements and carbon fabric reflector (long-dashed line), (iii) curricular winding of the carbon fiber and metal reflector (dashed line), (iv) longitudinal laying of the carbon fiber and metal reflector (dashed-dotted line), (v) curricular winding of the fiber and carbon fabric reflector (dotted line), and (vi) longitudinal laying of the fiber and carbon fabric reflector (short-dashed line). ${E}_{\mathrm{max}}$ is the maximum value of the field amplitude.

**Figure 7.**View of C-range horn antennas made from fabric (right), metal (center) and fiber (equipped with elements for antenna feeding, left).

**Figure 8.**View of L-range horn antennas with polarization units made from fiber (left) and metal (right).

**Figure 9.**SWRs of C-range horn antennas made from (

**a**) Fiber (dashed line) and metal (solid line), and (

**b**) Fiber (dashed line) and fabric (solid line).

**Figure 10.**Square of the normalized field amplitude of the emitted signal as a function of frequency of C-range antennas made from fiber (dashed line), fabric (thin solid line), and metal (thick solid line). ${E}_{\mathrm{max}}$ is the maximum value of the field amplitude.

**Figure 11.**SWRs of L-range antennas made from metal (solid line) and fiber (dashed line), (

**a**) without and (

**b**) with a polarization unit.

**Figure 12.**Radiation patterns of L-range antennas made from metal (solid line) and fiber (dashed line). ${E}_{\mathrm{max}}$ is the maximum value of the field amplitude.

**Figure 13.**Geometry of the horn antenna with a polarization unit (left panel) and its cross-section showing the two orthogonal dipoles ${d}_{1}$ and ${d}_{2}$ used for the measure of the polarization (right panel).

**Figure 14.**Square of the normalized amplitude of the signal received by the composite horn antenna as a function of the rotation angle $\varphi $ at $1.55$ GHz (solid line) and $1.575$ GHz (dashed line).

**Figure 15.**Square of the normalized amplitude of the signal received by the metal horn antenna as a function of the rotation angle $\varphi $ at $1.55$ GHz: measured signal (dashed line) and interpolation by a sinusoidal function of $\varphi $ (solid line).

**Table 1.**Main antenna properties and parameters in the working frequency interval, for the composite prototype (with curricular winding of the fiber) and its metal analog (see Section 3 and Section 4 for more details). DA: dipole antenna; HA: horn antenna; PU: polarization unit; ${E}_{max}^{\left(GCM\right)}$ and ${E}_{max}^{\left(Met\right)}$ are the maximum values of the field amplitude of the emitted signal for the GCM prototype and its metal analog, respectively; the sign “*” denotes the weight of the reflector of the dipole antenna at 540 MHz; the reflector of dipole antennas at 200 MHz and 600 MHz are made from metal; the weight is indicated for GCM antennas manufactured in laboratory conditions (in industrial conditions it may be two times smaller).

Antenna Properties | Material Type | DA 200 MHz | DA 600 MHz | DA 540 MHz | HA 1.6 GHz without PU | HA 1.6 GHz with PU | HA 5 GHz without PU |
---|---|---|---|---|---|---|---|

SWR${}_{min}$ | $\begin{array}{c}\mathrm{Metal}\hfill \\ \mathrm{GCM}\hfill \end{array}$ | $\begin{array}{c}1.1\hfill \\ 1.07\hfill \end{array}$ | $\begin{array}{c}1.15\hfill \\ 1.13\hfill \end{array}$ | $\begin{array}{c}1.2\hfill \\ 1.2\hfill \end{array}$ | $\begin{array}{c}1.05\hfill \\ 1.1\hfill \end{array}$ | $\begin{array}{c}1.05\hfill \\ 1.15\hfill \end{array}$ | $\begin{array}{c}1.3\hfill \\ 1.25\hfill \end{array}$ |

$\begin{array}{c}\mathrm{Main}-\mathrm{lobe}\phantom{\rule{4.pt}{0ex}}\mathrm{width}\phantom{\rule{4.pt}{0ex}}\left(\mathrm{degree}\right)\phantom{\rule{4.pt}{0ex}}\hfill \\ \mathrm{of}\phantom{\rule{4.pt}{0ex}}\mathrm{Radiation}\phantom{\rule{4.pt}{0ex}}\mathrm{Pattern}\hfill \end{array}$ | $\begin{array}{c}\mathrm{Metal}\hfill \\ \mathrm{GCM}\hfill \end{array}$ | $\begin{array}{c}86\hfill \\ 90\hfill \end{array}$ | $\begin{array}{c}80\hfill \\ 75\hfill \end{array}$ | $\begin{array}{c}58.6\hfill \\ 61.4\hfill \end{array}$ | $\begin{array}{c}58.6\hfill \\ 61.4\hfill \end{array}$ | $\begin{array}{c}60\hfill \\ 60\hfill \end{array}$ | |

${\left|\frac{{E}_{max}^{\left(GCM\right)}}{{E}_{max}^{\left(Met\right)}}\right|}^{2}$ | $\begin{array}{c}\mathrm{Metal}\hfill \\ \mathrm{GCM}\hfill \end{array}$ | $\begin{array}{c}1\hfill \\ 1.08\hfill \end{array}$ | $\begin{array}{c}1\hfill \\ 0.93\hfill \end{array}$ | $\begin{array}{c}1\hfill \\ 1.03\hfill \end{array}$ | $\begin{array}{c}1\hfill \\ 0.9\hfill \end{array}$ | $\begin{array}{c}1\hfill \\ 0.88\hfill \end{array}$ | $\begin{array}{c}1\hfill \\ 1.1\hfill \end{array}$ |

Polarization | $\begin{array}{cc}\mathrm{Metal}\hfill & \\ \mathrm{GCM}\hfill & \mathrm{thread}\hfill \end{array}$ | $\begin{array}{c}0.55\text{\u2013}0.8\hfill \\ 0.3\text{\u2013}0.4\hfill \end{array}$ | |||||

Weight (kg) | $\begin{array}{c}\mathrm{Metal}\hfill \\ \mathrm{GCM}\hfill \end{array}$ | $\begin{array}{c}1.91\phantom{\rule{4pt}{0ex}}{\left(Al\right)}^{*}\hfill \\ 1.07{\left(GCM\right)}^{*}\hfill \end{array}$ | $\begin{array}{c}8\hfill \\ 0.5\hfill \end{array}$ | $\begin{array}{c}8.2\hfill \\ 0.7\hfill \end{array}$ | $\begin{array}{c}0.51\hfill \\ 0.14\hfill \end{array}$ | ||

Size (m) | $\begin{array}{c}\mathrm{whiskers}\hfill \\ 0.75\hfill \end{array}$ | $\begin{array}{c}\mathrm{whiskers}\hfill \\ 0.25\hfill \end{array}$ | $\begin{array}{c}\mathrm{whiskers}\hfill \\ 0.28\hfill \end{array}$ | $\begin{array}{c}\mathrm{opening}\hfill \\ 0.152\hfill \end{array}$ | $\begin{array}{c}\mathrm{opening}\hfill \\ 0.152\hfill \end{array}$ | $\begin{array}{c}\mathrm{opening}\hfill \\ 0.05\hfill \end{array}$ |

**Table 2.**Main properties of graphene-containing composite material antennas and corresponding metal analogs.

PARAMETERS | Zoltek Px 35 | Brass | Al (Aluminium) |
---|---|---|---|

Electrical resistivity (Ωm) | 15.5 · 10^{−6} | 6 · 10^{−8} | 3 · 10^{−8} |

Tensile strength (MPa) | 4137 | 450 | 100 |

Tensile modulus (GPa) | 242 | 100 | 75 |

Density (kg·m^{−3}) | 1810 | 8500 | 2700 |

Coefficient of thermal expansion (°K^{−1}) | 8 · 10^{−8} | 19.1 · 10^{−6} | 23.8 · 10^{−6} |

Temperature of melting (decomposition) of metal (GCM) (°C) | >650 | 900 | 650 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dugin, N.A.; Zaboronkova, T.M.; Krafft, C.; Belyaev, G.R. Carbon-Based Composite Microwave Antennas. *Electronics* **2020**, *9*, 590.
https://doi.org/10.3390/electronics9040590

**AMA Style**

Dugin NA, Zaboronkova TM, Krafft C, Belyaev GR. Carbon-Based Composite Microwave Antennas. *Electronics*. 2020; 9(4):590.
https://doi.org/10.3390/electronics9040590

**Chicago/Turabian Style**

Dugin, Nikolai A., Tatiana M. Zaboronkova, Catherine Krafft, and Grigorii R. Belyaev. 2020. "Carbon-Based Composite Microwave Antennas" *Electronics* 9, no. 4: 590.
https://doi.org/10.3390/electronics9040590